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Abstract. For a two-dimensional canonical system y′(t) = zJH(t)y(t) on
the half-line (0,∞) whose Hamiltonian H is a.e. positive semi-definite, denote
by qH its Weyl coefficient. De Branges’ inverse spectral theorem states that the
assignment H �→ qH is a bijection between Hamiltonians (suitably normalised)
and Nevanlinna functions.
The main result of the paper is a criterion when the singular integral of the spectral
measure, i.e. Re qH(iy), dominates its Poisson integral Im qH(iy) for y → +∞.
Two equivalent conditions characterising this situation are provided. The first one
is analytic in nature, very simple, and explicit in terms of the primitive M of H. It
merely depends on the relative size of the off-diagonal entries of M compared with
the diagonal entries. The second condition is of geometric nature and technically
more complicated. It involves the relative size of the off-diagonal entries of H, a
measurement for oscillations of the diagonal of H, and a condition on the speed
and smoothness of the rotation of H.

1 Introduction

We investigate the spectral theory of two-dimensional canonical systems

(1.1) y′(t) = zJH(t)y(t), t ∈ (a, b),

where −∞ < a < b ≤ ∞, z ∈ C is the spectral parameter, J is the symplectic
matrix J := (0 −1

1 0
), and H is the Hamiltonian of the system. We deal with systems

whose Hamiltonian satisfies

� H(t) ∈ R2×2 and H(t) ≥ 0 a.e.;
� for all c ∈ (a, b) we have

∫ c
a trH(s) ds < ∞;

� H(t) �= 0 a.e.
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We further assume that H is in the limit point case at the right endpoint b, i.e.,

(1.2)
∫ b

a
trH(s) ds = ∞.

A central role in the theory of such equations is played by the Weyl coefficient qH

associated with H. For Sturm–Liouville equations its construction goes back to
H. Weyl [Wey10]. Let us recall the definition of qH for canonical systems. To this
end, let W(t, z) be the (transpose of) the fundamental solution of the system (1.1),
i.e., the unique 2 × 2-matrix-valued solution of the initial value problem⎧⎨⎩ ∂

∂tW(t, z)J = zW(t, z)H(t), t ∈ [a, b),

W(a, z) = I.

Note that the transposes of the rows of W are solutions of (1.1), and let us write

W(t, z) =

(
w11(t, z) w12(t, z)
w21(t, z) w22(t, z)

)
.

If (1.2) is satisfied, then the following limit exists and is independent of ζ in the
closed upper half-plane C+ ∪ R:

qH(z) := lim
t→b

w11(t, z)ζ +w12(t, z)
w21(t, z)ζ +w22(t, z)

, z ∈ C \ R;

the function qH is called the Weyl coefficient associated with the Hamiltonian H.
It is a Nevanlinna function or identically equal to ∞ (when h2(t) = 0 for a.e.
t ∈ (a, b)); a Nevanlinna function1 is a function that is analytic in C \ R and
satisfies qH(z) = qH(z) and Im qH(z) · Im z ≥ 0 for all z. The significance of the
Weyl coefficient is that the measure μ in its Herglotz integral representation

qH(z) = α + βz +
∫
R

( 1
t − z

− t
1 + t2

)
dμ

is a spectral measure for the differential operator constructed from the equation
(1.1) (when β > 0, this differential operator is actually multi-valued and one can
include a point mass at infinity with mass β).

A famous theorem by L. de Branges [Bra68] says that the assignment H �→ qH

establishes a bijective correspondence between the set of all suitably normalised
Hamiltonians on the one hand, and the set of all Nevanlinna functions on the other
hand. In view of de Branges’ correspondence, it is a natural task to translate
properties from H to qH (i.e., direct spectral relations) and vice versa from qH

1Sometimes in the literature the terminology Herglotz function is used instead.
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to H (i.e., inverse spectral relations). In the best case one can go both ways.
For illustration, let us mention two examples of such theorems. It is possible
to explicitly characterise those Hamiltonians H for which qH has an analytic
continuation to C \ [0,∞), see [Win98], or those Hamiltonians for which qH has
a meromorphic continuation to all of C, see [RW20]. The first result characterises
that the differential operator associated with (1.1) is non-negative, the second one
that it has discrete spectrum.

In the present paper we prove a direct and inverse spectral relation of a different
kind. It belongs to a family of results which relate the behaviour of H locally at the
left endpoint a with the behaviour of qH when z tends to +i∞; for physical reasons
one also speaks of the high-energy behaviour of qH. Recall that the behaviour
of Im qH(iy) at +∞ is related to the behaviour of the spectral measure at ±∞; see,
e.g., [LPW21, Section 4]. Our main result is Theorem 1.1 stated further below,
where we characterise those Hamiltonians H for which2

(1.3) Im qH(iy) 
 |qH(iy)|, y → +∞,

i.e., those Hamiltonians for which the singular integral Re qH(z) of the spectral
measure strictly dominates the Poisson integral Im qH(z).

In our theorem, where (1.3) is listed as item (i), we give two different conditions
on H, called (ii) and (iii), which are both equivalent to (1.3). Condition (ii) is
analytic in nature, very simple, and explicit in terms of the primitive

M(t) :=
∫ t

a
H(s) ds

of H, which is a non-negative and non-decreasing matrix function. It says that,
locally ata, the off-diagonal entries ofM(t) should be as large as its diagonal entries.
Condition (iii) is of geometric nature and somewhat more complicated. It involves
the relative size of the off-diagonal entries of H compared with the diagonal entries,
a measurement for oscillations of the diagonal of H, and a condition on the speed
and smoothness of the “rotation” of H.

From a function-theoretic perspective, the behaviour exhibited by (1.3) is rather
peculiar. For every Nevanlinna function q one has that for (in a measure-theoretic
sense) most points on the boundary of the open upper half-plane (including +i∞)
condition (1.3) fails; see [Pol03] and recall that real and imaginary parts are com-
parable on approaching almost every point of the absolutely continuous spectrum.
On the other hand, for a certain subclass of Nevanlinna functions it holds that for
(in a topological sense) many boundary points (1.3) holds, cf. [Don01, Theorem 1]

2We use the notation “f 
 g” for f/g → 0.
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where one uses a curve that approaches the boundary tangentially. Neither of these
statements has any implication for a single boundary point (in our case +i∞).
The condition (iii) in Theorem 1.1 is a very strong restriction on H. Hence, one
message of Theorem 1.1 is that (1.3), i.e., strict dominance of the singular integral
at a specific boundary point, is a rather rare phenomenon.

Our interest in the class of Hamiltonians with (1.3) originates from the re-
cent result [LPW21, Theorem 1.1]. In this theorem we showed that, for every
Hamiltonian H, the following estimates3

(1.4) |qH(iy)| � AH(y) and LH(y) � Im qH(iy) � AH(y) for y ≥ 1

hold, where LH(y) and AH(y) are certain functions defined explicitly in terms of the
primitive M(t), and the constants in “�” and “�” are independent of H; we recall
details in Section 2.6. The question arises whether the lower bound LH(y) is sharp.
The equivalence of (1.3) with Theorem 1.1 (ii) says that on a qualitative level the
answer is affirmative: we have

Im qH(iy) 
 |qH(iy)| ⇔ LH(iy) 
 AH(iy).

It is an open problem if there is a quantitative relation between ImqH(iy) and LH(iy)
(assuming that ImqH(iy) 
 |qH(iy)| and thinking up to universal multiplicative
constants). This seems to be a rather involved question, and we expect that the
equivalence of (1.3) with Theorem 1.1 (iii) will be of help to attack it.

Let us give a brief overview of the contents of the paper. In the remainder of the
Introduction we formulate the main theorem, Theorem 1.1, and a sequence variant,
Theorem 1.4, and provide an illustrative example. In Section 2 we provide some
preliminaries and set up notation. Section 3 contains the proof of the equivalence of
(i) and (ii) in our main results. Section 4 contains preparations for the proof of the
equivalence with (iii), which is then carried out in Section 5. Finally, in Section 6
we consider the situation when the diagonal entries of H, or their primitives, are
regularly varying.

Formulation of the main theorem. We formulate our main theorem for
Hamiltonians that satisfy

� a = 0, b = ∞;
� neither of the diagonal entries of H vanishes a.e. on some interval starting at the
left endpoint 0.

3We write “f � g” for ∃c > 0. f ≤ cg, and “f � g” for f � g ∧ g � f .
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Both assumptions are no loss in generality, and are only imposed for simplicity.
The first one can always be achieved by a change of the independent variable
in equation (1.1), and changes of variable do not alter the Weyl coefficient; see
Section 2.2. The second condition excludes some exceptional cases where there
is nothing to investigate: if it is not satisfied, then limy→∞ Im qH (iy)

|qH (iy)| = 1; we provide
more details in Sections 2.2 and 2.3.

Throughout the paper we write

(1.5) H(t) =

(
h1(t) h3(t)
h3(t) h2(t)

)
, mj(t) :=

∫ t

0
hj(s) ds, j = 1, 2, 3;

sometimes we write M(H, t) and mi(H, t) instead of M(t) and mi(t) respectively to
indicate the dependence on H. Moreover, λ denotes the Lebesgue measure.

Next, we have to introduce some notation which looks a bit technical on first
sight, but actually is not. The intuition behind these quantities is discussed in
Remark 1.3 below. The functions are well defined because h3(t)2 ≤ h1(t)h2(t) for
a.e. t > 0 and m1(t),m2(t) > 0 for all t > 0; the latter follows from the assumption
that neither of the diagonal entries of H vanishes a.e. on an interval starting at 0.
Set

σH(t) :=

⎧⎨⎩
|h3(t)|√

h1(t)h2(t)
if h3(t) �= 0,

0 otherwise,
(1.6)

πH,s(t) :=

⎧⎪⎨⎪⎩
sgn(h3(st))

h2(st)
h1(st)

/
m2(s)
m1(s)

if h3(st) �= 0,

0 otherwise,
(1.7)

ts(t) :=
m1(st)
m1(s)

+
m2(st)
m2(s)

,(1.8)

where s > 0 is a parameter.
Note that, for each fixed s > 0, the function ts is absolutely continuous and its

derivative
t′s(t) =

s
m1(s)

h1(st) +
s

m2(s)
h2(st)

is positive a.e. Furthermore, ts(0) = 0 and limt→∞ ts(t) = ∞; the latter follows
from the relation m1(st) + m2(st) =

∫ st
0 trH(x) dx → ∞ as t → ∞ by assumption.

Thus ts is an increasing bijection from [0,∞) onto itself with absolutely continuous
inverse function.

Now we are in position to state our main theorem.

1.1 Theorem. Let H be a Hamiltonian defined on the interval (0,∞) such

that (1.2) holds and neither h1 nor h2 vanishes a.e. on some neighbourhood of the
left endpoint 0. Then the following statements are equivalent:
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(i) Relation (1.3) holds, i.e.,

(1.9) lim
y→∞

Im qH(iy)
|qH(iy)| = 0.

(ii) We have

(1.10) lim
t→0

detM(t)
m1(t)m2(t)

= 0.

(iii) For all T ∈ (0,∞), all γ ∈ [0, 1), and all open intervals I, J ⊆ R \ {0}
with I ∩ J = ∅ and at least one of I and J being bounded, the following limit
relations hold:

lim
s→0

[
λ
(
(0,T) ∩ ts

(1
s
σ−1

H ([0, γ])
))]

= 0,(1.11)

lim
s→0

[λ((0,T) ∩ ts(π
−1
H,s(I))) · λ((0,T) ∩ ts(π

−1
H,s(J)))] = 0.(1.12)

Under a certain additional assumption, the conditions in (iii) greatly simplify.
This assumption is quite strong, and will, in many interesting cases, not be satisfied.
Still, in order to understand the nature of (1.11) and (1.12) and the proof of their
equivalence to (1.3), it is worth stating the following addition.

