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Abstract: Diabetes Mellitus (DM) is a metabolic disorder that is spreading alarmingly around the
globe. Type-2 DM (T2DM) is characterized by low-grade inflammation and insulin resistance and is
closely linked to obesity. T2DM is mainly controlled by lifestyle/dietary changes and oral antidiabetic
drugs but requires insulin in severe cases. Many of the drugs that are currently used to treat DM are
costly and present adverse side effects. Several cellular, animal, and clinical studies have provided
compelling evidence that flavonoids have therapeutic potential in the management of diabetes and its
complications. Quercetin is a flavonoid, present in various natural sources, which has demonstrated
in vitro and in vivo antidiabetic properties. It improves oral glucose tolerance, as well as pancreatic
β-cell function to secrete insulin. It inhibits the α-glucosidase and DPP-IV enzymes, which prolong
the half-life of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide
(GIP). Quercetin also suppresses the release of pro-inflammatory markers such as IL-1β, IL-4, IL-6,
and TNF-α. Further studies are warranted to elucidate the mode(s) of action of quercetin at the
molecular level. This review demonstrates the therapeutic potential of quercetin in the management
of T2DM.

Keywords: quercetin; diabetes; inflammatory markers; medicinal plants; insulin

1. Introduction

Diabetes mellitus (DM) is a chronic disease that is one of the leading causes of illness
and mortality across the globe. DM is diagnosed as a result of an elevated blood glucose
level (hyperglycaemia) caused by inadequate insulin secretion, defective insulin action,
or both. The improper control of insulin has also been linked to abnormalities in the
metabolism of lipids and proteins. If proper treatment is not received on time, or if left
untreated, DM can lead to hyperglycaemic coma, and severe damage to the eyes, kidneys,
blood vessels, and nervous and cardiovascular system. It can even lead to death due to
ketoacidosis and nonketotic hyperosmolar syndrome [1,2]. These metabolic disruptions
result from low insulin levels or insulin resistance in skeletal muscles, adipose tissue, and
other target tissues. The development, pathogenesis, and complications of DM have been
strongly correlated with high levels of oxidative stress, free radicals, and other metabolic
stressors [3,4]. According to reports from 2021, 465 million people suffer from DM world-
wide [5]. This number is anticipated to rise to 700 million by 2045. The majority of DM
sufferers are from middle and low-income countries [5].
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The American Diabetes Association has categorized diabetes as Type 1, Type 2, and
gestational DM [6]. Type 1 diabetes, also known as juvenile diabetes, causes a decrease in
glucose sensitivity to clonal pancreatic β-cells [7]. It has no cure but can be controlled by
lifestyle changes, blood sugar monitoring, and the administration of insulin. This type of
diabetes occurs in approximately 80–90% of children and adolescents [8]. Type 2 diabetes
mellitus (T2DM) is the most prevalent and occurs due to the insufficient production of in-
sulin by the body, insulin resistance, and obesity [9]. It can be controlled by lifestyle/dietary
changes and oral antidiabetic drugs but requires insulin in severe cases [10]. Whilst the
majority of T2DM sufferers are adults (more than 90% of the patient population), it affects
people of all ages. Individuals over 40 years of age and with obesity issues and a family
history of the disease are at a higher risk of developing T2DM [11].

