
Journal of Artificial Intelligence Research 73 (2022) 1473-1534 Submitted 10/2021; published 04/2022

A Logic-Based Explanation Generation Framework for
Classical and Hybrid Planning Problems

Stylianos Loukas Vasileiou v.stylianos@wustl.edu
William Yeoh wyeoh@wustl.edu
Washington University in St. Louis
Saint Louis, MO 63130, United States

Tran Cao Son tson@cs.nmsu.edu
New Mexico State University
Las Cruces, NM 88003, United States

Ashwin Kumar ashwinkumar@wustl.edu
Washington University in St. Louis
Saint Louis, MO 63130, United States

Michael Cashmore michael.cashmore@strath.ac.uk
University of Strathclyde
Glasgow G1 1XH, United Kingdom

Daniele Magazzeni daniele.magazzeni@kcl.ac.uk

King’s College London

London WC2B 4BG, United Kingdom

Abstract

In human-aware planning systems, a planning agent might need to explain its plan
to a human user when that plan appears to be non-feasible or sub-optimal. A popular
approach, called model reconciliation, has been proposed as a way to bring the model of
the human user closer to the agent’s model. To do so, the agent provides an explanation
that can be used to update the model of human such that the agent’s plan is feasible or
optimal to the human user. Existing approaches to solve this problem have been based on
automated planning methods and have been limited to classical planning problems only.

In this paper, we approach the model reconciliation problem from a different perspec-
tive, that of knowledge representation and reasoning, and demonstrate that our approach
can be applied not only to classical planning problems but also hybrid systems planning
problems with durative actions and events/processes. In particular, we propose a logic-
based framework for explanation generation, where given a knowledge base KBa (of an
agent) and a knowledge base KBh (of a human user), each encoding their knowledge of a
planning problem, and that KBa entails a query q (e.g., that a proposed plan of the agent
is valid), the goal is to identify an explanation ε ⊆ KBa such that when it is used to update
KBh, then the updated KBh also entails q. More specifically, we make the following con-
tributions in this paper: (1) We formally define the notion of logic-based explanations in
the context of model reconciliation problems; (2) We introduce a number of cost functions
that can be used to reflect preferences between explanations; (3) We present algorithms to
compute explanations for both classical planning and hybrid systems planning problems;
and (4) We empirically evaluate their performance on such problems. Our empirical results
demonstrate that, on classical planning problems, our approach is faster than the state of
the art when the explanations are long or when the size of the knowledge base is small

c©2022 AI Access Foundation. All rights reserved.



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

(e.g., the plans to be explained are short). They also demonstrate that our approach is
efficient for hybrid systems planning problems.

Finally, we evaluate the real-world efficacy of explanations generated by our algorithms
through a controlled human user study, where we develop a proof-of-concept visualization
system and use it as a medium for explanation communication.

1. Introduction

From its inception, Explainable AI Planning (XAIP) (Fox, Long, & Magazzeni, 2017; Kamb-
hampati, 2019) has garnered increasing interest due to its role in designing explainable
systems that bridge the gap between theoretical and algorithmic planning literature and
real-world applications (Sreedharan, Chakraborti, & Kambhampati, 2020). The primary
motivation of XAIP systems has been revolved around creating well integrated pipelines
that can generate explanations for a given planning problem, such as explaining the opti-
mality of a given plan. An ideal XAIP pipeline typically consists of two main components:
(i) Explanation generation; and (ii) Explanation communication.

When designing XAIP systems, one of the main considerations, particularly in the expla-
nation generation component, is taking into account the persona of the explainee (Langley,
2019). Although there can be a variety of different personalities,1 the personality of the
end user, that is, the person interacting/collaborating with the system in the form of a
user,2 has gained a lot of focus. This is an important and challenging personality to con-
sider as it is widely accepted that human users often come with their own preconceived
notions and/or expectations of the system (Carroll & Olson, 1988) and, as such, human
users might evaluate plans on their own models, which may disagree with the system’s
outcome or quality. One of the recurring themes in this context is the model reconciliation
problem (MRP) (Chakraborti, Sreedharan, Zhang, & Kambhampati, 2017) – a paradigm
that utilizes a popular theory in human psychology, called the theory of mind (Premack
& Woodruff, 1978) and allows an agent (the explainer) to consider the “mental model” of
the human user (the explainee) in its explanation generation process.3 These explanations,
also referred to as model-based explanations, are centered on explaining a plan to a user
by transferring a minimum number of updates from the agent’s model to the user’s model,
i.e., they bring the model of the user closer to the agent’s model (Chakraborti et al., 2017;
Sreedharan, Chakraborti, & Kambhampati, 2018). However, a common thread across most
works in the MRP literature is that they, not surprisingly, employ mostly automated plan-
ning approaches. Further, to the best of our knowledge, they have been applied to classical
planning problems only thus far.