1.2 Addition to Theorem 1.1. Assume that, in addition to the assumptions

of Theorem 1.1, the following conditions hold:

trH(t) = 1 for a.e. t ∈ (0,∞),(1.13)

lim inf
t→0

(m1(t)
t

· m2(t)
t

)
> 0.(1.14)

Then the equivalent properties (i), (ii), (iii) in Theorem 1.1 are further equivalent

to the following condition.

(iv) For all γ and I, J as in Theorem 1.1 (iii) we have

lim
t→0

[1
t
λ((0, t) ∩ σ−1

H ([0, γ]))
]

= 0,(1.15)

lim
t→0

[1
t
λ((0, t) ∩ π−1

H (I)) · 1
t
λ((0, t) ∩ π−1

H (J))
]

= 0,(1.16)

where

(1.17) πH(t) :=

⎧⎨⎩sgn(h3(t))
h2(t)
h1(t)

if h3(t) �= 0,

0 otherwise.
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Note that (1.13) implies that m1(t)+m2(t) = t. Hence, by [LPW21, Theorem1.1]
(see also Proposition 2.9) we have

(1.18)
lim inf

t→0

(1
t
m1(t) · 1

t
m2(t)

)
> 0 ⇔ m1(t)

m2(t)
� 1, t → 0

⇔ |qH(ir)| � 1, r → ∞.

We come to the promised explanation of the conditions in (iii) (and (iv)).

1.3 Remark. Let us first discuss the simpler conditions (1.15) and (1.16).

The role of σH is to quantify the relative size of the off-diagonal entries of H
compared with the diagonal entries. Condition (1.15) can be written as

lim
t→0

[1
t
λ({x ∈ (0, t) : 1 − σH(x)2 ≥ 1 − γ2})

]
= 0,

or, by rescaling, as

lim
t→0

λ({x ∈ (0, 1) : 1 − σH(tx)2 ≥ 1 − γ2}) = 0.

The validity of this relation for all γ ∈ [0, 1) just says that the functions
x �→ 1 − σH(tx)2 converge to 0 in measure as t → 0. Since they are non-negative
and bounded by 1, this is also equivalent to the fact that their integrals converge
to 0. Note that

1 − σH(x)2 =

⎧⎨⎩
det H(x)

h1(x)h2(x)
if h3(x) �= 0,

1 otherwise.

Hence the validity of (1.15) for all γ ∈ [0, 1) is (again by rescaling) equivalent to

lim
t→0

1
t

∫ t

0

detH(x)
h1(x)h2(x)

dx = 0,

where the integrand is understood as equal to 1 at points where its denominator
vanishes; this means that the Hamiltonian should be almost of zero determinant in
the vicinity of the left endpoint 0 in a measure-theoretic sense.

The role of πH is not so obvious. It is related to what one may think of as
“rotation” of H. To see this, write H in the form

(1.19) H(t) =

(
1 σH(t)

σH(t) 1

)
�
[(

cosϕH(t)
sinϕH(t)

)(
cosϕH(t)
sinϕH(t)

)∗ ]
,

where � denotes the Hadamard, i.e., entry-wise, product of the 2 × 2-matrices.
The first factor takes the relative size of the off-diagonal entries into account; the
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second factor has zero determinant and corresponds to some kind of rotation. The
factorisation in (1.19) is possible, for instance, with

(1.20) ϕH(t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Arccot

√
h1(t)
h2(t)

if h2(t) �= 0, h3(t) ≥ 0,

π− Arccot
√

h1(t)
h2(t)

if h2(t) �= 0, h3(t) < 0,

0 if h2(t) = 0,

where Arccot is the branch with values in (0, π). Then

(1.21) πH(t) = sgn
(π

2
− ϕH(t)

)
· tan2 ϕH(t).

Now we map ϕH(t) ∈ [0, π) onto the unit circle T by setting

(1.22) ζH(t) := e2iϕH(t).

We may say—descriptively—that ζH is the rotation of H.

The statement (1.16) is equivalent to the following statement (see Section5):
there are no two separated arcs on the unit circle, such that, in the vicinity of the
left endpoint 0, ζH(t) often belongs to one arc and also often belongs to the other
arc. In other words, the Hamiltonian should rotate so slowly that, on every interval
close to 0, it looks—from a measure-theoretic viewpoint—as if its direction were
constant; see also Example 1.7

The more complicated conditions (1.11) and (1.12) are weighted and rescaled
variants of (1.15) and (1.16); see Section 2.7. The role of the function ts is to
take care of heavy oscillations, and the purpose of the weight m2(s)

m1(s)
in the definition

of πH,s is to level out the contributions of the two diagonal entries. Moreover,
zooming into the vicinity of the left endpoint 0 is now achieved by sending the
rescaling parameter s to 0.

Let us note that also the relation (1.11) can be rewritten in integral form, namely
as

lim
s→0

∫ T

0

detH(st−1
s (t))

(h1h2)(st−1
s (t)))

dt = 0.

To prove Theorem 1.1 we show the implications

(i)

(iii)

(ii)

Interestingly, very differentmethods enter in the proofs of the various implications.
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� The implication “(i)⇒(ii)” is a direct consequence of [LPW21, Theorem 1.1]
in the form of Proposition 2.9 below. We recall that this theorem is proved by
directly studying Weyl discs and estimating the power series coefficients of the
fundamental solution of the canonical system.

� The proof of “(ii)⇒(iii)” requires an elementary but elaborate analysis of the
connection between H and its primitive M. In particular, estimates are proved
where the constants are independent of the Hamiltonian. This is done in
Section 4; see Propositions 4.1 and 4.2.

� To show “(iii)⇒(i)” and “(ii)⇒(i)” we use cluster sets and compactness ar-
guments for Hamiltonians endowed with the inverse limit topology of weak
L1-topologies on finite intervals; see Section 2.1. Another necessary tool is
provided in Section 2.5, and a crucial role is taken by a weighted variant
of Y. Kasahara’s rescaling trick [Kas75], which relates the behaviour of qH

towards i∞ with weighted rescalings of H; see Section 2.7.

The proof of “(ii)⇒(i)” was included in order to decouple the equivalences be-
tween (i) and (ii), and between (i) and (iii), respectively. This enables reading the
proof of “(i)⇔(ii)” without having to go into the technical details of Section 4. We
thank a referee for suggesting an argument which makes this possible.

A sequence variant of the theorem. We can also give a variant of Theo-
rem 1.1 where limits are replaced by limits inferior. It reads as follows.

1.4 Theorem. Let H be a Hamiltonian defined on the interval (0,∞) such
that (1.2) holds and neither h1 nor h2 vanishes a.e. on some neighbourhood of the

left endpoint 0. Then the following statements are equivalent.

(i) lim infy→∞ Im qH(iy)
|qH (iy)| = 0.

(ii) lim inft→0
detM(t)

m1(t)m2(t)
= 0.

(iii) For each T ∈ (0,∞) there exists a sequence (sn)n∈N with sn → 0, such that

for all γ ∈ [0, 1), and all open intervals I, J ⊆ R \ {0} with I ∩ J = ∅ and at
least one of I and J being bounded, the following limit relations hold:

(1.23)
lim

n→∞

[
λ
(
(0,T) ∩ tsn

( 1
sn
σ−1

H ([0, γ])
))]

= 0,

lim
n→∞[λ((0,T) ∩ tsn(π

−1
H,sn

(I))) · λ((0,T) ∩ tsn(π
−1
H,sn

(J)))] = 0.

Also in this case, the analogous addition holds.

1.5 Addition to Theorem 1.4. Assume that, in addition to the assumptions

of Theorem 1.4, relations (1.13) and (1.14) hold. Then the equivalent properties
(i), (ii), (iii) in Theorem 1.4 are further equivalent to the following condition.
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(iv) There exists a sequence (tn)n∈N with tn → 0, such that, for all γ and I, J as in

Theorem 1.4 (iii), we have

lim
n→∞

[ 1
tn
λ((0, tn) ∩ σ−1

H ([0, γ]))
]

= 0,(1.24)

lim
n→∞

[ 1
tn
λ((0, tn) ∩ π−1

H (I)) · 1
tn
λ((0, tn) ∩ π−1

H (J))
]

= 0.(1.25)

The conditions (1.23) and (1.24) can be rewritten in integral form in the very
same way as before. Namely, (1.23) as

lim
n→∞

∫ T

0

detH(snt
−1
sn

(t))

(h1h2)(snt−1
sn

(t))
dt = 0,

and (1.24) as

lim
n→∞

1
tn

∫ tn

0

detH(t)
(h1h2)(t)

dt = 0.

Two examples. Let us illustrate Theorems 1.1 and 1.4 with two examples.
The first one demonstrates a standard situation; it will be revisited in a more general
form in Section 6 of the present paper, and in the forthcoming paper [LPW22]. The
second example demonstrates a more peculiar situation, where Im qH

|qH | oscillates.

1.6 Example. Let α1, α2 > 0, β1, β2 ∈ R, set

α3 :=
α1 + α2

2
, β3 :=

β1 + β2

2
,

and consider the Hamiltonian

H(t) :=

(
tα1−1| log t|β1 tα3−1| log t|β3

tα3−1| log t|β3 tα2−1| log t|β2

)
, t ∈ (0,∞).

For this example a computation shows the following facts (this is elementary and
we skip details):

(i) For y → ∞,

AH(y) � y
α2−α1
α1+α2 (log y)

β1α2−β2α1
α1+α2 .

(ii) We have

LH(y) � Im qH(iy) � |qH(iy)| � AH(y) if α1 �= α2,

LH(y) � Im qH(iy) 
 |qH(iy)| � AH(y) if α1 = α2.

(iii) The situation that limy→∞ Im qH (iy)
|qH (iy)| = 0, equivalently that limt→0

det M(t)
m1(t)m2(t)

= 0,
appears only when qH(iy) grows very slowly. In fact, if α1 = α2, then

AH(y) � (log y)
β1−β2

2 ,
LH(y)
AH(y)

=
1

(log y)2
.
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1.7 Example. Let (tn)n∈N be a strictly decreasing sequence of positive num-
bers such that tn+1

tn
→ 0 (and hence tn → 0), set t0 := ∞ and consider the partition

(0,∞) = I+ ∪ I− where

I+ :=
∞⋃
k=1

[t2k, t2k−1), I− :=
∞⋃
k=0

[t2k+1, t2k).

Further, let ϕ+, ϕ− ∈ (0, π) \ {π2 } with ϕ+ �= ϕ− and define the Hamiltonian H by

H(t) =

(
cos2 ϕ(t) cosϕ(t) · sin ϕ(t)

cosϕ(t) · sinϕ(t) sin2 ϕ(t)

)

where

ϕ(t) =

⎧⎨⎩ϕ+, t ∈ I+,

ϕ−, t ∈ I−.

Clearly, (1.13) and (1.14) are satisfied, so that we can apply the Additions to
Theorems 1.2 and 1.4. Since σH(t) = 1 for t > 0, the limit relation (1.15), and
hence also (1.24), holds for every γ ∈ [0, 1). Let us now check whether (1.16)
and (1.25) are satisfied. Since ϕ(t) = ϕH(t), where ϕH(t) is as in (1.20), it follows
from (1.21) that

πH(t) = sgn
(π

2
− ϕ(t)

)
· tan2 ϕ(t) = sgn

(π
2

− ϕ±
)

· tan2 ϕ± =: c± when t ∈ I±.