A range of antidiabetic drugs such as metformin, sulfonylureas, meglitinides, thi-
azolidinediones, GLP-1 mimetics, DPP-IV, and SGLT2 inhibitors are currently used to
treat T2DM. However, many of these are costly and present notable adverse side effects
(Table 1) [12]. Plant-based medicines have emerged as an alternative treatment for DM,
particularly as these are affordable, widely accessible to rural populations, and have been
associated with low side effects [13,14]. According to the World Health Organization, 75%
of the world’s population uses herbal medicine for basic healthcare needs [14]. Traditional
medicinal plants are often used for a wide variety of ailments, including DM [15]. Phyto-
constituents from medicinal plants are well-known for their valuable therapeutic potential
owing to their various biological effects including antidiabetic, anti-inflammatory, cardio-
protective, antiviral, and antibacterial activities [16]. Flavonoids, including quercetin, are
found in several medicinal plants including Momordica charantia, Dracocephalum moldavica,
Euphorbia helioscopia, and Brassica rapa (Table 2). Medicinal plants containing quercetin have
been used traditionally for the treatment of diabetes, infections, and cancer [16]. Recent
studies have revealed that quercetin reduces the risk of cardiovascular diseases by lowering
hyperglycaemia, high blood pressure, hyperlipidaemia, and promoting weight loss [17].
Some studies have demonstrated that this flavonoid is beneficial in chronic hypertension,
dyslipidemia, obesity, and T2DM [18]. Quercetin has been proven to decrease blood glu-
cose, liver glucose content, and enzyme levels, and lower serum cholesterol levels [18,19]. It
has also been shown to prevent oxidative damage, enhancing the regeneration of pancreatic
β-cell islets, and the subsequent release of insulin [19]. In comparison to current synthetic
drugs, which have many adverse effects, quercetin has proven to be an exceptional template
for the development of novel antidiabetic drugs. The purpose of this review is to explore
the therapeutic potential of quercetin in the management of T2DM.

Table 1. Pharmacological actions and side effects of antidiabetic drugs.

Type 2 Antidiabetic Agents Pharmacological Actions Side Effects References

α-glucosidase inhibitors
(Acarbose, miglitol)

Inhibit the intestinal absorption
of carbohydrates Flatulence, bloating, diarrhoea [20,21]

Biguanides
(Metformin)

Inhibit hepatic gluconeogenesis,
Reduce the liver and intestinal

absorption of sugar
Increase insulin sensitivity and

glucose uptake

Kidney complications, upset
stomach, tiredness, and

dizziness
[22,23]

Dopamine agonists
(Bromocriptine, cabergoline,

apomorphine)

Regulate plasma glucose, free fatty
acids, and triglyceride levels in

insulin-resistant patients

Visual hallucinations and
confusion, edema [24,25]

Dipeptidyl peptidase-4 (DPP-4)
inhibitors

(Sitagliptin, saxagliptin, linagliptin)

Increase the half-life of GLP-1
and GIP

Gastrointestinal problems,
flu-like symptoms (headache,

runny nose, sore throat)
[26,27]

GLP-1 agonists
(Dulaglutide, exenatide, albiglutide)

Enhance insulin release
Reduce glucagon release

Gastrointestinal problems and
nausea [28,29]
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Table 1. Cont.

Type 2 Antidiabetic Agents Pharmacological Actions Side Effects References

Meglitinides
(Nateglinide, repaglinide) Stimulate the release of insulin Weight gain, hypoglycaemia,

excessive sweating [30,31]

Sodium-glucose Co-transporter-2
(SGLT-2) inhibitors

(Dapagliflozin, canagliflozin,
empagliflozin)

Inhibit glucose reabsorption in the
renal tubule

Urinary tract infection and
increased urination, upper

respiratory tract infections, joint
pain, nausea, and thirst

[32,33]

Sulfonylureas
(Tolbutamide, tolazamide,

chlorpropamide)

Inhibit ATP-sensitive potassium
(KATP) channel in pancreatic β-cells

Hypoglycaemia, upset stomach,
skin rash, and itching [34]

Thiazolidinediones
(Rosiglitazone, pioglitazone)

Bind with the peroxisome
proliferator-activated receptor

(PPAR)-γ receptor resulting in the
activation of several genes that
regulate glucose metabolism in

the liver

Anaemia risk, weight gain,
edema, heart failure [35,36]

2. Chemistry of Quercetin

The term quercetin is derived from the Latin word “Quercetum” which means oak
forest. The main dietary sources of quercetin are fruits, vegetables, and various medicinal
plants (Table 2). Quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a compound yellow in color,
fully soluble in lipids and alcohol, insoluble in cold water, and sparingly soluble in hot water,
that was isolated as a flavonoid glycoside for the first time in 1854. Its chemical structure
was elucidated in 1899 [37]. Quercetin belongs to the flavonol subclass of flavonoids, with
two aromatic rings (A and B) interlinked by a three-carbon linked γ-pyrone ring (C), and
five hydroxyl (OH) groups that can be variously substituted (Figure 1).
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The majority of quercetin derivatives are found in a glycoside form in which one or
more hydroxyl group is substituted by different types of sugars [38]. Its polyphenolic
structure, catechol moiety in the B ring, OH groups at positions 3 and 5 in the A ring, and
2,3-double bond conjugated with a 4-oxo function in the C ring have been identified as
important features responsible for the well-known antioxidant effect of quercetin [39,40].

