POSTER 18

Many-objective process optimisation with constraints for continuous tableting lines: a case study in lovastatin

Kai Eivind Wu¹ k.e.wu@sheffield.ac.uk

Cameron J. Brown², Murray N. Robertson², Blair F. Johnston², George Panoutsos¹ ¹University of Sheffield, Department of Automatic Control and Systems Engineering ²EPSRC CMAC Future Manufacturing Research Hub, University of Strathclyde, Glasgow, UK

Problem

Research Objective: The project focuses the fundamental research on robust numerical and visual performance indicators for assessing performance for many-objective optimisation algorithms under multiple

Methods: A surrogate model-based machine learning algorithm is used, to train data-driven models that capture the manufacturing process behaviour. Then use optimisation algorithms to get optimal solutions. Results: >75% dissolution release could be achieved in 45 minutes.

definition

Data Collection

Establish model

Optimisation Algorithm

Results

Problem Definition Inputs **Outputs Problem** Tablet hardness Compaction force Tablet tensile strength Tableting Percentage of tablet **Process** Mass fraction of lovastatin dissolved after 45 min Mass fraction of avicel Mass fraction of lactose Dose **Constrains** Tablet porosity Mean particle size Dissolution Tablet thickness Granule coefficient of frac. Avicel + frac. Lactose < 0.9 variation Crystallisation

Data Collection

- Sample relevant data according to the design of the experiment, either from previous history or new experiments.
- The data should be organized and pre-processed before modelling.
- Data types include input, output and constraints.
- The maximum and minimum values (box constraints) for each input value need to be determined.

Evolutionary algorithms for optimization analysis - PPS

Selection Crossover → Replacement Initialisation Evaluation Mutation

Fittest Solution Presented

The optimal solutions are verified.

Results If the solution does not match the expectations, the models are re-trained and updated, and the process is repeated until satisfactory results are obtained.

Acknowledgements: This work was funded by the EPSRC Future Manufacturing R

