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• Developed open-source, consumer-grade in-
door air quality monitor.
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their use and robustness.

• Provide insights into design and calibration of
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Abstract

Indoor Air Quality (IAQ) monitoring is essential to assess occupant exposure to the wide range of pollutants
present in indoor environments. Accurate research-grade monitors are often used to monitor IAQ but the
expense and logistics associated with these devices often limits the temporal and spatial scale of monitoring
efforts. More affordable consumer-grade sensors – frequently referred to as low-cost sensors – can provide
insight into IAQ conditions across greater scales but their accuracy and calibration requirements need
further evaluation. In this paper, we present the Building EnVironment and Occupancy (BEVO) Beacon.
The BEVO Beacon is entirely open-source, including the software, hardware, and design schematics which
are all provided on GitHub. We created 20 of these standalone, stationary devices which measure up to 24
parameters at a one-minute resolution of which we focus on carbon dioxide, carbon monoxide, total volatile
organic compounds, temperature, and size-resolved particulate matter. We investigated the efficacy of two
different calibration approaches – device-specific and environment-averaged – for these sensors as well as
also provide an extensive discussion considerations for each of the sensors. Calibrated sensors performed
well when compared to reference monitors or calibrated gas standards. The CO sensors yielded the best
agreement (r2=0.98-0.99), followed by temperature (r2=0.89-0.99), CO2 (r2=0.62-0.99), and PM2.5 (r2=-
0.13-0.91). In all cases, the device-specific calibration approach yielded the most accurate results. We
evaluated our devices through a successful 11-week field study where we monitored the IAQ in participants’
bedrooms. The work we present on consumer-grade sensors adds to the existing literature by considering
sensor-specific calibration techniques and analysis. The BEVO Beacon adds to the successful line of similarly
developed devices by providing an open-source framework that researchers can readily adapt and modify to
their own applications.
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BEVO Beacon Building Occupancy and EnVi-
ronment Beacon.

CGS Consumer-Grade Sensors.
CH4 Methane.
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CO Carbon Monoxide.
CO2 Carbon Dioxide.
EC Electrochemical.
HCHO Formaldehyde.
I2C Inter-Integrated Circuit.
IAQ Indoor Air Quality.
LCS Low-Cost Sensors.
MOS Metal Oxide Semiconductor.
NDIR Non-Dispersive Infrared.
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NO2 Nitrogen Dioxide.
O3 Ozone.
PCB Printed Circuit Board.
PM Particulate Matter.
PM2.5 Particulate Matter with aerodynamic diam-

eters less than 2.5 µm.
RH Relative Humidity.
RPi Raspberry Pi 3B+.
RTC Real-Time Clock.
SO2 Sulfur Dioxide.
T Temperature.
TVOC Total Volatile Organic Compound.
UART Universal Asynchronous Receiver-

Transmitter.
VOC Volatile Organic Compound.
ZAG Zero Air Gas.

1. Introduction

Indoor Air Quality (IAQ) is an issue of broad con-
cern as both acute and chronic exposure to common
indoor air pollutants can contribute adverse health
effects. Poor IAQ can exacerbate or induce illnesses
relating to the respiratory [1] and cardiovascular
systems [2] in addition to negatively affecting oc-
cupant mood [3], productivity [4], and performance
[5]. These effects are compounded by the fact that
people spend more time indoors, especially in devel-
oped nations where occupants spend nearly 90% of
their day inside [6] – 69% of which is spent in resi-
dences. The World Health Organization (WHO) re-
ports that IAQ can be up to 5 times worse than am-
bient air pollution concentrations, and that nearly
3.8 million people die annually due to household
air pollution, primarily in developing countries [7].
In addition to human health concerns, the need to
balance human comfort and energy considerations
[8] motivates the development of wide-spread and
accurate IAQ monitoring tools which inform occu-
pants and building managers about pollution events
that require intervention.

Traditionally, IAQ has been measured with
research-grade equipment that has undergone ex-
tensive calibration and certification. These sen-
sors are very accurate, but the cost of the equip-
ment, training needed to properly operate the in-
struments, and space requirements often make us-
ing these devices challenging and expensive, es-
pecially for large-scale deployments. However,
within the last 10-15 years, technological advances
have allowed for the mass production of affordable,

Consumer-Grade Sensors (CGS) designed to mea-
sure atmospheric particles and gases [9]. The rapid
development of CGS has lead to a paradigm shift in
how researchers, companies, and government agen-
cies are monitoring air pollution [10].

CGS – also referred to as Low-Cost Sensors
(LCS) – do not have any universal definition but
are typically thought to cost less than a few hun-
dred US dollars. In a recent review paper, au-
thors defined CGS as “anything costing less than
the instrumentation cost required for demonstrat-
ing compliance with the air quality regulations can
be termed as low-cost” [11]. The affordability of
CGS allows users to create vast sensor networks
that can monitor multiple locations and delineate
spatiotemporal trends of specific pollutants, typi-
cally in near real time. Low maintenance require-
ments and ease/affordability of replacing damaged
sensors make CGS ideal for these networks which
can help to supplement sparse, pre-existing air pol-
lution networks [12, 13]. Furthermore, the cost bar-
rier to work with CGS is significantly lower which
opens up possibilities for community-driven science
[14, 15].

The simplicity of CGS tend to lead to issues with
data accuracy and reliability. CGS used to measure
gaseous pollutants are often based on Electrochem-
ical (EC) or Metal Oxide Semiconductor (MOS)
technology, both of which are typically sensitive to
multiple compounds, require frequent calibration,
and have short lifespans [14]. Other systems such as
Non-Dispersive Infrared (NDIR) which are used for
detecting pollutants like Particulate Matter (PM),
are limited because they cannot directly measure
the mass of particles – needing to assume a particle
density – and typically cannot detect particles less
than 0.3µm in diameter [16]. Another concern with
CGS is the manufacturing process which can also
lead to significant differences between device sen-
sitivity resulting in issues with reproducibility and
inter-sensor variability [17, 18]. Also, CGS typically
do not have corrections for factors like temperature
and relative humidity as is common in reference-
grade monitors meaning many CGS are sensitive
to changes in ambient conditions [19]. Lastly, CGS
are more prone to sensor drift which can be exac-
erbated by the environment in which these sensors
are located. While CGS do not provide the accu-
racy that reference-grade monitors do, not all ap-
plications of CGS for monitoring IAQ require high
accuracy instrumentation [20].
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1.1. Related Work

CGS are especially useful in the indoor envi-
ronment, where adjacent rooms or even locations
within the same space can have dramatically differ-
ent pollutant concentrations. The body of research
related to CGS for IAQ monitoring is growing and
is attracting researchers from fields outside of envi-
ronmental engineering [21, 22]. These devices vary
in their layout (single unit or distributed) and num-
ber/types of indoor air pollutants that are mea-
sured. We highlight some of the single unit IAQ
monitoring devices in Table 1 which are similar to
the device we created and have been used in pre-
vious studies. A majority of these studies focus
less on developing accurate devices and more on as-
pects such as communication protocols, data stor-
age, online data processing, portability, and dash-
board/application development (see references in
[23]). However, many studies forego calibration
which is vital for commercial and research appli-
cations. Authors in [23] indicate that only 10 of
the 35 devices identified included some level of cal-
ibration with a reference monitor, pointing to cali-
bration as a major criteria to include in future stud-
ies. These devices can be further improved if made
open-source so that researchers and other end-users
can adapt and refine devices to meet their needs.

1.2. Contribution

In this paper, we detail the development, cal-
ibration, and deployment of the BEVO Beacon:
an affordable, entirely open-source IAQ monitor
that can be rapidly developed and deployed to un-
derstand occupied indoor environments. Our aim
when developing the BEVO Beacon was to pro-
vide a device that researchers with little knowledge
in the domain of embedded systems engineering –
defined as the software and hardware design of a
microcontroller-based smart system – could easily
replicate by providing all the necessary documenta-
tion to create their own. We also highlight a variety
of techniques that can be used to calibrate these
sensors depending on the availability of calibration
environments, reference-grade monitors, and/or gas
standards. In addition to the techniques, we pro-
vide evidence for the use of device-specific calibra-
tion models which account for sensor-to-sensor vari-
ability that aggregated models applied across mul-
tiple devices do not. Lastly, 20 devices were de-
ployed as part of a large-scale field study to assess
their performance and reliability. The intention of

this paper is to provide insight into the decisions,
design process, calibration, and deployment of the
BEVO Beacon so that researchers who opt to de-
sign their own IAQ monitoring device may learn
from our experiences.

2. Materials and Methods

As part of our commitment to the open science
movement [35], the hardware schematics, software,
and assembly instructions for the BEVO Beacon
are included alongside this publication. This and
more detailed information can also be found on
the projects GitHub repository: https://github.

com/intelligent-environments-lab/bevo_iaq

2.1. Hardware Selection

The primary processing unit of our device is a
Raspberry Pi 3B+ (RPi), a credit card sized single-
board computer that runs on a Linux-based op-
erating system. We chose the RPi because it is
easy to interface with, contains a large amount of
accessible and easy-to-understand documentation,
has built-in WiFi and Bluetooth capabilities, and
can be programmed using Python – a popular, well-
documented programming language. The RPi pow-
ers all components, reads data from each of the sen-
sors, provides local storage, and can be configured
to send the data to a cloud-based storage system
when connected to WiFi.

The parameters measured and the specific sen-
sors on the BEVO Beacon are detailed in Table 2.
We opted for sensors that measure common indoor
air pollutants, namely Carbon Dioxide (CO2), Par-
ticulate Matter with aerodynamic diameters less
than 2.5 µm (PM2.5), and Total Volatile Organic
Compound (TVOC). CGS for CO2 provide some of
the most reliable measurements relative to other pa-
rameters and CO2 can provide details on ventilation
as well as occupancy. Monitoring PM2.5 is impor-
tant because this pollutant is health hazard and is
ubiquitous in home environments as it is generated
from sources such as cooking, candle/incense burn-
ing, smoking, pets, and nearby outdoor sources.
TVOC sensors are typically less reliable than the
CO2 and PM2.5 sensors since they are not stan-
dardized and are manufactured with varying sen-
sitivities to different compounds. However, most
CGS for TVOC are sensitive to activities like cook-
ing, cleaning, and smoking indoors. On our device,
we also include sensors for Carbon Monoxide (CO)
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Table 1: Recently developed single-unit IAQ monitoring devices including parameters monitored, evaluation environments,
calibration, and approximate cost – if provided otherwise we indicate Not Provided (NP). The final entry corresponds to our
device, the Building Occupancy and EnVironment Beacon (BEVO Beacon).