3. Pharmacological Actions of Quercetin in Diabetes and Associated
Metabolic Disorders

Quercetin possesses various pharmacological properties and has been reported as one
of the most widely used flavonoids to treat metabolic and inflammatory disorders [14].
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In vitro studies on human retinal endothelial cells demonstrated that quercetin could in-
hibit the proliferation of high-glucose-induced cells by lowering the production of vascular
endothelial growth factor (VEGF) (Figure 2) [41]. Quercetin also inhibited carbohydrate
digesting-enzymes (intestinal α-glucosidase and pancreatic α-amylase), reduced starch hy-
drolysis, decreased the rate of glucose absorption, as well as slowed down the progression
of postprandial hyperglycaemia in in vitro settings (Figure 2) [42,43].
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Studies carried out on streptozotocin (STZ)-induced diabetic rats have revealed that
quercetin could reduce blood glucose levels and improve glucose tolerance [44]. Quercetin
decreased plasma glucose levels in Type 2 diabetic rats [45]. In hyperlipidaemic animals,
quercetin lowered the levels of triglycerides (TG), total cholesterol (TC), LDL, and VLDL
cholesterol, inhibited 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, and in-
creased adiponectin and HDL cholesterol levels (Table 2) [45,46]. Previous findings also
indicated that quercetin could improve the high-fat diet (HFD)-induced dyslipidaemia
in Swiss albino mice [47]. Other studies have shown that quercetin inhibited the over-
expression of connective tissue growth factor (CTGF) and transforming growth factor
beta-1 (TGF-β1) and contributed to improving renal function in diabetic nephropathic rats
(Figure 2) [48].

Quercetin has the potential to prevent diabetic liver oxidative damage by suppress-
ing the CYP2E1 liver enzyme in diabetic mice (Figure 2) [49]. Additionally, it decreases
oxidative stress in diabetic renal tissue (Table 2) [50]. The administration of quercetin
decreased body weight, fat accumulation, hyperglycaemia, dyslipidemia, and hyperinsu-
linemia in high-fat-fed obese mice [50]. Quercetin reduced blood glucose levels in mice
and rats with T2DM [45,51]. It also decreased oxidative damage in the pancreatic tis-
sue of high-fat-fed mice [52]. When combined with resveratrol, quercetin significantly
upregulated gene-associated glucose or lipid metabolism, as well as liver function, in
HFD animal models [53]. Furthermore, quercetin with/without resveratrol reduced the
damage to pancreatic β-cells by restoring serum C-peptide and glycosylated hemoglobin
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(HbA1c) levels in diabetic rats (Figure 2) [54]. Histological investigations demonstrated
that quercetin, with/without resveratrol, preserved pancreatic tissue and regulated insulin
levels, thereby exerting hypoglycemic activity, and enhancing the function of pancreatic
β-cells in diabetic rats [55]. Quercetin reduced serum lipids levels and showed beneficial
effects on dyslipidemia-associated complications including atherosclerosis, myocardial
attack, and coronary diseases [50]. Quercetin significantly decreased plasma glucose levels
in STZ-induced diabetic rats. In addition, it improved glucose tolerance and hepatic glu-
cokinase activity [44]. Quercetin increased the number of pancreatic islets in both normal
and diabetic mice. It also regenerated the pancreatic islets and enhanced insulin secretion
in STZ/alloxan-induced diabetic mice [56].