The limit relations (1.16) and (1.25) hold trivially whenever I ∩ {c+, c−} = ∅ or
J ∩{c+, c−} = ∅. By symmetry, we only have to consider the case when c+ ∈ I and
c− ∈ J, which we assume in the following. For t > 0 we have

λ((0, t) ∩ π−1
H (I)) = λ((0, t) ∩ I+)

=

⎧⎨⎩t − t2n +
∑∞

k=n+1(t2k−1 − t2k), t ∈ [t2n, t2n−1),∑∞
k=n+1(t2k−1 − t2k), t ∈ [t2n+1, t2n),

λ((0, t) ∩ π−1
H (J)) = λ((0, t) ∩ I−)

=

⎧⎨⎩
∑∞

k=n(t2k − t2k+1), t ∈ [t2n, t2n−1),

t − t2n+1 +
∑∞

k=n+1(t2k − t2k+1), t ∈ [t2n+1, t2n).

Set F(t) := 1
t λ((0, t) ∩ I+) · 1

t λ((0, t) ∩ I−). Then

F(t2n) ≤ 1
t2n

∞∑
k=n+1

(t2k−1 − t2k) ≤ t2n+1

t2n
→ 0
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as n → ∞ and, similarly, F(t2n+1) → 0. This shows that (1.25) is satisfied and
hence also (i) in Theorem 1.4. On the other hand, for n ∈ N such that t2n

t2n−1
≤ 1

2 ,
we have

F(2t2n) ≥ 1
2t2n

(2t2n − t2n) · 1
2t2n

(t2n − t2n+1) =
1
4

(
1 − t2n+1

t2n

)
→ 1

4

as n → ∞. This implies that (1.16) is not fulfilled and hence neither is (i) in
Theorem 1.1. To summarise, Theorems 1.1 and 1.4 show that

lim inf
y→∞

Im qH(iy)
|qH(iy)| = 0 and lim sup

y→∞
Im qH(iy)
|qH(iy)| > 0.

2 Preliminaries

2.1 Convergence of Hamiltonians. We use the following notation for
Hamiltonians on a finite or infinite interval.

2.1 Definition. Let T ∈ (0,∞].
(i) HT is the set of all measurable functions H : (0,T) → R

2×2 (up to equality
a.e.) such that H(t) ≥ 0 and tr H(t) > 0 a.e.;

(ii) H
1
T is the set of all H ∈ HT such that tr H(t) = 1 a.e.;

(iii) H
cs
T is the set of all H ∈ H

1
T that are constant and satisfy detH(t) = 0 a.e.

If T = ∞, we often drop T from the notation and just write H, H1 and H
cs instead

of H∞, H1∞ and Hcs∞ respectively.

We recall how H
1 can be topologised appropriately. This is already used in

the work of L. de Branges. An explicit formulation is given in [Rem18]; for a
more structural approach see [PW21], which we use as our main reference in the
following.

For each T < ∞ the set H1
T is a subset of L1((0,T),R2×2), and hence naturally

topologised with the ‖ ‖1-topology or the weak L1-topology. It turns out that
the latter is more suitable because the weak L1-topology on H

1
T is compact and

metrisable; see [PW21, Lemma 2.3].
Now consider the family (H1

T )T∈(0,∞) with the restriction maps ρT ′
T : H1

T ′ → H
1
T

for T ≤ T ′. The set H
1 can be naturally viewed as the inverse limit of this

family: every function on (0,∞) can be identified with the family of all its
restrictions to finite intervals. Endowed with the inverse limit topology (see, e.g.,
[Bou66, §I.4.4]), where we use the weak L1-topology on H1

T , the set H1 becomes
a compact metrisable space; see [PW21, Lemma 2.9]. The map that assigns to a
Hamiltonian H its Weyl coefficient qH is continuous when the set of Nevanlinna
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functions is endowedwith the topology of locally uniformconvergence; see [PW21,
Theorem 2.12].

Throughout the remainder of the paper we often deal with limit points of
families of Hamiltonians. In general, for a net (xi)i∈I in some topological space X,
we denote by LP(xi)i∈I the set of its limit points, i.e.,

LP(xi)i∈I :=
{
x ∈ X : ∃ subnet (xi(j))j∈J. lim

j∈J
xi(j) = x

}
.

If there is a need to specify the topology, we shall add an index. For example, if X

is a normed space, we write LP‖ ‖(xi)i∈I for limit points w.r.t. the norm topology,
and LPw(xi)i∈I for limit points w.r.t. the weak topology.

2.2 Remark. In our context the space X is usually metrisable, and the index
set I isN, (0, 1] or [1,∞), each endowed with the natural order (or the reverse order
in the case of (0, 1]). In these situations one can restrict attention to subsequences
rather than subnets:

LP(xi)i∈I = {x ∈ X : ∃ subsequence (xin)n∈N. lim
n→∞ xin = x}.

Note that in the cases when I = (0, 1] or I = [1,∞), then in → 0 or in → ∞
respectively.

We need the following simple fact about constant singular limit points. It is
proved using the compactness of H1, continuity of the restriction maps
ρT : H1 → H

1
T , and the obvious fact that

(2.1) H
cs = {H ∈ H

1 : ∀T > 0. ρT (H) ∈ H
cs
T }.

2.3 Lemma. Let (Hi)i∈I be a net in H
1. Then the following two equivalences

hold.

(i) LP(Hi)i∈I ⊆ H
cs ⇔ ∀T > 0. LPw(ρT(Hi))i∈I ⊆ H

cs
T .

(ii) LP(Hi)i∈I ∩ Hcs �= ∅ ⇔ ∀T > 0. LPw(ρT(Hi))i∈I ∩ Hcs
T �= ∅.

Proof.
(i)“⇐”: Assume that there exists H̊ ∈ LP(Hi)i∈I \ H

cs. By (2.1) we find T > 0
such that ρT(H̊) /∈ H

cs
T . Since ρT is continuous, we have ρT (H̊) ∈ LPw(ρT(Hi))i∈I.

(i)“⇒”: Assume that there exist T > 0 and H̃T ∈ LPw(ρT(Hi))i∈I \ Hcs
T . Since H1

is compact and ρT is continuous, we find H̊ ∈ LP(Hi)i∈I such that ρT(H̊) = H̃T .
Clearly, H̊ /∈ Hcs.
(ii)“⇒”: Assume that there exists H̊ ∈ LP(Hi)i∈I ∩ H

cs. Continuity of ρT yields
ρT(H̊) ∈ LP(Hi)i∈I ∩ Hcs

T for all T > 0.
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(ii)“⇐”: Assume that, for each T > 0, there exists H̃T ∈ LPw(ρT (Hi))i∈I ∩ H
cs
T .

Since H
1 is compact and ρT is continuous, we find H̊T ∈ LP(Hi)i∈I such that

ρT(H̊T ) = H̃T . Again by compactness, there exists a limit point H̊ ∈ LP(H̊T)T>0,
say H̊ = limn→∞ H̊tn with some sequence tn → ∞. Then H̊ ∈ LP(Hi)i∈I , and for
each T > 0 we have

ρT(H̊) = lim
n→∞

w ρT (H̊tn) = lim
n→∞
tn≥T

w ρT (ρtn(H̊tn)) = lim
n→∞
tn≥T

w ρT (H̃tn)︸ ︷︷ ︸
∈Hcs

T

∈ H
cs
T .

For the last inclusion recall that Hcs
T is ‖ ‖1-compact as a homeomorphic image

of R ∪ {∞}, see [PW21, §2.3], and hence also weakly closed. Again referring to
(2.1) we obtain H̊ ∈ Hcs. �

We also need the Weyl coefficients for constant Hamiltonians with zero deter-
minant, which can be found by an elementary calculation; see [EKT18, Exam-
ple 2.2(1)].4

2.4 Lemma. Let H as in (1.5) be a constant Hamiltonian such that h2
3 = h1h2.

Then

qH(z) =

⎧⎨⎩
h3
h2

if h2 �= 0,

∞ if h2 = 0.

2.2 Reparameterisation. Reparameterisation is the equivalence relation
on the set of all Hamiltonians defined as follows.

2.5 Definition. Two Hamiltonians H and Ĥ, defined on respective intervals
[a, b) and [â, b̂), are called reparameterisations of each other if there exists a
function ϕ : [â, b̂) → [a, b) that is strictly increasing, bijective and absolutely
continuous with absolutely continuous inverse such that

(2.2) Ĥ(x) = (H ◦ ϕ)(x) · ϕ′(x), x ∈ [â, b̂) a.e.

If H and Ĥ are related as in (2.2) and y is a solution of (1.1), then y ◦ ϕ is
a solution of (2.2) with H replaced by Ĥ. Similarly, the fundamental solutions
satisfy Ŵ(x, z) = W(ϕ(x), z) and hence

(2.3) q
̂H(z) = qH(z).

Moreover, the following obvious transformation rules hold:

(2.4)
M̂ = M ◦ ϕ, tr Ĥ(s) = tr H(ϕ(s)) · ϕ′(s),

π
̂H = πH ◦ ϕ, σ

̂H = σH ◦ ϕ.
4In [EKT18] a different sign convention is used, namely the equation y′(t) = −zJH(t)y(t) is studied

instead of (1.1). The corresponding Weyl coefficient is q̃H(z) = −qH(−z).
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Based on the transformation rule for the trace, we see that every equivalence class
of Hamiltonians modulo reparameterisation contains exactly one element that is
defined on the interval (0,∞) and is trace-normalised, i.e., whose trace is equal
to 1 a.e. In fact, given a Hamiltonian H defined on some interval (a, b), we
set t(t) :=

∫ t
a tr H(x) dx and use ϕ := t−1. This function is admissible to make a

reparameterisation, since trH(t) > 0 a.e., and hence t−1 is absolutely continuous.
Based on the transformation rule of the primitive M, we see that the quotient in

(1.10) transforms correspondingly. Let us set

(2.5) d(H, t) :=
detM(t)

m1(t)m2(t)
.

If H and Ĥ are related as in (2.2), then

(2.6) d(Ĥ, s) = d(H, ϕ(s)).

2.3 Hamiltonians starting with a vanishing diagonal entry. If a
Hamiltonian starts with an interval where a diagonal entry vanishes, then its Weyl
coefficient has a simple, and extremal, asymptotics towards +i∞.

Let H be a Hamiltonian defined on some interval (a, b). Recall the following
classical facts; see, e.g., [KK68].

� Denote by (a, â) the maximal interval starting at a such that h2(t) = 0 for t ∈ (a, â)
a.e., and assume that â > a. Then

qH(z) =
(∫ â

a
h1(t) dt

)
· z + qH|(â,b) (z).

The leading order term is the term that is linear in z:

lim
y→+∞

1
y
qH(iy) = i

∫ â

a
trH(t) dt,

The case â = b is formally included and corresponds to qH ≡ ∞.
� Denote by (a, ǎ) the maximal interval starting at a such that h1(t) = 0 for t ∈ (a, ǎ)
a.e., and assume that ǎ > a. Then

qH(z) = − 1

(
∫ ǎ
a h2(t) dt) · z − 1

qH|(ǎ,b) (z)

.

Again the linear term gives the leading order asymptotics:

lim
y→+∞ yqH(iy) =

i∫ ǎ
a trH(t) dt

.