Reference
Parameters
Monitored

Calibration Evaluation
Open-Source

Cost
(USD)

Field Lab Empirical Field Lab

[24] T, RH, CO2, PM, CO,
NO, O3, SO2, TVOC

! ! NP

[25] T, RH, CO2, light ! ! ! NP

[26] T, RH, CO2, PM ! ! 250

[27] T, RH, CO2, PM ! ! NP

[28] T, RH, CO2, PM,
light, noise

! ! 550

[29] T, RH, CO2, PM, CO,
TVOC, light, noise

! ! 200

[30] T, RH, CO2, PM, CO,
NO, NO2, noise

! ! ! ! 300

[31, 32] T, RH, CO2, PM, CO,
TVOC, HCHO, light,
noise, air velocity

! ! ! 250

[33] T, RH, CO, NO2,
C2H6OH, H2, NH3,
CH4, C3H8, C4H10

! 60

[34] T, RH, CO2, PM, CO,
NO, NO2, O3, CH4

! ! ! ! NP

This
Study

T, RH, CO2, PM, CO,
NO2, TVOC, light

! ! ! ! ! 350
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and Nitrogen Dioxide (NO2) since they are impli-
cated in many health issues associated with poor
IAQ. CO measurements can be used to understand
health affects associated with indoor combustion,
primarily through the use of gas stoves. NO2 is
typically associated with outdoor air quality and
vehicle emissions, therefore providing information
regarding proximity to major roadways and/or the
“leakiness” of the building envelope. The CO and
NO2 modules also include a temperature and Rel-
ative Humidity (RH) sensor. Lastly, we include an
ambient light sensor on the device which can pro-
vide us with information such as when lights are
switched on or off.

There are a variety of CGS on the market that
monitor the pollutants of interest for this study. We
opted for sensors that use Inter-Integrated Circuit
(I2C) to communicate with the RPi. The RPi sup-
ports multiple communication protocols, but I2C
communication provides the ability to scale up the
number of sensors more easily. However, at the time
of development, there were no NO2 or CO sensors
that used I2C. The two sensors we used for NO2

and CO are manufactured by the same company
and come with a Universal Asynchronous Receiver-
Transmitter (UART) to USB-A adapters that were
connected to two of the four USB-A ports available
on the RPi. To ensure communication between the
RPi and I2C sensors, we created our own Printed
Circuit Board (PCB) (Figure 1) which allowed us
to connect multiple sensors and provide the neces-
sary pull-up resistors on the Serial Clock (SCL) and
Serial Data (SDA) lines.

Figure 2 shows each of the sensors listed in Table
2, the cooling fan, Real-Time Clock (RTC), PCB,
and connections between each component and the
RPi. Housing (Figure 3) was designed and cut from
0.25 inch plywood using precision laser cutting.
The RPi and sensors are separated by 0.25 inch
plywood insert cut with a two rectangular holes for
wiring and connections for the two USB-connected
sensors. The cooling fan is mounted on the inside
and pulls air through openings in the housing to
provide cooling to the processing unit on the RPi.
The light and TVOC sensors are mounted on the
outside of the top panel. The adapter boards for
CO and NO2 sensors are mounted to one of the side
panels with square holes cut so that top-mounted
digital EC sensors are exposed directly to the sur-
rounding air. The CO2 sensor is mounted to the
inside wall of a smaller side panel with a hole cut
to expose the inlet of the sensor. Lastly, the PM

a

b

Figure 1: The PCB we developed for the BEVO Beacon: (a)
digital schematic and (b) fully assembled.
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Table 2: Manufacturer’s specifications provided for each sensor included in the BEVO Beacon. Manufacturer-reported accuracy
is typically a function of Measured Value (MV).

Sensor
Name

Variable(s)
Measured

Measurement Accuracy Measurement
Range

Communication
Protocol

Approximate
Cost

Sensirion CO2 ±(30 + 3% of MV) ppm 0 - 40,000 ppm I2C 75 USD
SCD30 T ±(0.4 + 0.023 × (MV – 25))◦C -40 – 70◦C

Sensirion PM1 ±10 µg/m3 (< 100 µg/m3) 0 - 1,000 I2C 75 USD
SPS30 PM2.5 ±10 µg/m3 (< 100 µg/m3) µg/m3

PM4 ±25 µg/m3 (< 100 µg/m3)
PM10 ±25 µg/m3 (< 100 µg/m3)

Sensirion TVOC 15% of MV 0 - 60,000 ppb I2C 50 USD
SVM30 T ±1◦C 5 - 55◦C

SPEC DGS CO 15% of MV 0 - 1000 ppm UART 75 USD
CO T ±0.4◦C -10 - 85◦C

SPEC DGS NO2 15% of MV 0 - 5 ppm UART 75 USD
NO2 T ±0.4◦C -10 - 85◦C

Adafruit
TSL2591

light Not Provided Not Provided I2C 20 USD

sensor is secured to the bottom panel of the housing
where the side of the sensor with the inlet is inserted
through a small opening in the same side panel the
CO2 sensor is mounted to. Figure 4 shows the com-
pleted BEVO Beacon and highlights the IAQ sen-
sors and their locations once assembled.

2.2. Software Design

There are three Python files that are run syn-
chronously upon a successful boot of the RPi:
main.py, display.py, and connection.py. The first
script is the main program file that connects to
and reads measurements from the sensors. The dis-
play.py file reads the most recently measured val-
ues and displays them on a small OLED screen
mounted underneath the top panel (see Figure 4).
Readings cycle every 3 seconds across 8 parame-
ters. The time and parameters displayed can be
customized for the given study if certain pollutants
are more or less relevant. If available, measure-
ments are first corrected using locally-stored cali-
bration files. Otherwise, the raw measurements are
shown. Lastly, the connection.py script checks for
internet connectivity every 5 seconds and indicates
the status with a LED.

For each of the sensors that use I2C communi-
cation, open-source software was readily accessible

and used. We developed our own software to read
from the NO2 and CO sensors. For each of the sen-
sors, the software we used was developed entirely
in Python. Figure 5 shows the process the device
employs to measure from each of the sensors on
the BEVO Beacon. Each sensor is enabled sequen-
tially, scans the environment synchronously, stores
the average measurement for each parameter from
five scans on the RPi, and then each sensor is dis-
abled. To ensure that measurements are taken each
minute, we calculate the number of seconds until
the next minute, t, based on the time logged at the
“Enable Sensors” step and the device sleeps for t
seconds. Data from each scan is appended to the
same file until the next day, ultimately providing
daily data files with 1-minute measurements from
each sensor.

2.3. Device Setup and Operation

The device setup is outlined in the projects
README file. Users simply install the latest ver-
sion of Raspbian Lite on their RPi before follow-
ing the steps on the project’s Github repository to
get the software running. The devices are meant
to work regardless of the components that the user
wishes to install. Operating the BEVO Beacon sim-
ply requires the user to power the device from a

Page 6

Design, fabrication, and calibration of the Building EnVironment and Occupancy (BEVO) Beacon: a rapidly-deployable and affordable indoor environmental quality monitor



The BEVO Beacon 2022

NO2

CO

CO2

Fan

TVOC

RTCDisplay

PM
Light PCB

Figure 2: Sensors, other hardware, and connections on the
BEVO Beacon

traditional power outlet. After the RPi is finished
booting up, the three Python scripts outlined in
Section 2.2 will begin running automatically. To ad-
dress a timeout issue that occurs infrequently with
the PM2.5 and CO2 sensors if the BEVO Beacon
is operating for longer than a few days, we pro-
grammed in a daily reboot at midnight. The de-
vice collects data at a 1-minute resolution minimum
which generates a daily CSV file of 450 KB max-
imum. The project and RPi operating system ac-
count for about 1 GB of space, meaning for a stan-
dard 8 GB memory card, the BEVO Beacon can
log data for years without having to remove data
files.

2.4. Calibration

Each BEVO Beacon was calibrated in a variety
of environments depending on the sensor. Details
regarding the calibration process used in each envi-
ronment are explained in the subsequent sections,
but the general process is outlined in Figure 6. De-
tails regarding the pollutants that were calibrated
are provided in Table 3, indicating that each sen-
sor on the BEVO Beacon was calibrated excluding
the NO2 and light sensors. We did not calibrate the
NO2 sensor because the manufacturer-specified res-
olution was 20 ppb. Previous studies indicate that
household NO2 measurements are typically lower
than 20 ppb [36, 37], meaning that our sensor would
be unable to differentiate concentrations at these
levels. With respect to the light sensor, it was only
intended to determine when lights were on or off
in a room and calibration was not required for this
purpose.

Due to the variety of sensors included on the
BEVO Beacon, we were provided an opportunity
to address various concerns associated with calibra-
tion, namely:

1. How do calibration results vary between con-
trolled and uncontrolled environments?

2. What methods are suitable to calibrate sen-
sors?

3. What assumptions are safe to make?

For PM2.5 and CO2, we were able to calibrate
both sensors in controlled and uncontrolled envi-
ronments against research-grade monitors. This
process provides insight into how necessary a con-
trolled environment is to properly calibrate these
devices. Calibration in an uncontrolled setting is
easier to conduct and more realistic, but introduces
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a

b

c d e f

g

Figure 3: Plywood housing used to encase the BEVO Beacon: (a) small end panel, (b) small sensor panel, (c) left long panel,
(d) bottom, (e) right long panel, (f) top, and (g) middle partition

TVOC
SGP30 Module

CO
Sensirion SCD30

2

CO
SPEC DGS-CO

NO
SPEC DGS-NO

2

2

PM
Sensirion SPS30

TSL2591 Module
Light

Figure 4: The BEVO Beacon and the location, type, and
parameter measured by each of the IAQ sensors.

issues such as incomplete mixing which can lead to
the development of incorrect calibration model pa-
rameters. However, discrepancies in model param-
eters between environments should be minor espe-
cially if similar concentrations and profiles are gen-
erated during calibration and multiple experiments
are conducted for quality control.