In a randomized, double-blind, placebo-controlled clinical trial, quercetin at a dose
of 100 mg/day for 12 weeks reduced body fat and body mass index (BMI) of obese sub-
jects [57]. It also downregulated triacylglycerol levels at a dose of 150 mg/day in overweight
individuals [57]. Quercetin also lowered maltose-induced postprandial hyperglycaemia but
had no significant effect on glucose-induced postprandial hyperglycaemia [58]. The oral
administration of multiple doses of quercetin decreased blood glucose and HbA1c levels,
enhanced glycogen synthesis, decreased α-glucosidase activity, and insulin resistance. In
addition, it minimized β-cell insufficiency, enhancing pancreatic insulin secretion and
controlling blood glucose levels in diabetic patients by reducing oxidative stress [59].

4. Other Activities and Side Effects of Quercetin

Due to its polyphenolic structure and its catechol moiety, quercetin displays antiox-
idant/radical scavenging properties [60,61]. These effects help to protect against the
oxidative stress-induced damage to pancreatic β-cells associated with diabetes [62]. In
addition, quercetin has cardioprotective, anti-tumour, anti-arthritis, and antimicrobial
properties [63–66] and it also prevents tyrosinase enzyme activity [67]. Quercetin has been
reported to treat non-alcoholic fatty liver disease (NAFLD) by decreasing the level of liver
enzymes, such as alanine transaminase (ALT) and aspartate transaminase (AST) (Figure 2),
oxidative stress, and inflammation, and by regenerating altered metabolites and gut micro-
biota [44,68]. Quercetin has shown immunomodulatory activity, reducing the release of
pro-inflammatory cytokines such as interleukin (IL)-1, IL-6, IL-8, IL-4, and tumour necrosis
factor (TNF)-α (Figure 2) [69]. At doses higher than 945 mg/m2, quercetin can cause emesis,
hypertension, nephrotoxicity, and decrease serum potassium levels [46]. Quercetin was
also found to increase insulin secretion from BRIN-BD11 cells in a dose-dependent manner;
however, it showed toxicity at doses above 50 µM [15].
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Table 2. Pharmacological actions of quercetin-containing plants.

Plant Names Plant Part(s) Diabetic Model/s Pharmacological Actions
of Plants Dose of Quercetin Duration of

Treatment
Pharmacological Actions

of Quercetin References

Acanthopanax senticosus Root Alloxan-induced
diabetic rats

↓ Blood glucose, total
cholesterol, total bilirubin,

creatinine, urea
↓ Oxidative stress

50 mg/kg 30 days Inhibits α-glucosidase activity
Reduces oxidative stress [66,70,71]

Ginkgo biloba Leaf STZ-induced
diabetic rats

↑ β-cell mass and insulin
secretion

↓ Amyloid-β neurotoxicity
90 mg/kg 10 weeks

Delays the progression of
STZ-induced diabetic cataracts
Reduces AGE products activity

[72,73]

Psidium guajava Leaf NA-STZ-induced
diabetic rats

↓ Oxidative stress
↓ Protein glycation
↓ Inflammation

10- 50 mg/kg 28 days

Reduces blood glucose levels
Increases insulin secretion
Improves T2DM-mediated

cardiovascular disease

[74,75]

Momordica charantia Fruit HFF obese rats
↓ Blood glucose, total

cholesterol
↑ Insulin secretion

50 mg/kg 12 weeks
Reduces oxidation stress by

inhibiting the release of chemokines
and cytokines

[76,77]

Polygonum perfoliatum Leaf HFF obese rats ↓ Blood glucose
↓ Inflammation 60–240 mg/kg 4 weeks Inhibits α-glucosidase activity [78]

Phyllanthus Emblica Fruit STZ-induced
diabetic rats

↓ Triglycerides, LDL, VLDL,
total cholesterol
↑ HDL cholesterol

25–75 mg/kg 28 days Decreases blood glucose
Increases insulin secretion [79]

Cuscuta chinensis Seed Alloxan-induced
diabetic mice

↓ Fasting blood glucose
↑ Insulin secretion

Inhibits DPP-IV activity
20 mg/kg 3 weeks Reduces fasting blood glucose level

Enhances GLUT4 expression [65,80]