The case ǎ = b is formally included and corresponds to qH ≡ 0.
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Translated to the spectral measure, â > a means that it should include a “point
mass at infinity”, and ǎ > a means that it has finite total mass.

In particular, the above relations show that, if â > a or ǎ > a, then

lim
y→∞

Im qH(iy)
|qH(iy)| = 1.

2.4 Representation of Hamiltonians by scalar functions. We study
the representation of a Hamiltonian H by means of the functions σH and ζH , defined
in (1.6) and (1.22) respectively, a bit more systematically. Denote by T the unit
circle in the complex plane and, for 0 < T ≤ ∞, set

L (T) := {f : (0,T) → [0, 1] × T : f measurable}/∼,

where f ∼ g means that f and g coincide almost everywhere. As usual, we suppress
explicit notation of equivalence classes. Moreover, we write a function f ∈ L (T)
generically as a pair f = (σ, ζ) with σ : (0,T) → [0, 1] and ζ : (0,T) → T.

The set L (T) is contained in L1((0,T),C2) if T is finite, and in L1
loc([0,∞),C2)

if T = ∞. In particular, for T < ∞, we may consider L (T) topologised with the
‖ ‖1-topology or the weak L1-topology.

2.6 Definition. Let 0 < T ≤ ∞. We define maps

L (T) H
1
T

�



by

�[σ, ζ](t) :=
1
2

(
1 + Re ζ(t) σ(t) Im ζ(t)
σ(t) Im ζ(t) 1 − Re ζ(t)

)
and [H](t) := (σH(t), ζH(t)), where σH and ζH are given by the formulae (1.6),
(1.20), (1.22).

Let (σ, ζ) ∈ L (T). Introducing the rotation angle ϕ : (0,T) → [0, π) by
ζ(t) = e2iϕ(t) we can rewrite

�[σ, ζ] =

(
1 σ(t)
σ(t) 1

)
�
(

cosϕ(t)
sinϕ(t)

)(
cosϕ(t)
sin ϕ(t)

)∗
.

From this representation we see that � is a left-inverse of : given H ∈ H
1
T , the

matrices H and �[σH, ζH] both have trace 1, their quotients of diagonal entries
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coincide, and the relative size and sign of their off-diagonal entries coincide. Thus
indeed

(� ◦)(H) = H.

Furthermore, observe the following continuity property, which holds since L (T)
is uniformly bounded: for each T < ∞ we find a constant C > 0 such that, for all
(σ1, ζ1), (σ2, ζ2) ∈ L (T),

(2.7) ‖�[σ1, ζ1] − �[σ2, ζ2]‖1 ≤ C‖(σ1, ζ1) − (σ2, ζ2)‖1.

In particular, for each T < ∞, the map � : L (T) → H1
T is ‖ ‖1-to-‖ ‖1-

continuous.
Note that the class of constant, singular, trace-normalised Hamiltonians can be

represented as follows:
H

cs
T = {�(1, ζ) : ζ ∈ T}

where we identify the constant (1, ζ) with the constant function in L (T).

2.5 Nets with constant limit points. In the proof of the implication
(iii)⇒(i) in Theorems 1.1 and 1.4 we need the following fact about sequences
in L1-spaces which have only constant limit points. We do not know an explicit
reference to the literature, and hence give a complete proof. In the formulation we
tacitly identify C with the μ-a.e. constant functions in L1(μ).

2.7 Proposition. Letμ be a finite positive measure on a set�withμ �= 0, and
let (fn)n∈N be a sequence in L∞(μ) with supn∈N ‖fn‖∞ < ∞. We consider (fn)n∈N
as a sequence in L1(μ). Then the following two statements are equivalent:

∀(fnk)k∈N subsequence of (fn)n∈N. LP‖ ‖1 (fnk)k∈N ∩ C �= ∅;(2.8)

∀A,B ⊆ C compact, disjoint. lim
n→∞[μ(f−1

n (A)) · μ(f−1
n (B))] = 0.(2.9)

If the equivalent conditions (2.8) and (2.9) hold, then

(2.10) LPw(fn)n∈N = LP‖ ‖1 (fn)n∈N ⊆ C.

Proof. Let us first settle “(2.8)⇒(2.9)∧(2.10)”, which is easy to see. Assume
that (2.8) holds, and let nk → ∞. Then we find a further subsequence (fnk(l) )l∈N
such that

fnk(l)

‖ ‖1−→ g

with some constant g. Since ‖ ‖1-convergence implies convergence in measure,
we have

(2.11) lim
l→∞μ({x ∈ � : |fnk(l) (x) − g| ≥ ε}) = 0
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for every ε > 0. Now consider two compact disjoint subsets A,B of C. Then the
point g can belong to at most one of A and B. For definiteness, assume that g /∈ A.
Then the distance dist(A, g) is positive, and

f−1
n (A) ⊆ {

x ∈ � : |fn(x) − g| ≥ dist(A, g)
}
.

Relation (2.11) implies that

lim
l→∞μ

(
f−1
nk(l)

(A)
)

= 0,

and hence also the limit in (2.9) along the subsequence (nk(l))l∈N is zero. Since we
started with an arbitrary sequence (nk)k∈N, the limit relation (2.9) follows.

Now let f ∈ LPw(fn)n∈N and choose a subsequence (fnk)k∈N with fnk

w→ f . Then

we find a further subsequence (fnk(l) )l∈N and a constant g such that fnk(l)

‖ ‖1−→ g. It
follows that f = g ∈ LP‖ ‖1 (fn)n∈N. We have thus shown that

LPw(fn)n∈N ⊆ LP‖ ‖1 (fn)n∈N ∩ C,

and this implies (2.10).
We come to the converse implication “(2.9)⇒(2.8)”. Assume from now on

that (2.9) holds. Moreover, since (2.9) is inherited by subsequences, it is enough
to prove (2.8) for the sequence (fn)n∈N itself. Further, let us set M := supn∈N ‖fn‖∞.

There exist a subsequence (nk)k∈N and a ∈ R such that

(2.12) lim
k→∞

1
μ(�)

∫
�

Re fnk (x) dμ(x) = a.

Let ε > 0 be arbitrary and consider the compact, disjoint sets

A = {z ∈ C : Re z ≥ a + ε ∧ |z| ≤ M}, B =
{
z ∈ C : Re z ≤ a +

ε

2
∧ |z| ≤ M

}
;

by assumption, (2.9) holds with these sets. Suppose that there exists a subsequence
(k(l))l∈N such that liml→∞μ

(
f−1
nk(l)

(B)
)

= 0. Then∫
�

Re fnk(l) (x) dμ(x) =
∫

f −1
nk(l)

(B)
Re fnk(l) (x) dμ(x) +

∫
�\f −1

nk(l)
(B)

Re fnk(l) (x) dμ(x)

≥ −Mμ(f−1
nk(l)

(B)) +
(
a +

ε

2

)
μ(� \ f−1

nk(l)
(B))

→
(
a +

ε

2

)
μ(�), l → ∞,

which is a contradiction to (2.12). Therefore (2.9) implies that

lim
k→∞μ(f−1

nk
(A)) = 0,
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which is equivalent to

(2.13) lim
k→∞μ({x ∈ � : Re fnk(x) ≥ a + ε}) = 0.

In a similar way one shows that

lim
k→∞μ({x ∈ � : Re fnk (x) ≤ a − ε}) = 0,

which, together with (2.13), implies that Re fnk → a in measure. Since Re fnk is

uniformly integrable, it follows that Re fnk

‖ ‖1−→ a. In a completely analogous way

one can find a subsequence such that Im fnk(l)

‖ ‖1−→ b with some b ∈ R. This proves
(2.8). �

In the context of Hamiltonians on a finite interval, Proposition 2.7 implies the
following fact.

2.8 Corollary. Let T <∞ and (Hn)n∈N be a sequence in H
1
T , and denote by λ

the Lebesgue measure on (0,T). Assume that

(i) ∀γ ∈ [0, 1), limn∈∞ λ(σ−1
Hn

([0, γ])) = 0,

(ii) ∀A,B ⊆ T closed, disjoint, limn∈∞[λ(ζ−1
Hn

(A)) · λ(ζ−1
Hn

(B))] = 0.
Then

LP‖ ‖1 (Hn)n∈N = LPw(Hn)n∈N ⊆ H
cs
T .

Proof. We have to show that

LPw(Hn)n∈N ⊆ LP‖ ‖1 (Hn)n∈N ∩ H
cs
T .

The condition (i) says that σHn → 1 in measure. Since |σHn(t)| ≤ 1 for a.e. t,
σHn tends to 1 also w.r.t. ‖ ‖1. Consider a subsequence (Hnk)k∈N of (Hn)n∈N that
converges weakly to some H̊ ∈ H1

T . By (ii), we can apply Proposition 2.7 to
the sequence (ζHnk

)k∈N. This provides us with a constant ζ ∈ T and a further
subsequence (ζHnk(l)

)l∈N such that ζHnk(l)
→ ζ w.r.t. ‖ ‖1. Recalling (2.7) we see that

‖Hnk(l) − �(1, ζ)‖1 = ‖�(σHnk(l)
, ζHnk(l)

) − �(1, ζ)‖1 → 0,

and hence H̊ = �(1, ζ) and H̊ ∈ LP‖ ‖1 (Hn)n∈N. �

2.6 Estimates for imaginary part and modulus of the Weyl coef-
ficient. In this subsection we recall lower and upper estimates for ImqH and
|qH| on the positive imaginary axis. This result is a special instance of [LPW21,
Theorem 1.1] with q = 1

4 and ϑ = π
2 there and is used, in particular, in the proof

of the implication (i)⇒(ii) in Theorem 1.1; the estimates for the modulus are also
used in the proof of the implication (iii)⇒(i).
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2.9 Proposition. Let H be a Hamiltonian defined on the interval (0,∞) such

that (1.2) holds and neither h1 nor h2 vanishes a.e. on some neighbourhood of the
left endpoint 0, and let mi be as in (1.5) and d(H, t) as in (2.5). For r > 0, let

t̊(r) ∈ (0,∞) be the unique number that satisfies

(2.14) (m1m2)
(
t̊(r)

)
=

1
(8r)2

.

With

(2.15) AH(r) :=

√
m1(t̊(r))
m2(t̊(r))

, LH(r) := AH(r)d
(
H, t̊(r)

)
the inequalities

1
44

AH(r) ≤ |qH(ir)| ≤ 44AH(r),
1
64

LH(r) ≤ Im qH(ir) ≤ 79
2

AH(r)

hold for all r > 0.

Note that the mapping t �→ (m1m2)(t) is a strictly increasing bijection
from (0,∞) onto itself, and therefore t̊(r) is uniquely defined via (2.14). The
mapping r �→ t̊(r) is a strictly decreasing bijection from (0,∞) onto itself. It is
the inverse of the function

r̊(t) :=
1

8
√

(m1m2)(t)
.

2.7 A weighted rescaling transformation. In order to study the be-
haviour of qH towards i∞, we use a weighted rescaling transformation on the
set of Hamiltonians. This is a variant of Y. Kasahara’s rescaling trick invented
in [Kas75] for Krein strings, and also used in slightly different forms in [KW10,
EKT18, PW21, LPW22]. The main idea of the rescaling is to zoom into a neigh-
bourhood of the left endpoint 0 when s in the following definition tends to 0.

2.10 Definition. Let g1, g2 : (0,∞) → (0,∞) be continuous such that
g1(s), g2(s) → ∞ as s → 0. Further, let T ∈ (0,∞] and set g3(s) :=

√
g1(s)g2(s).