Ideally, sensors should be calibrated by com-
paring measurements to a reference-grade monitor
which we do for CO2, PM2.5, and temperature.
However, a research-grade monitor is not always
available. In this case, a gas standard can be used
and diluted to various concentrations to conduct a
step calibration. This process is what we enacted
for the CO sensor. In other cases, a research-grade
monitor is not feasible to use, especially for non-
specific analytes such as TVOCs. The sensitivity
of TVOC sensors to different compounds can vary
significantly depending on the manufacturer and

Scan

Enable Sensors

Scan

1

5

Synchronous
scan of all IEQ 

parameters

Measure IEQ

log start time

Append to local
daily data

Average scans per
parameter

Calculate wait time 
to next minute, t Sleep t seconds

Disable Sensors

Figure 5: Software for measuring IAQ parameters from the
BEVO Beacon executed in the main.py script.
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Co-locate BEVO Beacons and reference 
monitor

Run Calibration Experiments

Compare corrected
BEVO readings to 

reference

Generate “typical” indoor concentrations

Exp. 1

Exp. 3

Average Model
Parameters Exp. 2

Conduct Fourth 
Experiment

Figure 6: General calibration process used for all parameters
except for CO.

these specifications are often not available. This
issue makes calibrating these devices complicated
because not all sensors respond identically to the
same Volatile Organic Compound (VOC) standard.
Thus, these TVOC sensors often provide a relative
measure of TVOCs present in indoor air but can-
not provide an absolute measurement. We opt to
calibrate our TVOC sensors in each BEVO Beacon
by co-locating them in the same environment and
normalizing their response to the same concentra-
tion.

For each sensor we calibrate, we derive univari-
ate linear models of the form y = b + mx where
y is the corrected CGS reading, x is the raw CGS
measurement, and b and m are intercept and slope
parameters. In the context of our work, m is re-
lated to the sensitivity of the sensors while b pro-
vides insight into a sensor’s base offset. We evaluate
sensor performance by considering the coefficient of
determination, r2, which measures the interrelation
between variables and provides information on the
model’s goodness-of-fit. Values for r2 range from 0
to 1 where 1 would indicate perfect agreement be-
tween the CGS and the ground-truth measurements
made by the reference-grade instrument. Negative
r2 values are possible and indicate that a horizon-
tal line would be a better fit which, in our case,
is likely an indication that the CGS and reference
measurements are out of sync i.e. CGS measure-
ments increase when reference values decrease or
vice-versa.

2.4.1. UTest House

The experimental home environment (UTest
House at UT’s Pickle Research Center) shown in
Figure 7 represents our uncontrolled environment
which we used to calibrate the PM2.5 and CO2 sen-
sors only. Each of the 20 devices were set up in the
kitchen next to the research-grade monitors. CO2

was emitted into the center of the space through the
use of a pressurized gas cylinder and we allowed the
concentration to reach approximately 2000 ppm be-
fore closing the cylinder. In separate experiments,
particles to calibrate the PM2.5 sensors were intro-
duced on two occasions during a two-hour period
using a hand-operated nebulizer containing ultra-
fine particles (PTI Arizona Test Dust A1) with me-
dian diameter between 3 and 5 µm. Prior to use,
the particles used in the experiment were placed in
a 10L incubator with a desiccant (anhydrous cal-
cium sulfate, Drierite Company) to remove excess
moisture. To induce mixing during the PM2.5 and
CO2 experiments, two box fans (not pictured) were
set up in the room.

We conducted three two-hour experiments to
help monitor consistency and to ensure the pollu-
tion events we generated were sufficiently captured.
We obtain values for b and m by averaging the val-
ues for each parameter over the three experiments.
As a final check, we conducted a fourth experiment
and applied the linear models to the raw data col-
lected by the BEVO Beacon to assess model perfor-
mance relative to the reference standard readings.

2.4.2. Environmental Chamber

The 27 m3 stainless steel chamber shown in Fig-
ure 8 represents the controlled environment which
we used to further characterize the PM2.5 and CO2

sensors in addition to the TVOC and CO sen-
sors. Rather than emitting CO2 using a pressur-
ized cylinder, we generated CO2 by asking one re-
searcher to occupy the space and breath normally
while in a seated position for 30 minutes after an
initial unoccupied period of 30 minutes. Human
breath is a natural source for VOCs so the re-
searcher also represented a source to calibrate the
TVOC sensors with. Following this period, the oc-
cupant left and we monitored the CO2 concentra-
tion for 45 minutes with the chamber’s ventilation
system deactivated. For the remaining time, the
door to the chamber remained slightly ajar to al-
low for the CO2 concentration to gradually return
to the background concentration. We controlled the
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Table 3: Calibration details for each of the variables measured on the BEVO Beacon

Variable Reference
Calibration Environment

Model
UTest House Laboratory

CO2 LI-COR Model 6252 ! ! Linear

PM2.5 TSI Aerodynamic Particle Sizer Model 3321 ! ! Linear

TVOC None ! Linear
NO2 None None

CO Background,
Gas Standard

! Constant,
Linear

T Michell Instruments S8000 ! Linear

RH Michell Instruments S8000 ! Linear
Light None None

Particulate
Matter

Carbon
Dioxide

Figure 7: Calibration setup in the UTest House.
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period of occupancy to ensure that the CO2 concen-
tration did not exceed 1500 ppm.

PM2.5 was generated through the use of the same
hand-operated nebulizer containing the same ultra-
fine particles used in the UTest House environment
(Section 2.4.1). We used two fans (not pictured) to
provide mixing throughout the entire duration of
the experiment. We controlled the particle injection
so that the PM2.5 concentration measured by the
reference monitor did not exceed 50 µg/m3 to en-
sure sensors would be calibrated for concentrations
consistent with the indoor environment [38, 39].

For TVOC sensors, we do not have a reference
monitor to compare measurements. Instead, we
create an average curve from TVOC measurements
made by each CGS at each timestamp. The aver-
age curve is then used as a reference to compare
against. This process, while not a true calibration,
helps ensure that the TVOC sensors are measuring
similar concentrations given the same input.

Again, we conducted three two-hour experiments
for each of the four pollutants to generate linear
models for each BEVO Beacon by averaging pa-
rameters over the three experiments. We then con-
ducted a fourth experiment to assess the models.
Models for PM2.5 and CO2 sensors were created
by comparing CGS measurements to research-grade
monitors while models for TVOC sensors were cre-
ated by comparing to the average, reference curve.

2.4.3. Incubator

We calibrated temperature sensors through the
use of a retrofitted incubator equipped with a elec-
tric heater and used a chilled-mirror hygrometer
(Michell Instruments S8000) as a reference monitor.
Experiments were conducted in 5 separate batches
of four devices, each lasting two-hours. We varied
the temperature from room temperature ( 21◦C)
to 32◦C throughout the course of the experiment,
but did not vary the RH. We conducted one experi-
ment per device and compared measurements from
the CGS to the reference values from the same ex-
periment to create linear models.

2.4.4. Gas Standard

We used a 10 ppm CO gas standard to perform
a step-calibration on the CO sensors and to test
the assumption that the background concentration
in the laboratory is zero. We diluted the gas stan-
dard with Zero Air Gas (ZAG) to achieve CO con-
centrations of 0, 1, 2, and 4 ppm – typical indoor
CO concentrations. We ensured the same 1 L/min

flowrate was achieved by varying the ratio of stan-
dard to ZAG. Batches of three BEVO Beacons were
placed in a 5L chamber and allowed to run for 24
hours with only ZAG supplied. After this period,
we ran each step in the calibration span for 2 hours.
For each span, we only consider the middle 60 min-
utes which is obtained by removing the initial and
last 30 minutes. Then we calculate the average CO
over the 60-minute period and compare this value
to calibration standard concentration at the current
step. This method provides 4 data points from each
step which we use to fit a linear model to correct
CO readings made by each BEVO Beacon.

2.5. Field Study

To assess the performance of the BEVO Bea-
cons, 20 devices were deployed as part of a larger
study of home environments from June 15th, 2020
to September 1st, 2020. We asked participants to
place devices in their bedroom at approximately 1
meter above the ground and out of direct sunlight
if possible.

3. Results

3.1. Calibration

The following sections highlight the calibration
results for each of the IAQ sensors on the BEVO
Beacon. When presenting the results, we limit the
number of devices we show since multiple devices
share similar characteristics. However, the Ap-
pendix contains calibration results for all devices
where data are available.

We develop device-specific models for each of the
sensors we calibrate, defined as:

Device-Specific linear model parameters m and b
which are unique for each sensor on each device

Since we calibrate the CO2 and PM2.5 sensors in
two different environments, we can also create and
compare environment-averaged models:

Environment-Averaged linear model parame-
ters m and b which have been calculated by
averaging across all devices calibrated in a spe-
cific environment and are applied to a given
sensor for all devices

We refer to these two model types frequently and
highlight their differences when presenting results
for the CO2 and PM2.5 results, specifically.
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a b

Particulate
Matter

Carbon
Dioxide

Inlet

Figure 8: Calibration setup in the environmental chamber where (a) shows one of two tables holding 10 BEVO Beacons and
(b) shows the PM2.5 monitor and inlet for the CO2 monitor

3.1.1. Carbon Dioxide

Figure 9a shows a performance summary of the
device-specific linear correction models from CO2

calibration conducted in the UTest House. Eight
devices have r2 > 0.995 with only one device hav-
ing r2 < 0.94. Device 24 has the lowest r2 of 0.619,
but the device is still able to capture the general
trend in CO2 concentration. Five devices exhibit
more variation, or “noise”, in their measurements
especially after the peak concentration is reached,
but still exhibit excellent agreement with the refer-
ence monitor. The range of averaged m values for
the correction models is 0.64 to 1.17. Values for b
vary between 166.87 ppm to 435.17 ppm, indicat-
ing that the CO2 sensors used on the BEVO Beacon
tend to underpredict the true concentration. Table
A.1 contains all parameter values for each BEVO
Beacon.