Euphorbia helioscopia Leaf, root STZ-induced
diabetic rats

↑ Insulin secretion
↓ Blood glucose 100 mg/kg 7 weeks Reduces blood glucose and blood

glycated hemoglobin levels [81,82]

Brassica rapa Root STZ-induced
diabetic rats

↓ Fasting blood glucose
↓ Inflammation
↓ Hypertension

Inhibits DPP-IV activity

15 mg/kg 25 days Decreases blood glucose levels
Improves glucose tolerance [83,84]

Crataegus pinnatifida Leaf, fruit STZ-induced
diabetic rats

↓ Fasting blood glucose
↓ VLDL and LDL cholesterol 100 mg/kg 14 days Decreases blood glucose

Increases plasma insulin [85,86]
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Table 2. Cont.

Plant Names Plant Part(s) Diabetic Model/s Pharmacological Actions
of Plants Dose of Quercetin Duration of

Treatment
Pharmacological Actions

of Quercetin References

Sophora japonica Bud,
flower

STZ-induced
diabetic rats

↑ Insulin release
Inhibits DPP-IV activity 10–15 mg/kg 10 days Reduces blood glucose levels

Improves glucose tolerance [50,87]

Coriandrum sativum Herb STZ-induced
diabetic rats

↑ Insulin secretion
↓ Blood glucose
↓ Inflammation

50 mg/kg 8 weeks
Decreases fasting blood glucose
Suppresses TNF-α, IL-1β, and

production of AGEs
[88–90]

Cymbopogon citratus Herb STZ-induced
diabetic rats

↓ Fasting blood glucose
↓ Inflammation
↓ Hypertension

↑ Insulin secretion

20–50 mg/kg 6 weeks

Reduces blood glucose levels
Decreases the production of reactive

oxygen species (ROS)
Improves T2DM-mediated testicular

damage

[91–93]

Allium cepa Bulb STZ-induced
diabetic rats

↓ Blood glucose
↓ Triglycerides, LDL, VLDL,

total cholesterol
↑ HDL cholesterol
↑ Insulin secretion

100–200 mg/kg 6 weeks Lowers blood glucose
Improves glucose tolerance [94–96]

Prunus avium Fruit STZ-induced
diabetic rats

↓ Blood glucose
↑ Insulin secretion

↓ LDL and VLDL cholesterol
50–80 mg/kg 45 days Reduces blood glucose levels

Improves oxidative stress [97–99]

Capparis spinosa Fruit Alloxan-induced
diabetic mice

↓ Fasting blood glucose
↑ Insulin secretion
↓ Liver damage

50 mg/kg 7 days Decreases fasting blood glucose
Reduces ALT and AST levels [100–102]

Brassica oleracea var.
Italica Flower STZ-induced

diabetic rats
↑ Insulin secretion
↓ Blood glucose 10 mg/kg 4 weeks

Decreases blood glucose levels
Reduces creatinine and blood urea

nitrogen levels
[103–105]

Lactuca sativa Leaf Alloxan-induced
diabetic rats

↓ Fasting blood glucose
↑ Insulin secretion
↓ Inflammation

50 mg/kg 4 weeks
Reduces blood glucose levels

Decreases creatinine, ALT, AST, and
cholesterol levels

[106–108]

Asparagus officinalis Stem STZ-induced
diabetic rats

↑ Insulin secretion
↓ Blood glucose
↓ Inflammation

50 mg/kg 12 weeks

Reduces fasting blood glucose
Decreases the production of reactive

oxygen species (ROS)
Improves glucose tolerance

[109,110]
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Table 2. Cont.