For every s > 0 define the map As : HT → H 1
s T by

(AsH)(t) :=

(
sg1(s)h1(st) sg3(s)h3(st)
sg3(s)h3(st) sg2(s)h2(st)

)
, t ∈

(
0,

1
s
T
)
.

In the following we shall use two special choices of g1, g2, namely

Situation 1: g1(s) =
1

m1(s)
, g2(s) =

1
m2(s)

(2.16)

or

Situation 2: g1(s) = g2(s) =
1
s

and H satisfies (1.13) and (1.14);(2.17)
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in both cases g1, g2 satisfy the assumptions in Definition 2.10. The functions in
(2.16) are used in the proof of Theorems 1.1 and 1.4; the functions in (2.17) are
used in the proof of the additions of these theorems.

In the following lemma we collect how the quantities defined in (1.6)–(1.8),
(1.17) and (2.5) are transformed.

2.11 Lemma. Let g1, g2 be as in Definition 2.10 and H ∈ H. Then

M(AsH, t) =
∫ t

0
(AsH)(x) dx =

(
g1(s)m1(st) g3(s)m3(st)
g3(s)m3(st) g2(s)m2(st)

)
,(2.18)

σAsH(t) = σH(st), πAsH(t) =
g2(s)
g1(s)

πH(st), d(AsH, t) = d(H, st).(2.19)

If, in addition, (1.2) holds, then

(2.20) qAsH(z) =
g3(s)
g2(s)

qH(g3(s)z).

Proof. Relations (2.18) and the first two equalities in (2.19) follow easily from
the definitions. Further, (2.18) implies the third equality in (2.19). Finally, (2.20)
follows from [EKT18, Lemma 2.7]. �

If the functions g1, g2 are as in (2.16), the relation (2.20) yields

(2.21) qAt̊(r)H

( z
8

)
=

1
A(r)

qH(rz).

In the following lemma we prove an a priori estimate for the modulus of the Weyl
coefficient of AsH at a particular point, which is used in the proof of Theorems 1.1
and 1.4. This property follows from the choice of g1, g2 in (2.16) in the general
case or from the assumption (1.14) in the additions to the main theorems.

2.12 Lemma. Let H ∈ H such that (1.2) holds, let g1, g2, g3 be as in Definition
2.10, and assume that (2.16) or (2.17) is satisfied. Then∣∣∣qAsH

( i
8

)∣∣∣ � 1, s ∈ (0, 1].

Proof. If g1, g2 are as in (2.16), the assertion is clear from (2.21) and Propo-
sition 2.9.

Assume that (2.17) holds. Set xs := t̊( 1
8) where t̊(r) is the unique number that

satisfies (2.14) for AsH instead of H. Then

g1(s)m1(sxs)g2(s)m2(sxs) = 1.
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This is equivalent to (m1m2)(sxs) = s2. The latter relation implies that sxs → 0 as
s → 0. Assumptions (1.13) and (1.14) yield mi(t) � t, i = 1, 2 and hence

AAsH

(1
8

)
=

√
m1(sxs)
m2(sxs)

� 1, s ∈ (0, 1].

We obtain from Proposition 2.9 that∣∣∣qAsH

( i
8

)∣∣∣ � AAsH

(1
8

)
� 1, s ∈ (0, 1]. �

In the proof of Theorems 1.1 and 1.4 in Section 5 we also need the trace of
the primitive of the rescaled Hamiltonian. Let g1, g2 be as in Definition 2.10 and
H ∈ H. For s > 0 set

(2.22) τs(t) :=
∫ t

0
tr(AsH)(x) dx = g1(s)m1(st) + g2(s)m2(st), t ∈ (0,∞).

Since τ′s(t) = sg1(s)h1(st)+sg2(s)h2(st) > 0 a.e., the function τs is strictly increasing.
If, in addition, H is in the limit point case at ∞, then τs is a bijection from (0,∞)
onto itself. Note that for the choice (2.16) we have τs = ts.

3 Proof of “(i)⇔(ii)” in Theorems 1.1 and 1.4

We use the following fact which also plays a role later.

3.1 Lemma. Let Hs, s > 0, be the trace-normalised reparameterisation
of AsH, i.e., the Hamiltonian that satisfies

(3.1) (AsH)(t) = Hs(τs(t)) · τ′s(t),
where τs(t) is defined in (2.22). Moreover, let T ∈ (0,∞). Then

lim
t→0

d(H, t) = 0 ⇔ lim
s→0

d(Hs,T) = 0,(3.2)

lim inf
t→0

d(H, t) = 0 ⇔ lim inf
s→0

d(Hs,T) = 0.(3.3)

Proof. Let T ∈ (0,∞) be arbitrary. By (2.6), (2.19) and (2.22) we have

(3.4) d(Hs,T) = d(AsH, τ
−1
s (T)) = d(H, sτ−1

s (T)).

Set

(3.5) u(s) := sτ−1
s (T).
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The explicit form of τs(t) and the continuity of g1 and g2 show that the function
(s, t) �→ τs(t) is continuous from (0,∞)2 to (0,∞). Moreover, for every s > 0,
the mapping t �→ τs(t) is a homeomorphism from (0,∞) onto itself. By the
implicit function theorem as in, e.g., [Kum80], the function s �→ τ−1

s (T), and with
it also s �→ u(s), is continuous. Moreover, we have

(3.6) T = τs
(u(s)

s

)
= g1(s)m1

(
u(s)

)
+ g2(s)m2

(
u(s)

)
for all s. Since gi(s) → ∞ as s → 0 by assumption (see Definition 2.10), it follows
that lims→0 u(s) = 0. The assertions now follow from (3.4). �

Proof of “(i)⇔(ii)” in Theorems 1.1 and 1.4. Let H be as in the
formulation of the theorems.
� The implications “(i)⇒(ii)” in Theorems 1.1 and 1.4 are a direct consequence
of [LPW21, Theorem 1.1] in the form of Proposition 2.9 since this result implies

Im qH(ir)
|qH(ir)| ≥

1
64LH(r)

44AH(r)
=

1
2816

d(H, t̊(r))

for every r > 0. It remains to recall that t̊, defined via (2.14), is a strictly decreasing
bijection from (0,∞) onto itself.

� In this step we show that

lim
r→∞

Im qH(ir)
|qH(ir)| = 0 ⇔ LP(As)s∈(0,1] ⊆ H

cs,(3.7)

lim inf
r→∞

Im qH(ir)
|qH(ir)| = 0 ⇔ LP(As)s∈(0,1] ∩ H

cs �= ∅.(3.8)

Let rn → ∞. Then we have the equivalences

lim
n→∞

Im qH(irn)
|qH(irn)| = 0 ⇔ lim

n→∞ Im qAt̊(rn)H

( i
8

)
= 0 ⇔ LP(At̊(rn))n∈N ⊆ H

cs

The first one holds because of (2.21) and Lemma 2.12, and the second by the
maximum principle and compactness of H. Remembering that t̊ is a decreasing
bijection we obtain (3.7) and (3.8).

� To prove the implication “(ii)⇒(i)” in Theorem 1.1, assume that

lim
t→0

d(H, t) = 0.

By Lemma 3.1 we have lims→0 d(Hs,T) = 0 for all T > 0. Since tr Hs = 1 a.e.,
it follows that also lims→0 detMs(T) = 0 for all T > 0 where Ms is the primitive
of Hs.
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Let Ĥ ∈ LP(AsH)s∈(0,1], and denote its primitive by M̂. Then det M̂(T) = 0 for
all T . This means that the whole interval (0,∞) is indivisible for Ĥ, i.e., Ĥ ∈ H

cs.
Now (3.7) yields the required assertion.

� For “(ii)⇒(i)” in Theorem 1.4 assume that lim inft→0 d(H, t) = 0. Then for
each T > 0 we have lim infs→0 d(Hs,T) = 0 and, arguing as above, obtain a
limit point HT ∈ LP(AsH)s∈(0,1] for which the interval (0,T) is indivisible. Let
φT ∈ [0, π) be the type of this indivisible interval. Choose a sequence (Tn)n∈N such
that (φTn)n∈N converges, say, φTn → φ. Then (HTn)n∈N converges to the Hamiltonian
for which (0,∞) is indivisible of type φ. Since LP(AsH)s∈(0,1] is closed, we can
refer to (3.8) to finish the proof. �

4 Bounds for the off-diagonal entries and the rotation

In this section we show that the relative size, σH(t), of the off-diagonal entries
of a Hamiltonian and its rotation, ζH(t), can be estimated from above by d(H, t);
recall that the latter is defined in (2.5). These estimates are used in the proof of the
implication (ii)⇒(iii) in Theorems 1.1 and 1.4.

We start with an estimate for the off-diagonal entry. As usual, λ denotes the
Lebesgue measure.

4.1 Proposition. Let H ∈ H
1, and assume that neither h1 nor h2 vanishes a.e.

on some neighbourhood of the left endpoint 0. For each γ ∈ (0, 1) we have

(4.1) ∀t > 0.
1
t
λ((0, t) ∩ σ−1

H ([0, γ])) ≤ 1
1 − γ2

d(H, t).

Proof. Throughout the proof we fix γ ∈ (0, 1) and t > 0 and often suppress t

notationally. To shorten notation, we set Iγ := (0, t)∩σ−1
H ([0, γ]) and I ′

γ := (0, t)\Iγ.
Further, set

ξ1 :=
[∫

I′γ
h1(s) ds

] 1
2

, ξ2 :=
[∫

Iγ
h1(s) ds

] 1
2

,

η1 :=
[∫

I′γ
h2(s) ds

] 1
2

, η2 :=
[∫

Iγ
h2(s) ds

] 1
2

,

define the vectors

ξ :=

(
ξ1
ξ2

)
, η :=

(
η1

η2

)
,

and let ‖ ‖ and 〈 , 〉 be the Euclidian norm and the inner product in R
2. Since

neither h1 nor h2 vanishes a.e. on (0, t) by assumption, we have ξ �= 0, η �= 0, and
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we can write

ξ = ‖ξ‖
(

cos θ1
sin θ1

)
, η = ‖η‖

(
cos θ2
sin θ2

)
with θ1, θ2 ∈ [

0, π2
]
. Moreover, we set θ := max{θ1, θ2}.

The relation Iγ = {s ∈ (0, t) : |h3(s)| ≤ γ
√

h1(s)h2(s)} implies that

|m3(t)| ≤
∫

I′γ
|h3(s)| ds +

∫
Iγ

|h3(s)| ds

≤
∫

I′γ

√
h1(s)h2(s) ds +

∫
Iγ
γ
√

h1(s)h2(s) ds

≤ ξ1η1 + γξ2η2 = 〈Aξ, η〉
with A = ( 1 0

0 γ ). For the diagonal terms in M(t) we have

m1(t) =
∫

I′γ
h1(s) ds +

∫
Iγ

h1(s) ds = ξ2
1 + ξ2

2 = ‖ξ‖2,

and, similarly, m2(t) = ‖η‖2, which leads to

m3(t)2

m1(t)m2(t)
≤ [〈Aξ, η〉]2

‖ξ‖2 ‖η‖2 ≤ min
{‖Aξ‖2

‖ξ‖2 ,
‖Aη‖2

‖η‖2

}
.