To that extent, in this paper we are mainly interested in the explanation generation
component of XAIP, specifically through the lens of model reconciliation, where we approach
it from a different perspective – one based on knowledge representation and reasoning (KR).
In particular, we propose a logic-based framework for explanation generation, where given

1. The current norm in the XAIP literature considers the following three personas: End user, domain
designer, and algorithm designer (Sreedharan et al., 2020).

2. The users can have varying levels of knowledge and expertise, from dilettantes to cognoscenti.
3. In this context, a mental model is just the user’s version of the problem that the agent possess, and

interestingly, it can be expressed as a graph, a planning model, or even a logical knowledge base. Note
that the notion of MRP is agnostic to the actual representation.

1474



A Logic-Based Explanation Generation Framework for Planning Problems

a knowledge base KBa (of an agent) and a knowledge base KBh (of a human user), each
encoding their knowledge of a planning problem, and that KBa entails a query q (e.g., that
a proposed plan of the agent is valid or that the proposed plan is optimal), the goal is
to identify an explanation ε ⊆ KBa such that when it is used to update KBh, then the
updated KBh also entails q. We then demonstrate that our approach can be applied not
only to classical planning problems but also hybrid systems planning problems with durative
actions, processes, and events. More specifically,

• We formally define the notion of logic-based explanations in the context of model recon-
ciliation problems.

• We introduce a number of cost functions that can be used to reflect preferences between
explanations.

• We present algorithms to compute explanations for both classical and hybrid systems
planning problems.

• We empirically evaluate their performance against the current state of the
art (Chakraborti et al., 2017) on classical planning problems as well as provide results on
hybrid systems planning problems. Our empirical results demonstrate that, on classical
planning problems, our approach is faster than the state of the art when the explanations
are long or when the size of the knowledge base is small (e.g., the plans to be explained are
short). They also demonstrate that our approach is efficient for hybrid systems planning
problems.

In summary, our proposed framework advances the state of the art in model reconcili-
ation approaches for explanation generation within XAIP along two key dimensions: (1) It
improves the scalability for some types of classical planning problems; and (2) It generalizes
the model reconciliation approach such that it can be applied to other types of planning
problems beyond classical planning.

At the other end of the spectrum, explanation generation frameworks aimed at human
users should be able to effectively communicate explanations to them, ideally, in a manner
that minimizes their cognitive effort and maximizes their cognitive effect. To address this
important and challenging task, we consider a proof-of-concept for communicating expla-
nations to human users, where we use visualizations and text as a medium for presenting
explanations. Our empirical results on a controlled human user study support our expec-
tation that explanations in the form of model reconciliation constitute an effective way for
explaining plans to human users for problems beyond classical planning.

The paper is organized as follows. In the next section, we elucidate the role of the the-
ory of mind and its usefulness in explanations as model reconciliation, as well as why we
characterize the model reconciliation problem through the lens of logic. We then provide
the necessary background knowledge in Section 3. In Section 4, we describe our logic-based
framework as well as define two types of explanations – plan validity and plan optimality
explanations. We provide a working example that highlights concepts used in our approach
in Section 5. In Section 6, we describe algorithms for computing explanations in planning
problems, and experimentally evaluate them on a set of classical and hybrid systems plan-
ning problems in Section 7. Then, in Section 8, we shift our focus to the communicability
of explanations, where we describe and evaluate a proof-of-concept for presenting explana-
tions to human users. In Section 9, as our explanation generation framework builds upon

1475



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

various logic-based techniques, we give a detailed exposition on the relationship between
such techniques and their applicability to XAIP, as well as discuss related work from the
planning literature. We finally conclude the paper in Section 10.