Figures 9b and 9c compare the CO2 outputs
between device-specific and environment-averaged
models used to correct CO2 measurements. Figure
9b shows the time series CO2 measurements made
by all devices from both model types compared to
the reference monitor. The figure includes a thresh-
old around the reference measurement consistent
with the resolution of the CGS for CO2 (see Table
2). Ideally, all curves should fall within this range,
regardless of the calibration model. Errors between
both model outputs and the reference tend to be
smaller at lower CO2 concentrations and exhibit
greater variation at elevated levels. The majority of
device-specific model outputs are difficult to discern
since they are contained within a narrow range near
the reference while multiple environment-averaged

curves are easy to discern both above and below
the reference line. The difference in these errors is
illustrated in Figure 9c. The vast majority of errors
between device-specific outputs and reference mea-
surements are within the tolerance of the CO2 CGS
while errors between environment-averaged correc-
tions for 11 of 20 devices are outside this tolerance
entirely.

Figure 10a highlights the results from the device-
specific linear models for CO2 sensors from cali-
bration conducted in the environmental chamber.
Again, the CGS outputs corrected by the device-
specific models have an excellent agreement with
measurements made by the reference monitor – 16
of 20 devices have r2 > 0.99, four of which have
r2 > 0.997. The remaining four devices tended
to overpredict concentrations, especially at higher
concentrations. Device 34 performed the worst with
r2 = 0.822. The sensor on this device is the only
one with am < 1 and exhibits the greatest variation
across experiments compared to all other devices.
The remaining devices have averaged m coefficients
in the range of 1.05 to 1.43 while there is more
variability exhibited in averaged b values (see Table
A.2).

Figure 10b shows the traces of CO2 measure-
ments from each BEVO Beacon corrected by
the device-specific and environment-averaged mod-
els from calibration experiments conducted in
the environmental chamber. Outputs from the
environment-averaged model exhibit greater varia-
tion, especially at elevated concentrations measured
during the middle of the experiment. Again, the
traces for the device-specific outputs are hard to
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r2 > 0.995: 8 Devices Good Response: 6 Noisy: 5 Worst Performance

(a)

(c)

(b)

Figure 9: Performance summary of CO2 linear regression models averaged from three experiments conducted in the UTest
House. Data shown are from a fourth experiment where models are applied to devices’ measurements and compared to
the reference. Panel (a) shows typical responses for each of the 20 devices corrected by device-specific models. Panel (b)
illustrates each CGS output when corrected with device-specific and environment-averaged models while Panel (c) highlights
the distribution of errors between these models and the reference. Dashed lines around the reference in (b) and (c) correspond
to the CGS resolution (see Table 2).
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(a)

(b)

(c)

r2 > 0.997: 7 Devices Typical: 8 Overpredict Peak: 4 Worst Performance

Figure 10: Performance summary of CO2 linear regression models averaged from three experiments conducted in the environ-
mental chamber. Data shown are from a fourth experiment where models are applied to devices’ measurements and compared
to the reference. Panel (a) shows typical responses for each of the 20 devices corrected by device-specific models. Panel (b)
illustrates each CGS output when corrected with device-specific and environment-averaged models while Panel (c) highlights
the distribution of errors between these models and the reference. Dashed lines around the reference in (b) and (c) correspond
to the CGS resolution (see Table 2).

Page 14

Design, fabrication, and calibration of the Building EnVironment and Occupancy (BEVO) Beacon: a rapidly-deployable and affordable indoor environmental quality monitor



The BEVO Beacon 2022

discern since many of them are between the toler-
ance range around the reference curve. The dis-
tribution of errors between reference and model
outputs are given in Figure 10c. The majority of
device-specific errors are contained within the res-
olution for the CGS for CO2 with the exception
of Devices 25, 29, and 34. However, the errors
from these devices corrected by the device-specific
models are still smaller than those corrected by
the environment-averaged model. There are 14 out
of 20 devices with all errors outside the tolerance
range when CGS measurements are corrected by
the environment-averaged model.

3.1.2. Particulate Matter

Figure 11a illustrates the performance of the cal-
ibration models for the PM2.5 sensors derived from
experiments conducted in the UTest House. Mod-
els typically exhibit poor performance with low, and
sometimes negative, r2 values, ranging from -0.585
to 0.571. Measurements from the reference instru-
ment indicate two clear events when PM2.5 was gen-
erated. However, there are six devices that do not
detect any signal from the first event and 3 devices
that detect a significant third event around minute
90. In either case, these issues are the cause of
the poor performance of these calibration models.
However, there are some consistencies amongst the
model parameters, namely that b values are all neg-
ative ranging from -3.1 µg/m3 to -15.1 µg/m3 and
all m values are positive between 1.62 and 3.65.
These values seem to indicate that these CGS tend
to underpredict concentrations and are less sensi-
tive to increases in concentration. However, m > 1
could be the model compensating for the negative
b values.

Figure 11b highlights the individual outputs
of the device-specific and environment-averaged
PM2.5 models from experiments conducted in the
UTest House. Thresholds around the reference line
correspond to the resolution of the CGS for PM2.5

(see Table 2) and represent a tolerance that all
CGS measurements should be within. Nearly every
measurement from each CGS is within this limit
and distributions of the errors between devices and
the reference are shown in Figure 11c. There is
less of a difference between models for PM2.5 than
with CO2 outputs. For devices such as 5 and 25,
the model output are significantly different, with
the environment-averaged model performing better
than a device-specific model. The opposite is true
for Devices 6 and 11, where the device-specific mod-

els are more appropriate. While results indicate
that most measurements are within the tolerance
we define, these sensors are still best suited to de-
tect large variation in PM2.5 concentrations which
is evident by considering the r2. The tolerance is
based on a range of ±10 µg/m3 which is large con-
sidering most measurements from our field study
are between 0 - 40 µg/m3 (see Section 3.2).

Figure 12a highlights the performances of the cal-
ibrated PM2.5 sensors from experiments conducted
in the environmental chamber. Values for r2 still
exhibit a wide range, between -0.131 to 0.913, but
are better than results from the experimental test-
house environment. Many of the sensors were able
to accurately detect the injection of particles at the
beginning of the experiment, but performance typ-
ically deteriorated at lower concentrations. Poor
performance at lower concentrations is likely due
to overfitting at higher concentrations. Many of
the m parameters are high which means that any
small perturbations in concentration will be ampli-
fied resulting in the cyclic behavior exhibited by
most sensors after minute 60. b values are large
and negative, which is again likely compensation
for the large, positive m values. Yet, parameter
values from each of the experiments conducted in
the laboratory chamber exhibit less variability than
in the UTest House which is expected since the lab-
oratory exemplifies a more controlled environment.
However, there is still considerable variability in the
b values, some of which are larger than the measure-
ment resolution of the CGS.

Individual traces for the device-specific and en-
vironment averaged model outputs for each device
are shown in Figure 12b, corresponding to calibra-
tion experiments conducted in the environmental
chamber. In general, the device-specific models per-
formed better, with fewer traces outside the toler-
ance limits. However, both model outputs tend to
underpredict the reference at both low and high
concentrations, which is evident in Figure 12c. The
majority of error distributions are skewed toward
negative values, indicating reference concentrations
are higher on average. Only a few devices – namely
Devices 6, 11, and 38 – have significantly differ-
ent error distributions when comparing the device-
specific and environment-averaged models. The
range of errors is larger for PM2.5 calibration con-
ducted in the chamber compared to the experiments
in the UTest House, but this is likely because con-
centration profiles are much different.
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(a)

Typical: 9 Devices No 1st Peak: 6 Pronounced 3rd Peak: 3 Poor Response: 2

(b)

(c)

Figure 11: Performance summary of PM2.5 linear regression models averaged from three experiments conducted in the UTest
House. Data shown are from a fourth experiment where models are applied to devices’ measurements and compared to
the reference. Panel (a) shows typical responses for each of the 20 devices corrected by device-specific models. Panel (b)
illustrates each CGS output when corrected with device-specific and environment-averaged models while Panel (c) highlights
the distribution of errors between these models and the reference. Dashed lines around the reference in (b) and (c) correspond
to the CGS resolution (see Table 2).
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(a)

r2 > 0.80: 4 Devices Good Response: 6 Underpredict: 4 Noisy: 7

(b)

(c)

Figure 12: Performance summary of PM2.5 linear regression models averaged from three experiments conducted in the environ-
mental chamber. Data shown are from a fourth experiment where models are applied to devices’ measurements and compared
to the reference. Panel (a) shows typical responses for each of the 20 devices corrected by device-specific models. Panel (b)
illustrates each CGS output when corrected with device-specific and environment-averaged models while Panel (c) highlights
the distribution of errors between these models and the reference. Dashed lines around the reference in (b) and (c) correspond
to the CGS resolution (see Table 2).
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3.1.3. Total Volatile Organic Compounds

The results from calibrating the TVOC sensors
in the laboratory chamber are shown in Figure
13. The black reference line indicates the average
concentration calculated from all devices. Devices
34 and 44 had the worst performing models with
r2 = 0.873 and r2 = 0.585, respectively, but the re-
maining devices all had r2 > 0.95. The strength of
the models is surprising given the wide range of m
and b values from the three calibration experiments
(see Table A.5 for more details). Typically, TVOC
sensors tended to underpredict the peak concentra-
tion while 3 devices overpredicted peak concentra-
tions. While the averaged b parameters appear to
exhibit a wide range of values, the variation is rel-
atively small given the high TVOC concentrations
that were measured during experiments. The aver-
aged m coefficient ranged from 0.46 to 1.63 which
indicates that perhaps issues with manufacturing
cause sensors to be more or less sensitive to the
same VOCs.

3.1.4. Carbon Monoxide

Figure 14 shows the results from calibrating the
CO sensor against the gas standard. The original
data used to derive the linear models for Devices 5,
11, 16, and 24 was overwritten and lost while the
CO sensors on Devices 19, 38, and 46 were non-
responsive during experiments. Of the remaining
13 devices, the CO sensors respond similarly and
the linear models all have r2 > 0.98. As mentioned
in Section 2.4.4, the parameters are determined by
only considering measurements over the span of 60
minutes for each step after allowing 30 minutes for
the sensors to acclimate to the new concentration.
This process helps to ensure that we are calibrating
to the correct value since some BEVO Beacons have
a slower response rate to the change in concentra-
tion which is evident by inspecting measurements
made directly after the CO concentration increased
from 2 ppm to 4 ppm.