The latter quotients can be rewritten as follows:

‖Aξ‖2

‖ξ‖2
=
ξ2
1 + γ2ξ2

2

‖ξ‖2
= cos2 θ1 + γ2 sin2 θ1 = 1 − (1 − γ2) sin2 θ1

and analogously, ‖Aη‖2/‖η‖2 = 1 − (1 − γ2) sin2 θ2, which yields

(4.2)

m3(t)2

m1(t)m2(t)
≤ min{1 − (1 − γ2) sin2 θ1, 1 − (1 − γ2) sin2 θ2}
= 1 − (1 − γ2) sin2 θ.

Since H is trace-normalised, we have

ξ2
2 + η2

2 =
∫

Iγ
h1(s) ds +

∫
Iγ

h2(s) ds = λ(Iγ), ‖ξ‖2 + ‖η‖2 = t,

which implies that

(4.3)
λ(Iγ)

t
=

‖ξ‖2 sin2 θ1 + ‖η‖2 sin2 θ2
‖ξ‖2 + ‖η‖2 ≤ sin2 θ.

Combining (4.2) and (4.3) we obtain

d(H, t) = 1 − m3(t)2

m1(t)m2(t)
≥ (1 − γ2) sin2 θ ≥ (1 − γ2)

λ(Iγ)
t
,

which proves (4.1). �
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Now we come to an estimate for the rotation of H.

4.2 Proposition. Let H ∈ H
1, and assume that neither h1 nor h2 vanishes a.e.

on some neighbourhood of the left endpoint 0. For each pair of closed, disjoint
subsets A,B ⊆ T there exists a constant c(A,B) > 0, which is independent of H,

such that

∀t > 0.
1
t
λ((0, t) ∩ ζ−1

H (A)) · 1
t
λ((0, t) ∩ ζ−1

H (B)) ≤ c(A,B) · d(H, t).

Heading towards the proof of this proposition, we present two lemmata. The
first one is an easy observation, which shows how information about the Hamil-
tonian H on an interval I ⊆ (0,∞) can be used to estimate d(H, t). In these two
lemmata we use the following notation, which extends the notation of the primitive
to functions that may vanish on sets of positive measure: for a Hamiltonian H,
I ⊆ (0,∞) and t > 0, set

M(H1I, t) ≡
(

m1(H1I, t) m3(H1I, t)
m3(H1I, t) m2(H1I, t)

)
:=

∫
I∩(0,t)

H(s) ds.

4.3 Lemma. Let H ∈ H1 and I ⊆ (0,∞). For t > 0, we have

d(H, t) ≥ detM(H1I, t)
t2

.

Proof. The fact that H is positive semi-definite gives M(H, t)≥M(H1I, t) ≥ 0,
and in turn

detM(H, t) ≥ detM(H1I, t) ≥ 0.

Together with mi(H, t) ≤ t, which is a consequence of trH = 1 a.e., we obtain

d(H, t) =
detM(H, t)

m1(H, t)m2(H, t)
≥ detM(H1I, t)

m1(H, t)m2(H, t)
≥ 1

t2
detM(H1I, t). �

The second lemma contains the crucial estimates. For α, β ∈ R with α ≤ β we
denote the corresponding arc on T by

A[α, β] :=
{
exp(it) : α ≤ t ≤ β

}
.

4.4 Lemma. The following estimates hold.

(i) Let φ0, ψ0 satisfy 0 ≤ φ0 < ψ0 ≤ π and set

I1 := ζ−1
H

(
A[−φ0, φ0]

)
,

I2 := ζ−1
H

(
A[ψ0, 2π− ψ0]

)
.

φ0

−φ0

2π− ψ0

ψ0

Then, for all H and t > 0, we have

d(H, t) ≥ sin2
(ψ0 − φ0

2

)
· 1

t
λ(I1 ∩ (0, t)) · 1

t
λ(I2 ∩ (0, t)).
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(ii) Let α, β ∈ (0, π] and set
I1 := ζ−1

H (A[0, π− α]),

I2 := ζ−1
H (A[π, 2π− β]).

π− α
0

2π− β

π

Then, for all H and t > 0, we have

d(H, t) ≥ sin2
(α

2

)
sin2

(β
2

)
· 1

t
λ(I1 ∩ (0, t)) · 1

t
λ(I2 ∩ (0, t)).

The same holds for

I1 := ζ−1
H (A[π + α, 2π]),

I2 := ζ−1
H (A[β, π]). π + α 0

β

π

(iii) Let α, β ∈ (0, π] satisfy α + β ≤ π and set

I1 := ζ−1
H (A[β, π− α]),

I2 := ζ−1
H (A[π, 2π]). π 0

π− α

β

Then, for all H and t > 0, we have

d(H, t) ≥ sin2
(min{α, β}

2

)
· 1

t
λ(I1 ∩ (0, t)) · 1

t
λ(I2 ∩ (0, t)).

The same holds for

I1 := ζ−1
H (A[π + α, 2π− β]),

I2 := ζ−1
H (A[0, π]).

π 0

π + α

2π− β

Proof.

� We start with a general calculation. Let K1,K2 ⊆ [0, t] be disjoint and set
K := K1 ∪ K2. We can use the inequality |h3| ≤ √

h1h2 and the Cauchy–Schwarz
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inequality in the last step to obtain

(4.4)

detM(H1K, t)

= m1(H1K, t)m2(H1K, t) − m2
3(H1K, t)

=
(∫

K1

h1(x) dx +
∫

K2

h1(x) dx
)(∫

K1

h2(x) dx +
∫

K2

h2(x) dx
)

−
(∫

K1

h3(x) dx +
∫

K2

h3(x) dx
)2

≥
∫

K1

h1(x) dx
∫

K1

h2(x) dx −
(∫

K1

√
h1(x)h2(x) dx

)2

+
∫

K2

h1(x) dx
∫

K2

h2(x) dx −
(∫

K2

√
h1(x)h2(x) dx

)2

+
∫

K1

h1(x) dx
∫

K2

h2(x) dx +
∫

K2

h1(x) dx
∫

K1

h2(x) dx

− 2
∫

K1

h3(x) dx
∫

K2

h3(x) dx

≥
∫

K1

h1(x) dx
∫

K2

h2(x) dx +
∫

K2

h1(x) dx
∫

K1

h2(x) dx

− 2
∫

K1

h3(x) dx
∫

K2

h3(x) dx.

Using once more |h3| ≤ √
h1h2 and the Cauchy–Schwarz inequality we arrive at a

complete square:

(4.5)

detM(H1K, t)

≥
∫

K1

h1(x) dx
∫

K2

h2(x) dx +
∫

K2

h1(x) dx
∫

K1

h2(x) dx

− 2
[∫

K1

h1(x) dx
∫

K1

h2(x) dx
∫

K2

h1(x) dx
∫

K2

h2(x) dx
] 1

2

=
[(∫

K1

h1(x) dx
∫

K2

h2(x) dx
) 1

2 −
(∫

K2

h1(x) dx
∫

K1

h2(x) dx
) 1

2
]2

.

� Let α, β ∈ R with α ≤ β and set J := ζ−1
H (A[α, β]). Then

(4.6)

x ∈ J ⇔ ζH(x) ∈ A[α, β]

⇔ ∃ n ∈ Z. ϕH(x) − nπ ∈
[α
2
,
β

2

]
⇒ ∃ϕ ∈

[α
2
,
β

2

]
. h1(x) = cos2 ϕ, h2(x) = sin2 ϕ.

For the rest of the proof set Ki := Ii ∩ (0, t) for i = 1, 2, and K := K1 ∪ K2. We
consider the three cases in (i), (ii), (iii) separately.
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� Let us first consider the situation in item (i). It follows from (4.6) that

h1(x) ≥ cos2
(φ0

2

)
, h2(x) ≤ sin2

(φ0

2

)
, x ∈ K1,

h1(x) ≤ cos2
(ψ0

2

)
, h2(x) ≥ sin2

(ψ0

2

)
, x ∈ K2.

This, together with Lemma 4.3 and (4.5), implies

d(H, t)

≥ 1
t2

detM(H1K, t)

≥ 1
t2

[√
cos2

(φ0

2

)
λ(K1) sin2

(ψ0

2

)
λ(K2) −

√
cos2

(ψ0

2

)
λ(K2) sin2

(φ0

2

)
λ(K1)

]2

=
[
cos

(φ0

2

)
sin

(ψ0

2

)
− cos

(ψ0

2

)
sin

(φ0

2

)]2

· λ(K1)λ(K2)
t2

= sin2
(ψ0 − φ0

2

)
· λ(K1)

t
· λ(K2)

t
,

which is the asserted statement in (i).

� Next, we consider the situation in item (ii). Here h3 is non-negative on I1 and
non-positive on I2, or vice versa. Thus, Lemma 4.3 and inequality (4.4) yield

(4.7)
d(H, t) ≥ 1

t2
detM(H1K, t)

≥ 1
t2

[∫
K1

h1(x) dx
∫

K2

h2(x) dx +
∫

K2

h1(x) dx
∫

K1

h2(x) dx
]
.

By (4.6) we have the estimates h1(x) ≥ cos2((π± α)/2) = sin2(α/2) for x ∈ K1,
and h2(x) ≥ sin2(β/2) for x ∈ K2, and hence

d(H, t) ≥ sin2
(α

2

)
sin2

(β
2

)
· λ(K1)

t
· λ(K2)

t
.

� Finally, we consider the situation in item (iii). Again h3 is non-negativeon I1 and
non-positive on I2, or vice versa, and therefore we obtain (4.7). Further, for x ∈ I1
we have the estimates h1(x) ≥ cos2((π± α)/2) = sin2(α/2) and h2(x) ≥ sin2(β/2)
by (4.6). With Lemma 4.3 we obtain

d(H, t) ≥ sin2
(α

2

)
· λ(K1)

t2

∫
K2

h2(x) dx + sin2
(β

2

)
· λ(K1)

t2

∫
K2

h1(x) dx

≥ min
{
sin2

(α
2

)
, sin2

(β
2

)}
· λ(K1)

t2

∫
K2

(h1(x) + h2(x)) dx

= sin2
(min{α, β}

2

)
· λ(K1)

t
· λ(K2)

t
. �
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Proof of Prop 4.2. Let d̂ denote the intrinsic metric on T which assigns to
a pair of points the length of the shortest arc connecting them.
� As a first step we settle the case when A,B ⊆ T are two closed, disjoint arcs
with lengths strictly less than π. Set δ := d̂(A,B), fix t > 0, and set

νA :=
1
t
λ(ζ−1

H (A) ∩ (0, t)), νB :=
1
t
λ(ζ−1

H (B) ∩ (0, t)).

Based on Lemma 4.4 we are going to show that

(4.8) d(H, t) ≥ sin4(δ/4)
4

· νAνB.

To this end, we distinguish four cases.

� Assume that one of A and B is contained in A[0, π], the other one is contained
in A[π, 2π], and either d̂(A, 1) ≤ d̂(B, 1) and d̂(B,−1) ≤ d̂(A,−1),
or d̂(B, 1) ≤ d̂(A, 1) and d̂(A,−1) ≤ d̂(B,−1). Then Lemma 4.4 (ii) with the
choice α = β = δ/2 yields

(4.9) d(H, t) ≥ sin4(δ/4) · νAνB,

which is even stronger than (4.8).
� Assume that one of A and B is contained in A[0, π], the other one is
contained in A[π, 2π], and either d̂(A, 1) ≤ d̂(B, 1) and d̂(A,−1) ≤ d̂(B,−1),
or d̂(B, 1) ≤ d̂(A, 1) and d̂(B,−1) ≤ d̂(A,−1). Then Lemma 4.4 (iii) with the
choice α = β = δ/2 yields d(H, t) ≥ sin2(δ/4)νAνB, which implies (4.9).
� Assume that both A and B are contained A[0, π], or both are contained in
A[π, 2π]. Then Lemma 4.4 (i) yields d(H, t) ≥ sin2(δ/2)νAνB, which implies 4.9.
� Assume that neither of the above three cases takes place, and set

A1 := A ∩ A[0, π], A2 := A ∩ A[π, 2π],

B1 := B ∩ A[0, π], B2 := B ∩ A[π, 2π].