2. Explanations as Model Reconciliation

The theory of mind (ToM) (Premack & Woodruff, 1978) is an important theory about the
operations of the human mind and behavior in social and collaborative (or even adversarial)
scenarios. In a nutshell, ToM is the ability to attribute mental models to others while
recognizing that these models may differ from one’s own. These mental models, which
comprise mental states such as beliefs, knowledge, intentions, etc. (in other words, a full
range of goal and epistemic states), allow one to infer future mental states (i.e., the behavior)
of others. However, social interactions can be quite convoluted, and misinterpretations may
even yield frantic results. Nonetheless, being able to attribute mental models to other
people, for example, ideas about what other people are thinking or know about certain
situations, would make social interactions placid and seamless, at least to some reasonable
extent. For instance, building shared plans or goals between two people requires the very
essence of ToM. Both parties must recognize the intentions of one another and subsequently
work out how to mesh their actions with each other in order to achieve a common goal.
However, note that in order to verbalize and intentionally communicate any differences in
mental states (e.g., differences between actions), such as to provide explanations intending
to update the receivers knowledge, it is normally assumed that the parties involved in
the interaction share some common language and vocabulary (i.e., their mental models
are expressed in common terms). ToM, therefore, is viewed as a vital socio-cognitive skill,
inherent in the human nature, that we tend to highly use in an intuitive and natural way
when interacting with other people. For a comprehensive description on the evolution and
significance of ToM, we refer the interested reader to the work by Baron-Cohen (1999).

The model reconciliation problem (MRP) (Chakraborti et al., 2017) has gained a lot of
success due to the fact that it is rooted in the understanding of the importance of ToM. To
be more precise, in the context of planning and MRP, a mental model consists simply of
a PDDL expression that characterizes a planning problem (i.e., the model comprise all
the fluents, predicates, objects, and actions that are allowed to be used in the particular
problem). Important to note here are the assumptions that the agent possesses the human
user’s model a-priori,4 the agent’s model is correct and complete, and only the human user’s
model may contain flaws or missing information.5 In a typical MRP scenario, explanation
generation is requested when a plan that is optimal (e.g., a shortest plan) in the agent’s
model is inexplicable (e.g., infeasible or suboptimal) in the human user’s model, because
the human user is, say, missing some preconditions from some actions in their model that
are necessary for the optimal solution of the planning problem. Then, the agent, by taking
into account its own model as well as the human user’s model, attempts to “reconcile” their
differences by providing information from its own model (e.g., the missing preconditions)

4. However, there has been some interest in relaxing this assumption (Sreedharan, Hernandez, Mishra, &
Kambhampati, 2019).

5. By correct and complete model, we mean that the agent believes that its model represents the objective
and absolute truth about the specific planning problem.

1476



A Logic-Based Explanation Generation Framework for Planning Problems

such that when this information is used by the human user to update their model (i.e., by
adding the preconditions to the respective actions in their model), they can compute the
optimal plan and, hence, understand its optimality.

As we can see, a key point to note in MRP is that the agent recognizes that the hu-
man user may have their own model of the planning problem, and that if there exists a
discrepancy between their models such that the agent’s plan is inexplicable to the human
user, explanations will be couched in terms of model differences. Therefore, explanations
as model reconciliation have the potential to play a significant role in explanation gener-
ation settings, mostly because of their natural consideration of how humans interact in
social settings such as those that require intensionally communicating information with one
another.

Unsurprisingly, researchers have empirically demonstrated explanations in the form of
model reconciliation constitute a natural and effective way of explaining classical planning
problems to human users (Chakraborti, Sreedharan, Grover, & Kambhampati, 2019b; Za-
hedi, Olmo, Chakraborti, Sreedharan, & Kambhampati, 2019). Specifically, they showed,
using map visualizations of a planning problem, that human users not only understand
explanations in the form of model reconciliation, but also believe that such explanations
are necessary to explain (classical planning) plans. This empirical algorithm-agnostic as-
sessment provides some supporting evidence for the real-world applicability of our proposed
explanation generation framework for classical planning problems. Nevertheless, the applica-
bility of explanations as model reconciliation for hybrid systems planning problems remains
suspect, to the best of our knowledge. As such, in Section 8, we investigate, through a user
study, to what extend explanations as model reconciliation are effective for hybrid systems
planning problems.