Plant Names Plant Part(s) Diabetic Model/s Pharmacological Actions
of Plants Dose of Quercetin Duration of

Treatment
Pharmacological Actions

of Quercetin References

Acacia arabica Bark HFF-induced obese
diabetic rats

↑ Insulin secretion
Inhibits DPP-IV activity

↓ Protein glycation
30 mg/kg 8 weeks

Reduces fasting blood glucose
Decreases LDL and TG levels

Increases HDL levels
[15,111]

Solanum lycopersicum Fruit STZ-induced
diabetic rats

↓ Blood glucose
↑ Insulin secretion 10 mg/kg 28 days

Decreases blood glucose levels
Increases insulin secretion

Inhibits apoptosis
[112,113]

Piper nigrum Flower Alloxan-induced
diabetic mice

↑ Insulin secretion
↓ Blood glucose
↓ Inflammation

50 mg/kg 7 days Reduces blood glucose levels [114,115]

Toona sinensis HFF-induced obese
diabetic rats

↑ Insulin secretion
↓ Blood glucose
↓ Inflammation

200 mg/kg 4 weeks Improves glucose tolerance
Decreases TG and TC levels [116]

Symbols. ↑: Increase; ↓: Decrease.
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5. Mechanisms of Action of Quercetin

Quercetin maintains glucose homeostasis by interacting with molecular targets in the
small intestine, pancreas, skeletal muscle, adipose tissue, and liver. Studies carried out on
STZ-induced diabetic rats have revealed that quercetin could restore the impaired protein
expression of insulin signaling molecules, such as phosphatidylinositol 3 kinases (PI3K)
and insulin receptor substrate-1 (IRS-1), resulting in increased insulin-mediated glucose up-
take [117]. Quercetin has also been shown to activate adenosine monophosphate-activated
protein kinase (AMPK) in the livers of rats, which reduces glucose synthesis primarily
via downregulating glycogenic isoenzymes, such as phosphoenolpyruvate carboxylase
(PEPCK) and glucose-6-phosphatase (G6Pase) [52,118]. In mouse skeletal muscle cells, it
has been reported to enhance glucose uptake by promoting the translocation of GLUT4 to
the cell membrane [119]. These findings indicate that quercetin regulates the metabolism of
glucose, increasing glycolysis while decreasing gluconeogenesis [120]. In healthy individu-
als, around 80% of the absorbed glucose is stored in the form of glycogen in skeletal muscles
upon the action of insulin. A reduction in this uptake has been shown to contribute to the
etiology of T2DM as irregularities in the expression of the GLUT4 transporter lower the rate
of glucose entering the cells, leading to a rise in blood glucose levels [121]. In skeletal mus-
cles, quercetin activates AMPK, which in turn stimulates GLUT4 receptors and Akt (protein
kinase B) in the cell membrane [122]. This allows glucose to enter the cells via the GLUT4
transporter, thereby regulating glycaemia [117]. Similarly, exercise is a potent activator of
GLUT4 expression, which increases insulin activity and muscle glycogen storage. Defective
activation of AMPK leads to insulin resistance, which causes T2DM [123]. Quercetin-
induced AMPK activation in hepatocytes inhibits glucose-6 phosphatases [118]. Treatment
with quercetin decreases GLUT2 expression and the intestinal sodium-dependent glucose
uptake, in turn reducing glucose absorption in the gastrointestinal tract and controlling
glycaemia (Figure 3) [119].
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Figure 3. Pharmacological action of quercetin via different mechanistic pathways: Quercetin enhances
pancreatic β-cell function and increases insulin release by inhibiting apoptosis, NF-κB, and JNK
pathways; decreases glucose absorption in the kidney by inhibiting DPP-IV and COX-2 activity;
decreases gluconeogenesis through inhibition of TNF-α and IL-4 in the liver; suppresses glucose
reabsorption in the gastrointestinal tract by decreasing α-glucosidase activity; reduces blood glucose
levels and oxidative stress by inhibiting IL-6 activity in the heart and blood vessels.
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In addition, quercetin has been reported to enhance the AMP/ATP ratio and scav-
enge reactive oxygen species (ROS) in clonal pancreatic β-cells, reducing oxidative stress
(Figure 3) [124]. The increased AMP/ATP ratio activates the mitochondrial target of ra-
pamycin (mTOR), which induces mitogenesis (via transduction signaling pathways ac-
tivation) and stimulates insulin secretion [125]. mTOR plays a significant role in the
regulation of transcription, protein synthesis, and cell nutrition [126]. Under hypergly-
caemic conditions, proteins, lipids, and nucleic acids undergo non-enzymatic glycation to
form Advanced Glycation End (AGE)-products. The latter cause diabetic complications
such as cardiovascular diseases, nephropathy, retinopathy, and neuropathy. Quercetin has
been found to inhibit protein glycation more potently than the synthetic drug aminoguani-
dine [122,123]. It can reduce the formation of AGE-products by trapping methylglyoxal and
glyoxal [127] and improve diabetic complications due to its antioxidant, anti-inflammatory,
and antihyperglycemic properties [47].