Then Ai and Bj are contained in A[0, π] or A[π, 2π], and satisfy d̂(Ai,Bj) ≥ δ.
Moreover, since the lengths of A and B are strictly less than π, the sets Ai and Bj

are again closed arcs. The already settled cases can be applied to Ai and Bj, which
yields

d(H, t) ≥ sin4(δ/4) · νAiνBj , i, j ∈ {1, 2};
cf. (4.9). There is at least one choice of i, j ∈ {1, 2} such that νAi ≥ νA/2
and νBj ≥ νB/2. Using this choice we obtain (4.8).

� The general case, namely when A and B are arbitrary closed, disjoint subsets
of T, is deduced by appropriately covering A and B with arcs.
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Set δ := d̂(A,B) and consider the open cover of T consisting of all open arcs
with length δ/3. Since A is compact, there exist finitely many of these arcs whose
union covers A, say A1, . . . ,AN . In addition, we may assume that A∩Ai �= ∅ for all
i ∈ {1, . . . ,N}. In the same way we obtain arcs B1, . . . ,BN ′ whose union covers B
and such that each of them intersects B.

We have d̂
(
Ai,Bk

) ≥ δ/3 for all i and k by construction, and (4.8) tells us that

d(H, t) ≥ sin4(δ/12)
4

· νAi
νBk
.

For each t > 0 there is at least one choice of i ∈ {1, . . . ,N} and k ∈ {1, . . . ,N′}
such that νAi

≥ νA/N and νBk
≥ νB/N′. Using this choice we arrive at

d(H, t) ≥ sin4(δ/12)
4NN′ · νAνB.

Note that the constants δ,N,N′ only depend on A and B, but not on H or t. �

5 Proof of equivalence with (iii) in Theorems 1.1 and 1.4

We have now collected all necessary tools to carry out the proof of equivalencewith
condition (iii) in ourmain theorems. Our plan to proceed is to first workwith amod-
ified variant of (iii), namely “(iii′)” stated below, and prove that “(ii)⇒(iii′)⇒(i)”.
After that we show “(iii′)⇔(iii)”, which is elementary.

In the following we consider the weighted rescalings AsH of H from Defini-
tion 2.10. For most part of the proof, g1 and g2 are arbitrary functions that satisfy
the assumptions in Definition 2.10. Only at the very end of the proof of (iii′)⇔(iii)
we choose g1, g2 as in (2.16) for the proof of Theorems 1.1 and 1.4, and we
use g1, g2 as in 2.17 for the additions to these theorems. Again let Hs, s > 0, be
the trace-normalised reparameterisation of AsH, cf. Lemma 3.1. Moreover, recall
that λ denotes the Lebesgue measure.

The modified variant of (iii) reads as follows.

� In Theorem 1.1:

(iii′) For all T ∈ (0,∞), all γ ∈ [0, 1) and all closed, disjoint sets A,B ⊆ T, the
following limit relations hold:

lim
s→0

λ((0,T) ∩ σ−1
Hs

([0, γ])) = 0,(5.1)

lim
s→0

[λ((0,T) ∩ ζ−1
Hs

(A)) · λ((0,T) ∩ ζ−1
Hs

(B))] = 0.(5.2)
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� In Theorem 1.4:

(iii′) For each T ∈ (0,∞) there exists a sequence (sn)n∈N with sn → 0 such that,
for all γ ∈ [0, 1) and all closed, disjoint sets A,B ⊆ T, the following limit
relations hold:

lim
n→∞λ

(
(0,T) ∩ σ−1

Hsn
([0, γ])

)
= 0,(5.3)

lim
n→∞[λ((0,T) ∩ ζ−1

Hsn
(A)) · λ((0,T) ∩ ζ−1

Hsn
(B))] = 0.(5.4)

Note that the statement of (iii′) depends on the choice of the functions g1, g2 in
Definition 2.10 because the family (Hs)s>0 depends on g1 and g2.

The implication “(ii)⇒(iii′)” is a consequence of Propositions 4.1 and 4.2.

Proof of (ii)⇒(iii′) in Theorems 1.1 and 1.4. Let us first consider the sit-
uation in Theorem 1.1. Assume that limt→0 d(H, t) = 0. Then lims→0 d(Hs,T) = 0
by (3.2). Hence, Propositions 4.1 and 4.2 applied to Hs yield (iii′).

Now let us consider the situation in Theorems 1.4. Assume that

lim inf
t→0

d(H, t) = 0.

By (3.3) there exist sn > 0 with sn → 0 such that limn→∞ d(Hsn,T) = 0. We can
apply Propositions 4.1 and 4.2 to Hsn to obtain (iii′). �

The implication “(iii′)⇒(i)” is a consequence of Corollary 2.8.

Proof of (iii′)⇒(i) in Theorems 1.1 and 1.4. By (2.3) and (2.20) we
have

(5.5) qHs(z) = qAsH(z) =
g3(s)
g2(s)

qH(g3(s)z).

It follows from Lemma 2.12 that

(5.6)
∣∣∣qHs

( i
8

)∣∣∣ =
∣∣∣qAsH

( i
8

)∣∣∣ � 1, s ∈ (0, 1].

Thus the constant Hamiltonians �(0, 1) and�(0,−1), where� is defined in Defini-
tion 2.6, cannot be limit points of (Hs)s∈(0,1] since q�(0,1)(z) = ∞ and q�(0,−1)(z) = 0
by Lemma 2.4. Relations (5.5) and (5.6) imply that

(5.7)
Im qH(g3(s) i

8)

|qH(g3(s) i
8)|

=
Im qHs(

i
8 )

|qHs(
i
8 )|

� Im qHs

( i
8

)
, s ∈ (0, 1].

If T ∈ (0,∞) and sn ∈ (0, 1] with sn → 0 are such that (5.3) and (5.4) hold for all
γ ∈ [0, 1) and all closed, disjoint sets A,B ⊆ T, then

(5.8) LPw(ρT(Hsn))n∈N ⊆ H
cs
T

by Corollary 2.8; recall that ρT : H1 → H1
T is the restriction map
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� First assume that (iii′) in the sequence variant for Theorem 1.4 holds. Then, for
each T ∈ (0,∞), we can choose a sequence (sn)n∈N that satisfies (5.3) and (5.4)
for all γ ∈ [0, 1) and all closed, disjoint sets A,B ⊆ T, and hence (5.8). Lemma
2.3 (ii) implies that LP(Hs)s∈(0,1] ∩ H

cs �= ∅. Since �(0,±1) /∈ LP(Hs)s∈(0,1], we
find ζ ∈ T \ {±1} and some sequence sn → 0 such that limn→∞ Hsn = �(1, ζ). By
the continuity of the mapping H �→ qH and Lemma 2.4 this implies that

lim
n→∞ qHsn

( i
8

)
= q�(1,ζ)

( i
8

)
=

Im ζ
1 − Re ζ

∈ R,

and hence limn→∞ Im qHsn
(i/8) = 0. By the assumptions in Definition 2.10, g3 is

continuous, and g3(s) → ∞ as s → 0. With rn := g3(sn)/8 it follows from (5.7)
that

lim
n→∞

Im qH(irn)
|qH(irn)| = 0,

which shows (i) in Theorem 1.4.
� Assume that (iii′) in the continuous variant for Theorem 1.1 holds. We start with
an arbitrary sequence rn → ∞. Since g3(s) → ∞ as s → 0 and g3 is continuous,
we find sn > 0 for large enough n such that sn → 0 and rn = g3(sn)/8. By (5.1)
and (5.2) the relations (5.3) and (5.4) hold for every T ∈ (0,∞), every γ ∈ [0, 1)
and all closed, disjoint A,B ⊆ T for the sequence (sn)n∈N. Thus (5.8) holds for all
T ∈ (0,∞), and Lemma 2.3 (i) gives LP(Hsn)n∈N ⊆ Hcs. Using that H1 is compact
and that�(0,±1) cannot occur as a limit point, we find a subsequence (Hsnk

)k∈N and
ζ ∈ T \ {±1}, such that limk→∞ Hsnk

= �(1, ζ) and hence limk→∞ qHsnl
(i/8) ∈ R

as above. Now relation (5.7) implies that

lim
k→∞

Im qH(irnk)
|qH(irnk)|

= 0.

Since the sequence (rn)n∈N with rn → ∞ was arbitrary, the desired relation (1.9)
follows.

This finishes the proof of (iii′)⇒(i). �
Showing that (iii) and (iii′) are equivalent is elementary.

Proof of (iii)⇔(iii′) and of (iv)⇔(iii′) under the assumption of (1.13),
(1.14). We prove the asserted equivalences for the continuous variant in Theo-
rem1.1. The proof for the sequence variant in Theorem1.4 is—word by word—the
same. We proceed in several steps. In the first two steps we show that (iii′) is
equivalent to (iii′′′) stated below. In the last step we prove that (iii′′′) is equivalent
to (iii) and—under the additional assumptions (1.13), (1.14)—also equivalent to
(iv).
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� We show that (iii′) is equivalent to an analogous condition, say (iii′′), where the
limit relation (5.2) is required to hold for all open arcs V,W ⊆ T\Rwith V ∩W = ∅
and lengths at most π2 , instead of all closed disjoint sets A,B ⊆ T.

The implication (iii′)⇒(iii′′) is of course trivial. To show the converse, assume
we know (5.1) and (5.2) for arcs as above. Let A,B ⊆ T be closed and disjoint.
Then we can choose open arcs V1, . . . ,Vn and W1, . . . ,Wm of lengths at most π2
such that

(5.9)

A ⊆
n⋃

i=1

Vi, B ⊆
m⋃
j=1

Wj,

n⋃
i=1

Vi ∩
m⋃
j=1

Wj = ∅, R ∩ A = R ∩
n⋃

i=1

Vi, R ∩ B = R ∩
m⋃
j=1

Wj.

If an arc Vi intersects R, we can split it into the two arcs Vi ∩C+ and Vi ∩ C−, and
the singleton Vi ∩ R; here C

+ and C
− are the open upper and lower half-planes

respectively. Hence, we may assume that our arcs Vi,Wj do not intersect the real
axis on the cost of adding the set {1,−1} to the covering, i.e., we can write

(5.10) A ⊆ {1,−1} ∪
n⋃

i=1

Vi, B ⊆ {1,−1} ∪
m⋃
j=1

Wj

instead of (5.9).

For any Hamiltonian we have ζ−1
H ({1,−1}) ⊆ σ−1

H ({0}) by the definition of σH .
Hence, (5.1) guarantees that lims→0 λ((0,T) ∩ ζ−1

Hs
({1,−1})) = 0. We know that,

for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m},
lim
s→0

[λ((0,T) ∩ ζ−1
Hs

(Vi)) · λ((0,T) ∩ ζ−1
Hs

(Wj))] = 0,

and we obtain from (5.10) that also

lim
s→0

[λ((0,T) ∩ ζ−1
Hs

(A)) · λ((0,T) ∩ ζ−1
Hs

(B))] = 0.

� We make a transformation to pass from the unit circle to the real line. Consider
the function

φ+ :

⎧⎨⎩(0,∞) → T ∩ C
+

x �→ 1−x
1+x + i

√
1 − ( 1−x

1+x

)2
.