2.1 A Logical Approach to the Model Reconciliation Problem

Having painted a small picture about the usefulness of explanations in MRP scenarios, our
interest in this paper lies in characterizing MRP from the lens of a logic, where we specifi-
cally lay the theoretical and algorithmic foundations for a logic-based explanation generation
framework. Succinctly, the mental models in our approach are in essence knowledge bases
consisting of formulae expressed in some type of logic and fully describe a planning prob-
lem. For example, it is well known that a classical planning problem can be encoded as a
propositional satisfiability instance (SAT) consisting of formulae that represent the initial
state, goal state, and the action dynamics for n time steps, where n is an upper bound on
the horizon of the problem, and is typically the length of the plan that can be found in the
knowledge base (Kautz & Selman, 1992). In a similar fashion, a hybrid system planning
problem can be expressed in first-order logic interpreted in the quantifier-free linear real
arithmetic theory (Cashmore, Fox, Long, & Magazzeni, 2016). Nevertheless, we wish to
emphasize that the logical nature of a logic-based framework offers a number of attractive
features that, to our understanding, are desirable, if not necessary, in systems incorpo-
rating explanation generation capabilities. Some of important features worth mentioning
are: (i) Expressivity ; and (ii) Traceability.

First, by expressivity, we refer to the expressive power of logical languages, that is, their
ability to describe various phenomena in a principled and axiomatic way, and their ability

1477



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

to distinguish between certain structures defined in them. For example, the propositional
logical language is defined over a finite set of propositions P = {p1, . . . , pn}, and the struc-
tures are defined as the truth assignment models M = {µ1, . . . , µk} of P .6 In the case of
a classical planning problem Π, each pi describes a state, an action, how to transition be-
tween states, and so on, up to a fixed horizon n. Additionally, every µj consists of Boolean
truth values for each pi (i.e., µj describes which states and actions are true (or false) at a
particular horizon during the execution of Π). Then, a knowledge base comprising these
propositions can be used to explain certain phenomena that happened during the execution
of Π.

Next, by traceability, we allude to the fact that given a logical description of a problem,
we can easily trace the reasons for particular “behavior.” For instance, given a knowledge
base KB encoding a planning problem Π, a valid plan π of Π is entailed by KB and, as
such, the reasons for its validity can be traced using deductive inference algorithms. These
reasons, expressed in the type of logic used to encode Π, can be used to explain the validity
of π. It is important to mention here that, even though such explanations are expressed
in logical formulae, we do not aim to communicate them to human users in their pure
form, but rather express them in an easily human-understandable format, such as natural
language and visualizations.

Note that our proposed approach can be used as a standalone method for solving plan-
ning problems and generating explanations for them. However, it can be integrated with
state-of-the-art search-based planners. For example, a search-based planner (e.g., FastDown-
ward (Helmert, 2006)) can be first used to find a plan of length n for a planning problem
Π. Then, Π can be encoded into a knowledge base KB up to horizon n, which can be
mapped into our framework and used for explanation generation concerning valid (or opti-
mal) plans of length at most n. Such an integration may be useful in real-world applications,
where running time efficiency may be of critical importance.

3. Preliminaries

In this section, we provide a brief introduction to logic, satisfiability, classical planning,
and hybrid systems planning. We then describe how to cast classical and hybrid systems
planning problems as SAT and SMT instances, respectively. Finally, we discuss the notion
of explainable AI planning.

3.1 Logic

A logic L is a tuple 〈KBL, BSL, ACCL〉, where KBL is the set of well-formed knowledge
bases (or theories) of L – each being a set of formulae. BSL is the set of possible belief sets;
each element of BSL is a set of syntactic elements representing the beliefs L may adopt.
ACCL : KBL → 2BSL describes the “semantics” of L by assigning to each element of KBL
a set of acceptable sets of beliefs. For each KB ∈ KBL and B ∈ ACCL(KB), we say that B
is a model of KB. A logic is monotonic if KB ⊆ KB′ implies ACCL(KB′) ⊆ ACCL(KB).