In STZ-induced rats, quercetin improved retinopathy by down-regulating matrix
metalloproteinase-9 (MMP-9), monocyte chemo-attractant protein-1 (MCP-1), and vascular
endothelial growth factor (VEGF) [128]. In hypercholesterolemic mice, it reduced diabetic
nephropathy by lowering triglycerides and blood glucose levels [129]. Moreover, it also
showed neuroprotective effects on enteric neurons in the cecum of DM rats [130].

Previous studies have revealed that fat accumulation in the liver and muscles activates
the Jun N-terminal kinases (JNK) and the nuclear transcription factor Kappa-B (NF-κB)
inflammatory pathways, leading to obesity-associated T2DM (Figure 3) [131]. Quercetin
suppresses both these pathways, which in turn improves glycaemia [132]. It also suppresses
the FcεRI receptor by inhibiting the phosphorylation of several kinases like PKC (protein
kinase C), Syk (spleen tyrosine kinase), and p38 mitogen-activated protein kinase (MAPK)
in mast cells and basophils [122].

The release of pro-inflammatory mediators such as IL-1, IL-6, IL-8, IL-4, TNF-α, and
histamine in brown adipose tissue has been linked with increased insulin resistance and
high blood glucose levels (Figure 3) [133]. Quercetin inhibits these mediators and prevents
oxidative stress [134]. In the kidneys, quercetin reduces DPP-IV and cyclooxygenase-
2 (COX-2) activity, leading to a decrease in blood glucose reabsorption (Figure 3) [135].
Quercetin also activates leukocytes and targets various enzymes such as kinases, membrane
proteins, and phosphatases to control inflammation and the immune response [129]. It
suppresses lipoxygenase and cyclooxygenase enzymes, which suppresses the release of
pro-inflammatory mediators including leukotrienes and prostaglandins [136]. Quercetin
also inhibits TNF-α, a cytokine that plays a vital role in leukocyte formation, proliferation,
and differentiation, specifically in the liver and gastrointestinal tract [69,125,135]. This
causes a reduction in gluconeogenesis, glucose reabsorption, and α-glucosidase activity
(Figure 3) [135]. Pancreatic β-cell apoptosis may occur due to hyperglycaemia-induced
oxidative stress, and this can lead to diabetes mellitus. Glutathione peroxidase 4 (GPX4),
an enzyme that protects cells against lipid peroxidation, suppresses the ferroptosis or
apoptosis of pancreatic β-cells [137]. It has been demonstrated that quercetin can increase
GPX4 activity in the pancreas, reducing oxidative stress, increased β-cell production, and
insulin secretion [138]. Quercetin has also been reported to reduce the intestinal absorption
of cholesterol by reducing the expression of the epithelial cholesterol transporter Niemann-
Pick C1-Like 1 (NPC1L1) [100] and it has been suggested that the consumption of quercetin
in the diet could lower systolic, diastolic, and mean arterial pressure in hypertensive
individuals [139]. Quercetin can also lower blood pressure by reducing oxidative stress,
enhancing the renin-angiotensin-aldosterone system (RAAS), and increasing vascular
activity [133].