3.1.5. Temperature

Table 4 shows the linear model parameters for
temperature sensors on each of the BEVO Bea-
cons. We group the devices that were calibrated in
the same experiment together. Only the last group
(Devices 11 and 15), show similarities in the model
parameters although we only have two devices to
compare. For the remaining groups, there do no
appear to be clear patterns amongst the b nor m
values. However, b values appear to be distributed

Table 4: Linear model parameters for each of the temper-
ature sensors from one experiment conducted in the small
laboratory chamber.

Device b m r2

1 -33.28 1.81 0.94
24 -1.39 1.00 0.99
34 -0.16 0.96 0.99

36 -19.41 1.70 0.91
44 -18.80 1.73 0.92
46 -2.20 1.07 0.98

6 -16.79 1.53 0.94
10 -4.06 1.18 0.89
26 -17.39 1.55 0.93
30 -12.39 1.46 0.95

7 -3.27 1.09 0.90
16 -4.18 1.12 0.92
19 -4.86 1.21 0.94
21 -5.50 1.15 0.94

5 -13.03 1.43 0.96
25 -2.73 1.00 0.99
29 -15.23 1.53 0.95
38 -1.53 1.00 0.99

11 -32.08 2.03 0.92
15 -35.41 2.18 0.94

into three distinct groups based on decreasing val-
ues: -0.16 to -5.50, -12.39 to -19.41, and -32.08 to
-35.41. The corresponding m values follow an op-
posite pattern where devices with lower b values
have larger m coefficients. Devices with b close to 0
have m values closer to 1. Despite the differences in
model parameters, the correlation coefficients indi-
cate excellent agreement with the reference monitor
ranging from 0.89 to 0.99. Devices 24, 25, and 38 all
have m = 1 and the highest correlation coefficients,
indicating a constant model could be appropriate.

3.2. Field Study

Table 5 summarizes all measurements made by
the 20 devices during the field study conducted in
the summer of 2020. For all parameters listed, the
mean and median values are generally similar in-
dicating that the distributions are likely Gaussian.
Distributions of each IAQ parameter, ordered by
increasing mean value, made by each BEVO Bea-
con are shown in Figure 15. All but Device 6 mea-
sured more than 41 day’s worth of data for each
sensor with 7 devices recording more than 70 day’s
worth of data for each sensor. Device 6 measured
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Typical: 10 Devices r2 > 0.99: 6 Overpredict: 3 Worst Performance

Figure 13: Summary of the performance of TVOC linear regression models averaged from the three experiments conducted
in the environmental chamber. Data shown are from a fourth experiment where models are applied to devices’ measurements
and compared to the reference monitor. We highlight results from three devices that represent typical performance, excellent
performance, and devices with a tendency to over-predict peak concentrations in addition to showing the worst performing
model as measured by the r2.

b < 0: 4 Devices 0 < b < 3: 4 3 < b < 8: 4 b > 8: 5

Figure 14: Summary of the CO linear models we generated from the gas standard calibration arranged by the x0 parameter.
Three sensors malfunctioned prior to calibration so we only summarize 17 devices.

Table 5: Summary of calibrated measurements made by the BEVO Beacons during the field study. For PM2.5, TVOC, CO,
and light sensors there were many instances of non-detect (ND) indicating that concentrations were approximately zero.

Variable Mean Median Min 25% 75% 95%

CO2 (ppm) 1050.3 970.7 236.6 759.5 1268.5 1786.9

PM2.5 (µg/m3) 13.3 11.6 ND 6.0 17.6 33.3

TVOC (ppb) 242.4 215.5 ND 113.7 338.9 552.6

CO (ppm) 3.5 2.7 ND 1.2 4.5 10.4

Light (lux) 24.1 2.0 ND ND 11.3 53.4

T (◦C) 25.8 26.3 15.4 24.5 27.7 29.8

RH (%) 42.0 41.3 23.4 38.3 44.5 51.8
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the minimum of just over 9 day’s worth of data for
each sensor.

CO2 distributions are generally normal and uni-
modal, peaking around 1000 ppm with the excep-
tion of Devices 34, 46, and 11 which indicate clear
bimodal distributions. Bimodal distributions are
likely an indication of periods of low and high oc-
cupancy or ventilation. Measurements on Device 11
are significantly higher than any device and exhibit
a wide range of values indicating a poorly ventilated
space. CO2 measurements made by Devices 44, 25,
and 1 indicate the opposite – a narrow range of low
concentrations – despite measuring over a similar
range of days. Device 16 measured the minimum of
9.5 days while Device 30 measured 77.6 days.

The PM2.5 distributions shown in Figure 15b are
skewed right, characterized by a few episodes of
high concentrations. These events are likely due
to activities like vacuuming or cooking that tend to
generate a large amount of PM. Device 44 is the
only BEVO Beacon that shows a clear bimodal dis-
tribution, which indicates more instances of these
episodes. There are only a few devices that measure
concentrations as low as the detection limit while
the majority measure minimum concentrations of
approximately 5 µg/m3. Device 16 again measured
the minimum amount of PM2.5 data points while
Device 25 measured the maximum of 77.1 days.

The Temperature (T) measurements, averaged
between the CO and NO2 modules (if available)
are shown in Figure 15c. Generally, each device
measures over a narrow range of values within a
participant’s environment. T distributions exhibit
multimodal behavior which is a consequence of the
resolution of the T sensor. Devices 21,7, and 15
have the greatest range of T measurements – over
the range of approximately 10◦C while Devices 5
and 44 show minor variations in T. Device 6 did not
record any T measurements while Device 30 mea-
sured the maximum amount of data at 77.6 days.

Summary statistics for TVOC measurements in
Table 5 highlight that the aggregate measurements
are approximately normally distributed, and many
of the distributions of TVOC in Figure 15d confirm
this observation. The majority of TVOC concentra-
tions measured by each device are within the same
range of values – up to approximately 500 ppb. The
devices with greater mean concentrations are char-
acterized by a few episodes of high concentration
measurements, reminiscent of the PM2.5 distribu-
tions. Only Device 26 operates over a narrow mea-
surement range of approximately 200 ppb, while

the remaining devices measure significantly larger
ranges of concentrations. Many of these distribu-
tions are unimodal with a few devices such as 11,
16, and 34 that exhibit two identifiable modes. De-
vice 6 measured the minimum amount of TVOC
– 9.5 day’s worth of data – while and Device 10
measured the maximum of 76.7 days.

Figure 15e highlights the CO concentrations mea-
sured during the field study. There is a clear dis-
tinction between low CO households and more pol-
luted environments starting with Device 21. Distri-
butions of measurements with means less than this
device are characterized by measuring below the de-
tection limit for nearly the entire study period with
a few instances of high concentrations that are likely
measured when the device was powered on for the
first time. The remaining devices also measure a
few episodes of high concentrations, but their mean
concentrations are significantly higher which per-
haps indicates that the home uses a gas-powered
stove. Devices 21, 15, 5, 7, and 1 all have higher,
but safe concentrations of measured CO. Devices
with greater mean concentrations – starting with
Device 36 – measure concentrations that might in-
duce minor health effects like headaches or sensory
irritation. The last device, Device 34, measures
even higher concentrations of CO that are likely
causing the occupant some level of discomfort. In
terms of the number of data points measured, De-
vice 16 measured the minimum of 9.5 days while
Device 25 measured all possible CO data points,
reporting 78 days of data.

Lastly, Figure 15f indicates that light levels were
uncharacteristically low for the majority of the
study. Only Device 38 measured light levels greater
than 10 lux consistently. There are no records to
indicate the location of the device or if the light
sensor was obscured in any way. We expected light
levels to be higher and more consistent with results
from [40] which used the same sensors.

4. Discussion

4.1. Comparison to Similar Devices

CGS for indoor air quality monitoring are being
used successfully and we highlight many of these
studies in Table 1. All devices we include in Table 1
measure T and RH, and each device, except the one
developed in [33], measure CO2 and PM. Sensors
for CO are also common, included on seven of the
ten devices. A few of the less commonly measured
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Figure 15: Distributions of measured IAQ values from each sensor on the BEVO Beacons ordered by increasing mean concen-
tration.
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parameters include oxides of nitrogen (5), Ozone
(O3) (2), and Sulfur Dioxide (SO2) (1). Rather
than measure TVOC concentrations, a few devices
opt to measure specific VOCs like Formaldehyde
(HCHO) [31] and Methane (CH4) [33, 34]. The
device in [33] measures a wide variety of VOCs and
includes empirical corrections to account for cross-
sensitivities.

Our study is one of two studies we identified that
mentions calibration in both field and laboratory
settings. All studies evaluate their devices in the
field through IAQ monitoring campaigns, but do
not necessarily provide information regarding cali-
bration [26, 28]. In [24], the device uses a charac-
teristic table with coefficients to empirically correct
readings while the researchers in [27] develop cali-
bration coefficients by using information provided
in the sensors’ datasheets along with a correction
for T and RH. The remaining related studies in Ta-
ble 1 apply more traditional calibration techniques,
which we discuss in more detail in Section 4.2.

The BEVO Beacon shares many similarities with
recent devices in regard to measured parameters,
approximate costs, and the calibration processes.
However, a few key components distinguish our de-
vice from others: (1) complete open-source avail-
ability, (2) option to customize the type and quan-
tity of parameters measured with minimal effort
thus reducing the overall cost, and (3) ease of devel-
opment and use. We were able to create, calibrate,
and deploy 20 devices. Furthermore, the CO and
NO2 sensors are developed by a company that cur-
rently produces four other modules that can easily
be switched in with no changes needed to the soft-
ware. The remaining CGS use I2C protocol, which
RPis can support tens of I2C connections. There-
fore, researchers can include more devices by wiring
them in series with the existing connections to suit
their research needs. Once created, the BEVO Bea-
cons can begin to collect data immediately once
powered on. Data can be easily accessed from the
device and used immediately for analysis. So far
these devices have been used multiple times by stu-
dents for class projects and more formal research
[41] inquiries including studies analyzing the rela-
tionship between sleep and IAQ [42] and ventilation
estimation [43].

The BEVO Beacon is meant to provide a frame-
work for other researchers to reduce the upfront
time needed to develop a similar device. While our
field study was successful, the BEVO Beacons can
still be improved. Unforeseen software and hard-

ware issues caused significant data loss for some
devices. Sensors also require routine calibration
and newer, more robust sensors are being devel-
oped which could help ameliorate the accuracy and
array of IAQ parameters monitored. Our hope is
that by providing open-source documentation, col-
laborators can build from our design, modify for
their own purposes, and provide contributions to
the project to improve our device.