6. Note that a propositional logical language offers maximal expressivity with respect to the truth assign-
ments on a finite set P , as for each µj there exists a unique formula satisfied by µj and falsified by µl

(for l 6= j).

1478



A Logic-Based Explanation Generation Framework for Planning Problems

Example 1 Assume that L refers to the propositional logic over an alphabet P . Then,
KBL is the set of propositional theories over P , BSL = 2P , and ACCL maps each theory
KB into the set of its models in the usual sense.

Definition 1 (Skeptical Entailment) A formula ϕ in the logic L is skeptically entailed
by KB, denoted by KB|=s

Lϕ, if ACCL(KB) 6= ∅ and ϕ ∈ B for every B ∈ ACCL(KB).

Definition 2 (Credulous Entailment) A formula ϕ in the logic L is credulously en-
tailed by KB, denoted by KB|=c

Lϕ, if ACCL(KB) 6= ∅ and ϕ ∈ B for some B ∈
ACCL(KB).

Definition 3 (Consistent Knowledge Base) A KB is consistent iff ACCL(KB) 6= ∅
or, equivalently, iff KB does not skeptically entail false.

For our later use, we will assume that a negation operator ¬ over formulae exists.
Additionally, ϕ and ¬ϕ are contradictory with each other in the sense that, for any KB
and B ∈ ACCL(KB), if ϕ ∈ B, then ¬ϕ 6∈ B; and if ¬ϕ ∈ B, then ϕ 6∈ B. Therefore,
if {ϕ,¬ϕ} ⊆ KB, then KB is inconsistent, i.e., ACCL(KB) = ∅. ε ⊆ KB is called
a sub-theory of KB. A theory KB subsumes a theory KB′, denoted by KB C KB′, if
ACCL(KB) ⊂ ACCL(KB′).

3.1.1 Boolean Satisfiability

Boolean Satisfiability (SAT) (Cook, 1971) is the problem of finding an assignment of truth
values to variables in order to make a set of propositional formulae true. The problem can
be stated as follows: Given a Boolean expression ψ with variables V = {v1, . . . , vn}, find an
assignment to the variables V that satisfies ψ or prove that one does not exist. For example,

ψ = (v1 ∨ v2) ∧ (¬v2 ∨ v3) ∧ ¬v1 (1)

is satisfiable with respect to the truth assignment M = {v1 = F, v2 = T, v3 = T}.

3.1.2 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) (Barrett & Tinelli, 2018) is the problem of deciding
the satisfiability of a first-order formula expressed in a given theory. The problem can be
stated as follows: Given a first order formula ψ with variables V = {v1, . . . , vn} and a set
of constraints over those variables, find an assignment to the variables V that satisfies ψ
or prove that one does not exist. In contrast to the SAT problem, the variables are not
restricted to Boolean values, but depend upon a theory, and the constraints are expressed
with respect to a background logic. The theory and logic are critical elements of an SMT
problem. Theories exist for Boolean propositions, bit-vectors, arrays, integers, reals, and so
on. For example, an SMT problem in the quantifier-free linear real arithmetic theory is:

ψ = (v1 + 3 ≤ 2v2) ∨ (v3 + 4 ≥ 2) ∨ (v1 + v2 + v3 ≥ 1), (2)

which is satisfiable with respect to the assignment M = {v1 = 1, v2 = 1, v3 = 1}.

1479



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

3.2 Classical Planning

A classical planning problem, typically represented in PDDL (Ghallab, Howe, Knoblock,
McDermott, Ram, Veloso, Weld, & Wilkins, 1998), is a tuple Π = 〈D, I,G〉, which consists
of the domain D = 〈F,A〉 – where F is a finite set of fluents representing the world states
(s ∈ F ) and A a set of actions – and the initial and goal states I,G ⊆ F . An action a
is a tuple 〈prea, effa〉, where prea are the preconditions of a – conditions that must hold
for the action to be applied; and effa = 〈eff+

a , eff−a 〉 are the addition (eff+
a ) and deletion

(eff−a ) effects of a – conditions that must hold after the action is applied. More formally,
using δΠ : 2F × A → 2F to denote the transition function of problem Π, if s 6|= prea, then
δΠ(s, a) |=⊥; otherwise, δΠ(s, a) |= s ∪ eff+

a \ eff−a . The solution to a planning problem Π
is a plan π = 〈a1, . . . , an〉 such that δΠ(I, π) |= G, where δΠ(s, π) = δΠ(δΠ(s, a1), π′) with
π′ = 〈a2, . . . , an〉.