6. Effects of Quercetin on Diabetic Complications

Hyperglycemia over an extended period of time can increase the risk of macro- and
microvascular problems including retinopathy, nephropathy, neuropathy, and cardiovascu-
lar diseases. A serious complication of DM, diabetic retinopathy (DR) is one of the leading
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causes of adult blindness and visual impairment [140]. Recent studies have indicated that
quercetin at 150 mg/kg improved retinopathy in STZ-induced rats by reducing the expres-
sion of monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase-9 (MMP-9),
and vascular endothelial growth factor (VEGF), and decreased protein damage caused
by oxidative stress [49,141]. Another major complication of DM, diabetic nephropathy
is caused by long-term hyperglycemia which leads renal cells to secrete an array of pro-
inflammatory and pro-fibrotic substances, resulting in cell hypertrophy and proliferation
and the development of renal interstitial fibrosis [142]. Previous reports have shown that
quercetin deactivated the SphK1-S1P (sphingosine kinase-1) signaling pathway, and hence
inhibited the development of renal fibrosis [48].

Oxidative stress due to chronic hyperglycaemia induces complications related to the
central nervous system and thus, may lead to neurodegenerative disorders such as Parkin-
son’s and Alzheimer’s diseases [143]. Recent studies have shown that the administration
of quercetin improved memory impairment and reduced brain energy metabolism in
STZ-induced rats by reducing ATP content in a dose-dependent manner [144]. Chronic
insulin resistance and hyperglycaemia increase the risk of macrovascular complications
such as hypertension, cardiomyopathy, and coronary artery diseases [145,146]. In STZ-
induced rats, quercetin, with or without glibenclamide, was seen to decrease damage
due to cardiomyopathy, in a dose-dependent manner [146]. Recent studies have revealed
that quercetin increased cardioprotection via increasing endothelium cell receptors and
nitric oxide production in STZ-induced rats [147]. Another study performed with Type 2
diabetic women reported that quercetin supplements could significantly reduce systolic
blood pressure [148].

In recent years, various studies have reported the positive effects of quercetin on
diabetes and its complications, and it is likely that these are alleviated following quercetin
administration. However, few of these studies have been performed on humans. In recent
years, only a few antidiabetic mechanisms of action have been reported for quercetin.
More clinical trials including those using quercetin supplementation are required to better
understand the mechanism(s) of action of quercetin in humans. It has also been discovered
that defective iron metabolism in diabetic patients leads to increased severity of diabetic
complications [149]. However, the impact of quercetin on iron regulation in diabetic
complications has rarely been reported. Further investigation is required to understand
the role of quercetin in iron regulation to develop new potential drugs for nephropathy,
neuropathy, retinopathy, and other diabetic complications.

7. Conclusions

Studies have revealed that quercetin displays a wide range of pharmacological proper-
ties, including antihyperglycaemic effects. It can alleviate hyperglycaemia, hyperlipidemia,
hypertension, and oxidative stress, contributing to lowering the risk of cardiovascular dis-
eases emerging. Quercetin decreases blood glucose levels, improves glucose tolerance, and
enhances pancreatic β-cell function via various mechanistic pathways such as AMPK which
regulates GLUT4 expression in adipose tissue and muscles. It also regulates glycaemia by
reducing GLUT2 expression and sodium-dependent glucose uptake in the gut, as well as
lowering glucose absorption. It also inhibits the release of pro-inflammatory mediators,
such as TNF-α, IL-1, -4, -6, and -8, preventing pancreatic β-cell damage. Quercetin has been
shown to improve insulin sensitivity, glucose metabolism, and insulin secretion in diabetic
animal models by promoting pancreatic β-cell proliferation. Due to its numerous benefits,
quercetin has been identified to play a vital role in the treatment of T2DM. Various studies
are currently underway to determine the potential of quercetin as a future antidiabetic
medicine. However, only a few clinical trials have been performed to understand how
quercetin works in humans. Therefore, the correct dose and duration of quercetin treatment
are still unknown. It is necessary to address these limitations in current and future studies
in order to confirm the true effects of quercetin on diabetic patients. The studies presented
in this review support the conclusion that quercetin is a promising template for the develop-
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ment of new antidiabetic drugs. These would offer an alternative to current synthetic drugs
that have undesirable side effects. However, further studies, ranging from animal models
to clinical trials, are warranted to investigate the effects, including the mechanism(s) of
action at the molecular level, of quercetin on lowering blood glucose levels and increasing
insulin release in T2DM.
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MMP-9 Matrix metalloproteinase 9
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