This is a differentiable homeomorphism from (0,∞) ontoT∩C+, and open intervals
in (0,∞) correspond to open arcs in T∩C+. Moreover, for an interval I ⊆ (0,∞)
we have

inf I = 0 ⇔ 1 ∈ φ+(I) and sup I = ∞ ⇔ −1 ∈ φ+(I).
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For any z ∈ T ∩ C
+ the relation

Reφ+

(1 − Re z
1 + Re z

)
= Re z

holds and hence also

φ+

(1 − Re z
1 + Re z

)
= z.

Let t ∈ (0,∞) and assume that Im ζH(t) > 0. Then ϕH(t) ∈ (0, π2 ), and by (1.21)
we have πH(t) = tan2 ϕH(t). Since ζH(t) ∈ T ∩ C

+, we have

ζH(t) = φ+

(1 − Re ζH(t)
1 + Re ζH(t)

)
= φ+

(1 − cos(2ϕH(t))
1 + cos(2ϕH(t))

)
= φ+(tan

2 ϕH(t)) = φ+(πH(t)).

Thus, for every open arc V ⊆ T ∩ C
+,

ζ−1
H (V) = π−1

H (φ−1
+ (V)).

For the lower half-plane we proceed analogously. Consider the function

φ− :

⎧⎨⎩(−∞, 0) → T ∩ C
−

x �→ 1−|x|
1+|x| − i

√
1 − ( 1−|x|

1+|x| )2,

which is a differentiable homeomorphism from (−∞, 0) onto T ∩ C
− such that

open intervals in (0,∞) correspond to open arcs in T∩C−, and that, for an interval
I ⊆ (−∞, 0), we have

sup I = 0 ⇔ 1 ∈ φ−(I) and inf I = −∞ ⇔ −1 ∈ φ−(I).

As above one shows that, for an arc V ⊆ T ∩ C−,

ζ−1
H (V) = π−1

H (φ−1
− (V)).

Now we combine the mappings φ+ and φ−; let φ : R \ {0} → T \ R be defined
by φ|(0,∞) = φ+ and φ|(−∞,0) = φ−. The above considerations show that (iii′) is
equivalent to the following condition (iii′′′).

(iii′′′) For all T ∈ (0,∞), all γ ∈ [0, 1) and all open intervals I, J ⊆ R \ {0} with
I ∩ J = ∅ and at least one of them bounded the following limit relations
hold:

lim
s→0

λ((0,T) ∩ σ−1
Hs

([0, γ])) = 0,(5.11)

lim
s→0

[λ((0,T) ∩ π−1
Hs

(I)) · λ((0,T) ∩ π−1
Hs

(J))] = 0.(5.12)
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� It follows from (2.4), (2.22) and (2.19) that

σHs(t) = σAsH(τ−1
s (t)) = σH(sτ−1

s (t)),(5.13)

πHs(t) = πAsH(τ−1
s (t)) =

g2(s)
g1(s)

πH(sτ−1
s (t)).(5.14)

� To show (iii)⇔(iii′′′), let us choose g1, g2 as in (2.16). Then τs(t) = ts(t) for all
t ∈ (0,∞), and (5.14) can be simplified to πHs(t) = πH,s(t−1

s (t)). This and (5.13)
show that the following equivalences hold:

x ∈ σ−1
Hs

([0, γ]) ⇔ x ∈ ts
(1

s
σ−1

H ([0, γ])
)
,

x ∈ π−1
Hs

(I) ⇔ x ∈ ts(πH,s(I)).

This settles the equivalence (iii)⇔(iii′′′).
� Finally, assume that (1.13) and (1.14) in the addition to Theorem 1.1 hold. Let
us choose g1, g2 as in (2.17). Then τs(t) = 1

s

(
m1(st) + m2(st)

)
= t by (1.13) and

hence σHs(t) = σH(st). For fixed T, s ∈ (0,∞) and γ ∈ [0, 1) we have

λ((0,T) ∩ σ−1
Hs

([0, γ])) = λ({x ∈ (0,T) : sx ∈ σ−1
H ([0, γ])})

=
∫

(0,T)
1σ−1

H ([0,γ])(sx) dx =
1
s

∫
(0,sT)

1σ−1
H ([0,γ])(ξ) dξ

=
1
s
λ((0, sT) ∩ σ−1

H ([0, γ])).

Hence, for fixed γ ∈ [0, 1), the following equivalences hold:

∀T ∈ (0,∞), (5.11) is true ⇔ ∀T ∈ (0,∞), lim
s→0

[1
s
λ((0, sT) ∩ σ−1

H ([0, γ]))
]
= 0

⇔ lim
t→0

[1
t
λ((0, t) ∩ σ−1

H ([0, γ]))
]
= 0.

In a similar way one shows that (5.12) is true for every T ∈ (0,∞) if and only if
(1.16) holds. This establishes the equivalence of (iii′′′) and (iv) and finishes the
proof of Theorems 1.1 and 1.4 and their additions. �

6 Hamiltonians with regularly varying diagonal

As a class of examples we consider Hamiltonians whose primitive M has regularly
varying diagonal entries. Recall that a function f : (0,∞) → (0,∞) is called
regularly varying with index ρ at 0 if

∀t > 0. lim
s→0

f (st)
f (s)

= tρ;
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see, e.g., [BGT89, §1.4.2]. Typical examples of regularly varying functions are
f (t) = tρ · | log t|β1 · (log | log t|)β2 with ρ, β1, β2 ∈ R, where higher iterates of
logarithms can be added. In the theorem below we show that a Hamiltonian with
regularly varying diagonal primitives is well behaved in the sense that d(H, t) � 1
unless its diagonal entries are of the same size on the power scale, i.e., their
indices coincide. This is closely related to our forthcoming paper [LPW22],
where we investigate Hamiltonians whose Weyl coefficients have regularly varying
asymptotics towards +i∞.

6.1 Theorem. Let H be a Hamiltonian defined on the interval (0,∞) and

assume that neither h1 nor h2 vanishes a.e. on some neighbourhood of the left
endpoint 0. Assume that m1 and m2 are regularly varying at 0 with positive

indices ρ1 and ρ2 respectively. Then

lim inf
t→0

d(H, t) ≥ 1 −
( √

ρ1ρ2
1
2 (ρ1 + ρ2)

)2
.

Proof. Let (AsH)s>0 be the family of rescaled Hamiltonians as in Definition
2.10 with g1, g2 from (2.16), and let (Hs)s>0 be the corresponding trace-normalised
family as in (3.1).

� In the first step of the proof we show that every accumulation point of (Hs)s>0,
for s → 0, is of a special form. It follows from (2.18) that

(6.1)
[∫ t

0
(AsH)(x) dx

]
ii

=
mi(st)
mi(s)

, i ∈ {1, 2},

where [C]ii denotes the ith entry on the diagonal of a matrix C, and hence

ts(t) = τs(t) =
∫ t

0
tr(AsH)(x) dx =

m1(st)
m1(s)

+
m2(st)
m2(s)

where ts and τs are defined in (1.8) and (2.22) respectively. Set t(t) := tρ1 + tρ2

for t ∈ (0,∞). The assumptions about m1 and m2 and the Uniform Convergence
Theorem for regularly varying functions (see, e.g., [BGT89, Theorem1.5.2]) imply
that lims→0 ts(t) = t(t) locally uniformly for t ∈ (0,∞). The functions ts and t are
continuous and increasing bijections from (0,∞) onto itself, and it follows that
also lims→0 t

−1
s (T) = t−1(T) for all T ∈ (0,∞).

Let sn → 0 be a sequence such that the limit H̃ := limn→∞ Hsn exists, and
let Ĥ be the reparameterisation defined by Ĥ := (H̃ ◦ t) · t′. Using (6.1) we find,
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for T ∈ (0,∞) and i ∈ {1, 2}, that[∫ t−1(T)

0
Ĥ(t) dt

]
ii

=
[∫ t−1(T)

0
H̃(t(t))t′(t) dt

]
ii

=
[∫ T

0
H̃(x) dx

]
ii

= lim
n→∞

[∫ T

0
Hsn(x) dx

]
ii

= lim
n→∞

[∫ t−1
sn (T)

0
(AsnH)(t) dt

]
ii

= lim
n→∞

m1(snt
−1
sn

(T))

m1(sn)
= t−1(T)ρ1,

again by the Uniform Convergence Theorem. Hence Ĥ is of the form

(6.2) Ĥ(t) =

(
ρ1tρ1−1 �

� ρ2tρ2−1

)
where the off-diagonal entries are unknown.

� For Hamiltonians Ĥ of the form (6.2) an estimate for d(Ĥ, t) holds. With ĥj

being the entries of Ĥ we have

|ĥ3(t)| ≤
√

ĥ1(t)ĥ2(t) =
√
ρ1ρ2 t

1
2 (ρ1+ρ2)−1

and hence

|m̂3(t)| ≤
∫ t

0
|ĥ3(x) dx| ≤

√
ρ1ρ2

1
2 (ρ1 + ρ2)

t
1
2 (ρ1+ρ2),

from which we find that, for all t > 0,

(6.3) d(Ĥ, t) ≥ 1 −
( √

ρ1ρ2
1
2 (ρ1 + ρ2)

)2
.

� We make a limiting argument to complete the proof. Let (tn)∞n=1 be a sequence
of positive numbers with tn → 0. Fix T > 0 and let again u(s) be the function
in (3.5). For large enough n, choose sn → 0 such that u(sn) = tn, and extract a
subsequence (sn(k))k∈N such that the limit Ĥ := limk→∞ Hsn(k) exists. Using (2.19),
(2.6) and (6.3) we obtain

d(H, tn(k)) = d(H, u(sn(k))) = d(Asn(k)H, t
−1
sn(k)

(T))

= d(Hsn(k),T)
k→∞−→ d(Ĥ,T) ≥ 1 −

( √
ρ1ρ2

1
2 (ρ1 + ρ2)

)2
.

Since the (tn) was arbitrary, the claim follows. �
As a consequence, if ρ1 �= ρ2 in Theorem 6.1, then (ii) in Theorem 1.4 is not

satisfied and hence neither is (i) (under the assumption that (1.2) holds), i.e., one
has lim infy→∞ Im qH(iy)

|qH(iy)| > 0. If, on the other hand, the diagonal entries themselves
(and not just their primitives) are regularly varying with the same index, then the
situation is different.
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6.2 Proposition. Assume that h1(t), h2(t) > 0 a.e., that h1, h2 are regularly

varying with the same index α > −1, and set h3(t) :=
√

h1(t)h2(t), t ∈ (0,∞).
Then limt→0 d(H, t) = 0 and hence limy→∞ Im qH(iy)

|qH(iy)| = 0.

Proof. The off-diagonal entry h3 is also regularly varying with index α. It
follows from Karamata’s Theorem (e.g. [BGT89, Theorem 1.5.10] transformed
from the asymptotics at ∞ to the asymptotics at 0 by a change of variable) that
mi(t) = 1

1+α thi(t)(1 + o(1)) as t → 0 for i = 1, 2, 3. Hence

d(H, t) =
m1(t)m2(t) − m3(t)2

m1(t)m2(t)
=

h1(t)h2(t)(1 + o(1)) − h3(t)2(1 + o(1))
h1(t)h2(t)(1 + o(1))

=
h1(t)h2(t)o(1)

h1(t)h2(t)(1 + o(1))
→ 0

as t → 0. The last statement follows from Theorem 1.1. �
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