The cost of a plan π is given by C(π,Π) = |π|. Finally, the cost-minimal plan π∗ =
argminπ∈{π′|δΠ(I,π′)|=G}C(π,Π) is called the optimal plan.

3.2.1 Encoding Classical Planning Problems as Boolean Satisfiability

A classical planning problem can be encoded as a SAT problem (Kautz & Selman, 1992;
Kautz, McAllester, & Selman, 1996). The basic idea is the following: Given a planning
problem P , find a solution for P of length n by creating a propositional formula that
represents the initial state, goal state, and the action dynamics for n time steps. This is
referred to as the bounded planning problem (P, n), and we define the formula for (P, n) such
that: Any model of the formula represents a solution to (P, n) and if (P, n) has a solution,
then the formula is satisfiable.

We encode (P, n) as a formula Φ involving one variable for each action a ∈ A at each
timestep t ∈ {0, . . . , n − 1} and one variable for each fluent f ∈ F at each timestep t ∈
{0, . . . , n}. We denote the variable representing action a in timestep t using subscript at, and
similarly for facts. The formula Φ is constructed such that 〈a0, a1, . . . , an−1〉 is a solution
for (P, n) if and only if Φ can be satisfied in a way that makes the fluents a0, a1, . . . , an−1

true. The formula Φ is a conjunction of the following formulae:

• Initial state: Let F and I be the sets of fluents and initial states, respectively, in the
planning problem: ∧

f∈I
f0 ∧

∧
f∈F\{I}

¬f0 (3)

• Goal state: Let G be the set of goal states:∧
f∈G

fn (4)

• Action scheme: Formulae enforcing the preconditions and effects of each action a at
time step t:

at ⇒
∧

f∈prea

ft (5)

1480



A Logic-Based Explanation Generation Framework for Planning Problems

at ⇒
∧

f∈eff+
a

ft+1 (6)

at ⇒
∧

f∈eff−a

¬ft+1 (7)

• Explanatory frame axioms: Formulae enforcing that facts do not change between
subsequent time steps t and t + 1 unless they are effects of actions that are executed at
time step t:

¬ft ∧ ft+1 ⇒
∨
{at | f ∈ eff+

a } (8)

ft ∧ ¬ft+1 ⇒
∨
{at | f ∈ eff−a } (9)

• Action exclusion axioms: Formulae enforcing that only one action can occur at each
time step t: ∧

a∈A

∧
a′∈A|a6=a′

(¬at ∨ ¬a′t) (10)

where A is the set of actions in the planning problem.

Finally, we can extract a plan by finding an assignment of truth values that satisfies Φ
(i.e., for all time steps t = 0, . . . , n − 1, there will be exactly one action a such that at =
True). This could be easily done by using a satisfiability algorithm, such as the well-known
DPLL algorithm (Davis, Logemann, Donald, & Loveland, 1962).

It is worth mentioning that planning as SAT has gathered a lot of traction, as there
is a significant number of works which have been devoted to formalizing and improving
the encodings of planning problems using propositional logic (Robinson, Gretton, Pham,
& Sattar, 2009; Domshlak, Hoffmann, & Sabharwal, 2009; Cashmore, Fox, & Giunchiglia,
2012).

3.3 Hybrid Systems Planning

A hybrid system planning problem, hereinafter simply hybrid planning, typically represented
in PDDL+ (Fox & Long, 2006), is a tuple Π+ = 〈P, V,A, Ps,E, I,G〉, in which P is a set of
propositions; V is a vector of real variables (fluents); A is a set of durative and instantaneous
actions; Ps is a set of processes; E is a set of events; and I and G are the initial and goal
states, respectively. A durative action a ∈ A is defined by a tuple 〈prea, effa, dura〉, where
prea is the precondition, effa is the effect, and dura is a duration constraint – a conjunction
of numeric constraints corresponding to the duration of action a.