4.2. Consumer-Grade Sensor Calibration

The calibration model parameters that we devel-
oped and used to correct the measurements from
our CGS are unique to our devices and are likely
not applicable to those created by other researchers.
Furthermore, these parameters will need to be re-
calculated since sensors – both CGS and reference-
grade – are prone to drift over time [19]. The pri-
mary purpose of our extensive calibration efforts
was to provide an overview of techniques that could
be used depending on the availability of calibration
environments, reference-grade monitors, and/or gas
standards, which we discuss further in the subse-
quent paragraphs. Calibration of CGS is a neces-
sary step since the manufacturing processes – for
both the individual sensors modules and the de-
vice – can induce minor differences in sensitivity
which causes sensors manufactured by the same
company to respond differently even under simi-
lar IAQ conditions [34]. The wide range of linear
model parameters we derive illustrates this point
since parameters would be more consistent if sen-
sors were manufactured with similar sensitivities.
In addition, manufacturer calibration might have
been conducted under conditions which are differ-
ent than those researchers intend to monitor. Ide-
ally, CGS should be calibrated under similar condi-
tions to those they will be deployed to [23]. Further-
more, calibration should occur after the device has
been fully built in case the hardware configuration
causes sensor modules to receive more or less power
which might alter how the CGS converts voltage to
concentration.

The variety of IAQ sensors on the BEVO Beacon
provided an opportunity to explore various calibra-
tion techniques: (1) co-locating CGS with research-
grade monitors, (2) exposing CGS to known pollu-
tant concentrations, and (3) correcting sensors rel-
ative to each other to control for issues with batch
quality in the absence of a research-grade monitor.
A vast majority of studies calibrate CGS in field
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or lab environments by co-locating with research-
grade monitors and providing a pollutant signal
[44, 45] – similar to our process for CO2, PM2.5,
and T sensors. A more systematic approach in-
volves generating pollution either by diluting gas
standards with ZAG to target specific concentra-
tions – like we did with CO sensors – or creat-
ing known mixtures of compounds. The former
method is useful for pollutants like CO and NO2

[46] which are challenging to generate safely while
the latter can be used for PM and TVOCs sensors
which respond differently depending on the mixture
[47, 48, 49, 50]. In either case, the span of possi-
ble concentrations is limited and thus models are
fit with only a few data points. In the absence of
a research-grade monitor and the ability to gener-
ate known concentrations, researchers can calibrate
sensors relative to each other by defining a reference
curve based on the aggregated measurements from
all devices being tested [51]. We used this process
for TVOC sensors and, while not a true calibration,
this method helps correct for issues with batch qual-
ity.

For any of calibration method, one must consider
the concentration profile generated during the ex-
periment. Ideally, CGS should be calibrated to con-
centrations that are likely to occur in their planned
location. Calibrating outside this range is unnec-
essary and might introduce bias since the models
that are generated might be sensitive to extreme
measurements. CGS are known to perform differ-
ently at disparate concentration ranges [52], which
is evident in many CGS datasheets. This behav-
ior is evident when comparing the error distribu-
tion between CGS outputs and the reference re-
sults from the PM2.5 calibration in the UTest House
(Figure 11c) and environmental chamber (12). Er-
rors are smaller and span a more limited range in
the UTest House primarily because PM2.5 concen-
trations measured by the reference are lower than
in the environmental chamber, which has a peak
concentration more than twice that in the UTest
House. Furthermore, the shape of the concentra-
tion profile can affect the final model since CGS
might be more or less sensitive to increases and/or
decreases in pollutant concentrations. With the ex-
ception of the CO sensor, we introduce pollution
on one or more occasions during calibration experi-
ments. The CO2 sensor (Figures 9 and 10) captures
the concentration profiles exceptionally well. PM2.5

sensors (Figures 11 and 12) capture the increase in
concentration well but tend to underpredict more

lengthy decreases, and the TVOC sensors (Figure
13) tend to underpredict peak concentrations.

The environment in which sensors are calibrated
is important since models can vary significantly be-
tween controlled and more realistic environments
[46]. Results from our study confirm this finding
for the CO2 and PM2.5 sensors. No BEVO Beacon
had similar device-specific models between environ-
ments, even when considering CO2 sensors which
had excellent agreement with the research-grade
monitors in both environments. Device-specific pa-
rameters for each sensor from each environment
are provided in the Appendix. Many researchers
recommend field tests over laboratory calibration
because sensors are exposed to more realistic en-
vironmental conditions [53]. Despite this sugges-
tion, many of the devices listed in Table 1 are cal-
ibrated in laboratory environments and evaluated
in the field. Laboratory settings are favored be-
cause controlled settings allow researchers to re-
move confounding variables like mixing-conditions
and T/RH variation. Temperature and RH are two
environmental parameters that are known to affect
CGS, most notably PM2.5 [54] and MOS sensors
[55]. Many of the studies that include T and RH
in their calibration models are for CGS operating
in ambient conditions (see references within [45])
which have more varied conditions [56] compared
to indoor environments which is why we do not in-
clude T or RH in our models. Heat and cold tests
performed on MOS sensors in [30] indicated that
temperatures between 15.6◦C and 23.8◦C – consis-
tent with indoor temperatures – did not noticeably
affect sensor readings. However, researchers in [34]
include T and RH corrections for each of their sen-
sors using data gathered from field evaluations.

For some pollutants, researchers often make the
assumption that the background concentration is
zero or some other constant value. In this case,
researchers only need to correct readings by sub-
tracting a constant value. Initially, we tested this
assumption on the CO sensor, placing devices in
the environmental chamber and assuming a back-
ground concentration of 0 ppm. However, these ex-
periments indicated appreciable variations in CO
concentration, measuring CO up to 4 ppm during
various experiments. For some environments, such
as a typical laboratory setting, this assumption is
generally safe to make. However, researchers should
be careful, especially for CGS that monitor gaseous
pollutants and can be sensitive to other compounds.

Beyond the calibration setup and procedure, re-
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searchers are then faced with the challenging deci-
sion of which model they should use to correct the
CGS readings. These models can be as simple as
ordinary least-squares regression [57, 58] to highly
complex neural networks [59]. As discussed earlier,
these models can incorporate covariates such as T
and RH in addition to other gaseous compounds
that present appreciable cross-sensitivities. In this
study, we opt for univariate, least-squares linear re-
gression models because of their simplicity, explain-
ability, and ubiquity in the related literature [45].
Related device presented in [32, 30, 34] use linear
models to correct their sensors’ readings while [29]
uses constant offsets derived from experiments with
ZAG.

Researchers must also make the decision as to
whether device-specific or environment-averaged
parameters should be used. Our study indicates
the former is more appropriate which has been cor-
roborated by other studies on CGS [60] including
a related study [30]. Researchers in [32] calibrate
100 devices but do not indicate whether they ap-
ply device-specific or averaged models while devices
in [34] are calibrated frequently, including an on-
line calibration system which implies device-specific
models are used. The CO2 model results in Fig-
ures 9 and 10 – specifically Panels (b) and (c)
– highlight how important device-specific models
are. Measurement errors between the reference and
device-specific models span a far narrower range
and are typically centered around zero while errors
from environment-averaged models vary consider-
ably across devices. However, when considering
PM2.5 models in Figures 11 and 12 the difference is
not as stark which implies that for some sensors, an
averaged model can be appropriate. This approach
simplifies the calibration process considerably espe-
cially if researchers plan to develop many devices.
Rather than calibrate each device individually, re-
searchers could simply calibrate a few devices, gen-
erate a model, and apply it across all devices.

5. Conclusion

In this study we presented the Building Occu-
pancy and EnVironment Beacon – an all-in-one
IAQ monitor that leverages multiple, consumer-
grade sensor modules. Our goal was to create a
device that researchers with limited knowledge in
embedded systems could replicate and customize
to their research efforts. The BEVO Beacon uses

six sensors to measure 19 different parameters in-
cluding CO2, PM number and mass concentrations,
TVOCs, CO, T, RH, and light. Data are measured
at a one-minute resolution and stored locally on the
device but can be accessed by researchers remotely
if configured to WiFi.

We present extensive results regarding calibra-
tion options for each of the primary IAQ sensors.
Linear models for PM2.5 and CO2 sensors were de-
veloped from a controlled laboratory setting and a
home testing environment by comparing measure-
ments to research-grade monitors. Models for both
IAQ parameters were different depending on the
environment, but in both settings, we were able
to correct CO2 readings to achieve r2 > 0.9 for
many devices. Models for PM2.5 varied widely and
performance was significantly worse. We also com-
pared the performance of PM2.5 and CO2 models
with device-specific parameters to models with pa-
rameters averaged across all beacons in each en-
vironment. We found that device-specific mod-
els contained parameters that varied significantly
and were more appropriate than a single model ap-
plied to multiple devices. TVOC sensors were cali-
brated relative to each other to ensure each sensor
was reading similarly. CO sensors were calibrated
through a controlled step calibration in a 5L cham-
ber, achieving r2 > 0.98 for all devices. T was
calibrated against a reference monitor by compar-
ing temperatures spanning from room temperature
to 10◦C degrees warmer in retrofitted incubator.
Models were able to achieve r2 > 0.89 across all de-
vices, but parameters varied considerably and we
only considered a narrow T range.

To understand the performance of our devices,
we deployed 20 BEVO Beacons in a field study for
11 weeks during the summer of 2020 to student par-
ticipants living in home and apartment dwellings.
Measurements from each device indicate that the
majority of the measured IAQ parameters were
within typical ranges for indoor environments. De-
vices recorded a mean of 62 days with a minimum
of 9 and maximum of 78 days – the entire study
period. The quality and quantity of measurements
we recovered from the field study underscore the
ability of CGS to provide insight into the IAQ from
a large number of spaces and highlight their ability
to gather data over extended periods of time.

The variety and affordability of consumer-grade
IAQ sensors means that researchers can now de-
velop and tailor devices to their specific needs. For
example, our contribution provides a robust base
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hardware setup for the field implementation of oc-
cupancy detection [61], occupant-centric building
controls [62], and post occupancy evaluation stud-
ies [63]. While these sensors have accuracy lim-
itations, they can help to answer research ques-
tions, especially where large variation in IAQ pa-
rameters is expected. In addition, companies and
third-party users provide extensive documentation,
reducing the burden of developing these sensors for
researchers and the public alike which helps grow
community science efforts toward measuring and
understanding air quality. Creating devices like the
BEVO Beacon is still challenging, but is likely to
get easier as researchers and communities get more
involved and sensor technology matures, leading to
an increase in the quantity and quality of air quality
measurements.
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Appendix A. Calibration Results

The following figures highlight the performance
of all BEVO Beacons for each of the IAQ sensors
from the calibration experiments.

Appendix A.1. Carbon Dioxide

Figure A.1 shows the performance of CO2 sensors
on the BEVO Beacons from the calibration experi-
ments conducted in the mock home environment.

Table A.2 illustrates consistency amongst the lin-
ear regression parameters across all three experi-
ments for the majority of devices. Only Devices
5 and 24 show significantly different results, both
from Experiment 2, which explains why these two
devices are the only ones with averaged y > 1. Ex-
cluding this experiment would result in m values
more consistent with the other devices. Excluding
Experiment 2 would decrease performance of De-
vice 5, but increase the performance for Device 24.

Figure A.2 shows the performance of all CO2 sen-
sors on the BEVO Beacons from the calibration ex-
periments conducted in the 27 m3 laboratory cham-
ber.

Table A.2 indicates b values from the first two ex-
periments are similarly low, but increase by a fac-
tor of 6 in the final experiment. Device 10 was
the only device with a negative, averaged b coeffi-
cient while the remaining values ranged from 15.76
to 448.01. These results again indicate that the
CO2 sensors we use tend to underpredict baseline
concentrations.

Appendix A.2. Particulate Matter

Figure A.3 shows the performance of the cor-
rected PM2.5 sensors on all BEVO Beacons from
calibration experiments conducted in the mock
home environment.

Table A.3 shows the model parameters for each
of the three experiments. In some cases, sensors
were not responsive for a majority of the exper-
iment and therefore, we do not report parameters
for these devices. Generally, devices with more neg-
ative b values, have larger m. This behavior is even
evident by examining single experiments per device.
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  Device 1
  r2 = 0.995
  y = 0.82x + 342.37

  Device 5
  r2 = 0.979
  y = 1.14x + 216.22

  Device 6
  r2 = 0.996
  y = 0.72x + 174.59

  Device 7
  r2 = 0.992
  y = 0.86x + 251.76

  Device 10
  r2 = 0.999
  y = 0.74x + 113.62

  Device 11
  r2 = 0.996
  y = 0.83x + 240.49

  Device 15
  r2 = 0.993
  y = 0.84x + 255.92

  Device 16
  r2 = 0.991
  y = 0.84x + 296.11

  Device 19
  r2 = 0.979
  y = 0.9x + 472.95

  Device 21
  r2 = 0.995
  y = 0.9x + 364.18

  Device 24
  r2 = 0.619
  y = 1.17x + 288.49

  Device 25
  r2 = 0.947
  y = 0.79x + 168.89

  Device 26
  r2 = 0.997
  y = 0.85x + 294.03

  Device 29
  r2 = 0.989
  y = 0.92x + 350.45

  Device 30
  r2 = 0.99
  y = 0.85x + 236.6
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Corrected Reference
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  r2 = 0.981
  y = 0.95x + 435.17

  Device 38
  r2 = 0.994
  y = 0.89x + 282.89

  Device 44
  r2 = 0.995
  y = 0.89x + 347.25

  Device 46
  r2 = 0.998
  y = 0.72x + 275.73
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Figure A.1: Results of the CO2 linear regression models averaged from the three experiments conducted in the experimental
home environment. Data shown are from a fourth experiment where the models are applied to the devices’ measurements and
compared to the reference monitor. The r2 value corresponds to the goodness of fit from this fourth experiment.
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  Device 1
  r2 = 0.999
  y = 1.2x + 251.81

  Device 5
  r2 = 0.994
  y = 1.4x + 314.84

  Device 6
  r2 = 0.999
  y = 1.05x + 15.76

  Device 7
  r2 = 0.994
  y = 1.22x + 74.25

  Device 10
  r2 = 0.997
  y = 1.06x + -54.4

  Device 11
  r2 = 0.996
  y = 1.22x + 94.76

  Device 15
  r2 = 0.997
  y = 1.2x + 166.2

  Device 16
  r2 = 0.998
  y = 1.2x + 236.46

  Device 19
  r2 = 0.988
  y = 1.43x + 448.01

  Device 21
  r2 = 0.999
  y = 1.35x + 293.36

  Device 24
  r2 = 0.997
  y = 1.39x + 351.36

  Device 25
  r2 = 0.968
  y = 1.17x + 43.25

  Device 26
  r2 = 0.999
  y = 1.25x + 187.61

  Device 29
  r2 = 0.946
  y = 1.33x + 322.88

  Device 30
  r2 = 0.992
  y = 1.19x + 120.38
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Figure A.2: Results of the CO2 linear regression models averaged from the three experiments conducted in the laboratory
chamber. Data shown are from a fourth experiment where the models are applied to the devices’ measurements and compared
to the reference monitor. The r2 value corresponds to the goodness of fit from this fourth experiment.
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  Device 1
  r2 = 0.391
  y = 2.89x + -10.88

  Device 5
  r2 = 0.339
  y = 3.16x + -9.27

  Device 6
  r2 = 0.198
  y = 2.0x + -7.4

  Device 7
  r2 = -0.215
  y = 2.78x + -9.08

  Device 10
  r2 = -0.283
  y = 2.45x + -8.38

  Device 11
  r2 = 0.255
  y = 2.1x + -9.9

  Device 15
  r2 = -0.294
  y = 3.16x + -15.06

  Device 16
  r2 = 0.446
  y = 2.85x + -8.49

  Device 19
  r2 = 0.373
  y = 2.92x + -10.64

  Device 21
  r2 = 0.367
  y = 1.77x + -4.85

  Device 24
  r2 = 0.363
  y = 3.21x + -9.8

  Device 25
  r2 = -0.029
  y = 3.04x + -7.65

  Device 26
  r2 = 0.3
  y = 2.31x + -6.46

  Device 29
  r2 = 0.419
  y = 2.86x + -9.3

  Device 30
  r2 = 0.704
  y = 1.62x + -3.09
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  y = 3.65x + -14.21
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  r2 = 0.571
  y = 3.26x + -11.36
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  y = 2.9x + -9.46
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Figure A.3: Results of the PM2.5 linear regression models averaged from the three experiments conducted in the experimental
home environment. Data shown are from a fourth experiment where the models are applied to the devices’ measurements and
compared to the reference monitor.
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Table A.1: Linear model parameters for each CO2 sensor
from the three calibration experiments conducted in the
home environment.

Device
b m

Experiment Experiment
1 2 3 1 2 3

1 338.2 365.4 323.4 0.8 0.8 0.8
5 291.5 84.4 272.8 1.1 1.5 0.8
6 169.3 198.3 156.1 0.7 0.7 0.7
7 234.0 291.8 229.6 0.9 0.8 0.9
10 119.9 98.7 122.2 0.7 0.7 0.7
11 237.5 278.9 205.1 0.8 0.8 0.9
15 278.5 251.8 237.5 0.8 0.8 0.9
16 268.3 332.9 287.1 0.9 0.8 0.8
19 485.4 458.5 474.9 0.9 0.9 0.9
21 359.5 380.9 352.2 0.9 0.9 0.9
24 453.0 120.2 292.3 0.9 1.7 0.9
25 157.7 212.7 136.3 0.8 0.7 0.8
26 274.1 334.5 273.5 0.9 0.8 0.9
29 359.5 328.2 363.7 0.9 0.9 0.9
30 265.7 227.3 216.8 0.8 0.8 0.9
34 187.3 110.6 202.7 0.6 0.7 0.6
36 432.5 467.0 406.0 0.9 0.9 1.0
38 285.7 294.7 268.3 0.9 0.9 0.9
44 350.4 333.5 358.0 0.9 0.9 0.9
46 270.7 314.8 241.8 0.7 0.7 0.8

Table A.2: Linear model parameters for each of CO2 sen-
sors from the three experiments conducted in the laboratory
chamber.

Device
b m

Experiment Experiment
1 2 3 1 2 3

1 256.8 234.9 263.7 1.2 1.2 1.2
5 309.6 322.9 312.0 1.5 1.3 1.4
6 24.2 5.7 17.4 1.0 1.1 1.0
7 85.0 79.4 58.4 1.2 1.2 1.2
10 -30.4 -63.8 -69.0 1.0 1.1 1.1
11 100.3 98.3 85.8 1.2 1.2 1.2
15 183.8 159.5 155.3 1.2 1.2 1.2
16 238.3 240.1 231.0 1.2 1.2 1.2
19 464.1 443.2 436.7 1.4 1.4 1.4
21 297.5 291.8 290.8 1.4 1.4 1.3
24 357.2 354.0 342.9 1.4 1.4 1.4
25 57.4 22.1 50.2 1.2 1.1 1.2
26 205.5 180.7 176.7 1.2 1.3 1.2
29 343.8 317.1 307.7 1.3 1.3 1.4
30 99.4 129.3 132.4 1.2 1.2 1.2
34 31.0 40.7 227.5 0.9 1.0 0.7
36 382.6 371.9 369.2 1.4 1.4 1.4
38 174.3 166.2 161.7 1.3 1.3 1.3
44 299.4 290.8 284.6 1.3 1.3 1.3
46 150.9 144.0 143.6 1.1 1.1 1.1

Table A.3: Linear model parameters for each of PM2.5 sen-
sors from the three experiments conducted in the home en-
vironment.

Device
b m

Experiment Experiment
1 2 3 1 2 3

1 -11.7 – -10.1 3.3 – 2.4
5 -10.2 -11.1 -6.5 3.3 4.2 2.0
6 -4.9 -8.3 -8.9 1.9 2.5 1.6
7 -6.6 -8.0 -12.6 2.8 3.0 2.6
10 -5.3 – -11.5 2.4 – 2.5
11 -4.3 -15.1 -10.3 1.6 2.9 1.7
15 -3.5 -21.6 -20.0 1.7 4.5 3.2
16 -3.3 -7.0 -15.2 1.9 3.6 3.1
19 -4.7 – -16.6 2.1 – 3.8
21 -3.1 – -6.6 1.7 – 1.8
24 -9.8 – – 3.2 – –
25 -10.9 -4.4 – 3.1 2.9 –
26 -4.6 -9.1 -5.7 2.0 3.5 1.5
29 -5.2 -9.4 -13.2 2.2 3.7 2.7
30 -5.1 – -1.1 2.1 – 1.1
34 -1.5 -4.4 -6.6 1.6 3.1 1.6
36 -3.3 -15.5 -10.9 1.8 4.1 2.4
38 -8.6 -19.5 -14.5 3.2 4.7 3.1
44 -6.0 -18.7 -9.4 2.2 5.3 2.3
46 -5.1 -10.7 -12.5 2.3 3.9 2.6

For example, Device 44 has an b value of -6.0 in the
first experiment with a corresponding m of 2.2. In
the second experiment, the b drops to -18.7 and the
m jumps to 5.3. This set of experiments along with
others in Table A.3 highlight that parameters var-
ied widely from experiment to experiment despite
ensuring experiments were conducted in a similar
fashion. The values for b range from -21.6 (Device
15, Experiment 2) to -1.1 (Device 30, Experiment
3) while values for m range from 1.1 (Device 30,
Experiment 3) to 5.3 (Device 44, Experiment 2).
The variability in the parameters would explain the
models poor ability to correct raw CGS measure-
ments to the reference.

Figure A.4 shows the performance of PM2.5 sen-
sors on the BEVO Beacons calibrated in the 27 m3

chamber environment.

Table A.4 displays all parameter values for each
of the PM2.5 sensors from each calibration experi-
ment conducted in the laboratory chamber. The b
and m parameters from Experiment 1 are generally
lower than the subsequent experiments, but overall
there are no clear patterns in parameter values over
the set of experiments.
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  Device 1
  r2 = -0.131
  y = 5.03x + -28.22

  Device 5
  r2 = 0.805
  y = 6.62x + -36.17

  Device 6
  r2 = 0.636
  y = 2.96x + -20.03

  Device 7
  r2 = 0.147
  y = 4.66x + -25.26

  Device 10
  r2 = 0.441
  y = 5.88x + -30.68

  Device 11
  r2 = 0.89
  y = 2.42x + -13.87

  Device 15
  r2 = 0.053
  y = 4.6x + -28.41

  Device 16
  r2 = 0.772
  y = 5.1x + -25.06

  Device 19
  r2 = 0.678
  y = 6.53x + -31.25

  Device 21
  r2 = 0.549
  y = 4.84x + -27.04

  Device 24
  r2 = 0.578
  y = 5.14x + -27.83

  Device 25
  r2 = 0.913
  y = 4.31x + -19.55

  Device 26
  r2 = 0.727
  y = 4.2x + -25.18

  Device 29
  r2 = 0.49
  y = 4.78x + -24.4

  Device 30
  r2 = 0.825
  y = 4.2x + -17.57
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  r2 = 0.474
  y = 4.34x + -20.82

  Device 38
  r2 = 0.793
  y = 4.61x + -18.83

  Device 44
  r2 = 0.716
  y = 4.9x + -26.52

  Device 46
  r2 = 0.641
  y = 4.65x + -24.2
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Figure A.4: Results of the PM2.5 linear regression models averaged from the three experiments conducted in the laboratory
chamber. Data shown are from a fourth experiment where the models are applied to the devices’ measurements and compared
to the reference monitor.
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Table A.4: Linear model parameters for each of PM2.5 sen-
sors from the three experiments conducted in the environ-
mental chamber.

Device
b m

Experiment Experiment
1 2 3 1 2 3

1 -26.6 -34.5 -23.6 5.4 5.8 3.9
5 -18.7 -42.2 -47.6 5.1 8.1 6.7
6 -7.0 -21.9 -31.2 2.6 3.1 3.1
7 -16.0 -28.6 -31.1 4.7 4.7 4.6
10 -20.7 -29.6 -41.7 5.6 6.3 5.7
11 -4.1 -18.9 -18.6 2.0 2.8 2.4
15 -13.4 -36.0 -35.8 3.8 5.4 4.6
16 -20.3 -20.6 -34.2 5.5 4.8 5.0
19 -23.1 -29.1 -41.5 6.4 6.4 6.9
21 -20.4 -23.5 -37.2 4.8 4.5 5.2
24 -20.1 -29.1 -34.3 4.8 5.7 4.9
25 -15.6 -17.6 -25.5 4.5 4.4 4.1
26 -18.4 -26.4 -30.8 4.0 4.6 4.0
29 -10.7 -25.6 -36.9 4.2 5.5 4.7
30 -8.7 -24.5 -19.5 4.1 4.8 3.7
34 -10.3 -20.0 -35.0 4.0 4.3 4.5
36 -16.7 -22.8 -23.0 4.3 4.8 3.9
38 -10.1 -19.5 -26.9 4.6 4.7 4.5
44 -16.6 -31.7 -31.3 4.8 5.7 4.3
46 -26.2 -16.4 -30.0 4.9 4.4 4.7

Appendix A.3. Total Volatile Organic Compounds

Figure A.5 shows the results of the calibrated
TVOC sensors from experiments conducted in the
laboratory chamber.

Table A.5 highlights the the wide range of m and
b values for the TVOC sensors from the three cal-
ibration experiments, both for a given device and
across devices. While the m values tended to be
similar across experiments with the exception of a
few devices, the b coefficient varied considerably.
Ten devices had b coefficients with oppositely signed
values in at least one experiment. Of note are De-
vices 1, 30, and 34 which have differences in b coef-
ficients of more than 200 ppb between Experiments
1 and 2. In Experiment 3, b coefficients were con-
siderably lower and exhibited much less variability,
ranging from -3.69 to 4.06.

Appendix A.4. Carbon Monoxide

The model parameters were derived from a single
experiment with the gas standard (Table A.6). We
group devices that were calibrated in the same ex-
periment to understand if the model parameters we
derived were dependent on the experiment. Based

Table A.5: Linear model parameters for each of TVOC sen-
sors from the three experiments conducted in the environ-
mental chamber.

Device
b m

Experiment Experiment
1 2 3 1 2 3

1 502.3 120.0 -2.5 0.90 1.40 1.07
5 -3.9 56.4 -1.5 1.11 1.09 1.04
6 12.8 -51.9 0.2 0.84 0.98 1.00
7 56.2 -12.6 4.1 0.40 0.43 0.80
10 -74.2 -1.7 0.2 1.37 1.32 1.12
11 -24.5 -9.4 -1.8 1.05 1.11 1.01
15 1.3 -116.0 -0.2 0.85 1.01 1.01
16 24.5 -96.4 2.6 0.70 0.90 0.97
19 -13.3 49.7 -2.0 1.22 1.21 1.09
21 -23.1 -22.5 1.5 1.38 1.46 1.17
24 65.0 225.3 2.3 0.80 0.70 0.88
25 4.0 -80.5 -0.5 1.18 1.22 1.05
26 -16.1 28.2 -0.1 1.37 1.26 1.09
29 -38.9 -73.2 -1.0 1.48 1.46 1.10
30 -62.4 215.5 -3.7 1.51 1.15 0.99
34 -64.9 192.9 0.2 1.92 1.50 1.03
36 -3.6 -35.4 0.9 0.92 1.03 0.99
38 -57.7 -20.6 -1.0 1.43 1.44 1.11
44 73.5 176.9 3.6 0.39 0.34 0.67
46 -117.8 45.3 -2.0 1.99 1.80 1.10

on the variety of model parameters from each batch,
there does not appear to be any influence of the ex-
periment group on model parameters. The b values
range from -2.07 to 11.39. The m values are all
greater than 1 and exhibit less variation, ranging
from 1.10 to 1.80. Unlike previous models for other
CGS, the m term does not seem to compensate for
low b values. While Device 16 had the lowest b and
the largest m, this trend does not extend to Devices
7, 26, and 29 which also had negative b parameters.
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  Device 1
  r2 = 0.953
  y = 1.12x + 206.6

  Device 5
  r2 = 0.994
  y = 1.08x + 17.04

  Device 6
  r2 = 0.992
  y = 0.94x + -12.96

  Device 7
  r2 = 0.976
  y = 0.55x + 15.9

  Device 10
  r2 = 0.978
  y = 1.27x + -25.23

  Device 11
  r2 = 0.992
  y = 1.06x + -11.92

  Device 15
  r2 = 0.957
  y = 0.95x + -38.29

  Device 16
  r2 = 0.953
  y = 0.86x + -23.13

  Device 19
  r2 = 0.997
  y = 1.17x + 11.46

  Device 21
  r2 = 0.965
  y = 1.34x + -14.71

  Device 24
  r2 = 0.968
  y = 0.79x + 97.54

  Device 25
  r2 = 0.986
  y = 1.15x + -25.68

  Device 26
  r2 = 0.999
  y = 1.24x + 3.98

  Device 29
  r2 = 0.951
  y = 1.35x + -37.71

  Device 30
  r2 = 0.964
  y = 1.22x + 49.78
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Figure A.5: Results of the TVOC linear regression models averaged from three experiments conducted in the laboratory
chamber. Data shown are from a fourth experiment where the models are applied to the devices’ measurements and compared
to the reference monitor. The r2 value corresponds to the goodness of fit from this fourth experiment.
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Figure A.6: Results of the CO linear models from the gas standard calibration.
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Table A.6: Linear model parameters for each of CO sen-
sors from the three experiments conducted against the gas
standard.

Device b m r2

1 5.65 1.22 0.99
7 -0.23 1.19 0.99
26 -0.78 1.13 0.99

15 4.12 1.33 1.00
24 11.18 1.41 1.00
36 6.50 1.55 1.00

6 1.39 1.19 1.00
25 2.35 1.16 1.00
29 -0.54 1.21 1.00

21 0.15 1.10 1.00
34 8.65 1.26 1.00
38 – – –

5 1.76 1.36 1.00
30 8.91 1.50 1.00
44 8.30 1.31 1.00

10 3.75 1.45 0.99
46 – – –

11 11.39 1.59 1.00
16 -2.07 1.80 0.99
19 – – –
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