In contrast to classical planning, the precondition prea = 〈pre`a, pre↔a, preaa〉 of a du-
rative action a consists of three disjoint subsets, where each subset represents conditions
that must hold at the start of the action, throughout its execution, and at the end of the
action, respectively. In turn, the effect effa = 〈eff±`a, effnum`a , eff±aa, effnumaa , eff↔a〉 of an action
a consists of five disjoint subsets, where eff±`a is the set of instantaneous effects of adding/re-
moving propositions at the start of the action, effnum`a is the set of instantaneous numeric
effects at the start of the action, eff±aa is the set of instantaneous effects of adding/removing
propositions at the end of the action, effnumaa is the set of instantaneous numeric effects

1481



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

at the end of the action, and eff↔a is a conjunction of numeric effects which are applied
continuously while the action is executing. Note that the values of instantaneous effects can
be exploited to support other actions only after a small amount of time ε, which is referred
to as epsilon separation (Fox & Long, 2003).

Each process ps ∈ PS, defined by a tuple 〈preps, effps〉, is similar to a durative action,
except that it does not have a set duration but is instead active when their preconditions
are satisfied (without any epsilon separation) and inactive when their preconditions are not
satisfied. Consequently, unlike durative actions, processes do not have durative constraints.
In addition, a process’s precondition consists of a single condition, whereas its effect consists
of a single continuous numeric effect. Each event e ∈ E, defined by a tuple 〈pree, effe〉, is
analogous to an instantaneous action and, thus, also does not have a duration constraint.
Further, an event comprises of a single triggering precondition and an instantaneous effect.
Note that events can make immediate use of effects (without any epsilon separation). If
the effect of an action, process, or other event make true the condition of an event, then it
occurs immediately and simultaneously with that effect. In general, processes and events are
used to model exogenous events in the world (Gerevini, Saetti, & Serina, 2006). Therefore,
they are not under the direct control of the planner and are triggered immediately when
their preconditions are satisfied (see Bogomolov, Magazzeni, Podelski, and Wehrle (2014)
for more details).

Moreover, the cost of a PDDL+ plan depends upon a specified plan metric. Plan metrics
assert, for the benefit of the planner, how a plan will be evaluated for a particular problem.7

For instance, the same initial and goal states might yield entirely different optimal plans
given different plan metrics. Examples of plan metrics include the makespan of the plan
(i.e., the sum of the duration of each action in the plan), optimizing a specific quantity in
the domain, etc.

Finally, it is important to mention that, to the best of our knowledge, there does not
exist any general optimal PDDL+ planners. As a matter of fact, it has been shown that
even finding the existence of PDDL+ plans is undecidable (Helmert, 2002). The reason is
that PDDL+ domains have an established relationship with the reachability problem for
hybrid automata (Fox & Long, 2006), where it is known to be undecidable (Henzinger,
2000). In the context of planning, the reachability problem corresponds to the problem of
solving plan existence. Nonetheless, there exist PDDL+ fragments where plan existence is
decidable (Fox & Long, 2006).

3.3.1 Encoding Hybrid Planning Problems as Satisfiability Modulo Theory

A hybrid planning problem Π+ can be encoded as an SMT formula (Cashmore et al., 2016)
with bound n in the theory of quantifier-free (non-linear) real arithmetic with n copies of
the set of variables x, where x is called a happening. A happening encodes the change in
the state at a particular time point due to effects of actions, processes, or events happening
at that time point:

x =
〈
t, Ê, P̂ s, P̂ , V̂ , A, P+, V +, f lowV , durPs

〉
(11)

7. Metrics are specified in the problem description, allowing a planner to easily explore the effect of different
metrics in the construction of solutions to problems for the same domain.

1482



A Logic-Based Explanation Generation Framework for Planning Problems

where t is the current time point, Ê = {E0, . . . , EB} is the chain of events triggered at
t, B is a bound on the length of the causal chain of events at each time point, P̂ s =
{Ps0, . . . , PsB} is the chain of active processes at t, P̂ = {P0, . . . , PB} is the causal change
in the propositional state variables at t, V̂ = {V0, . . . , VB} is the causal change in the
real state variables at t, A is a set of durative and instantaneous actions, P+ and V +

are the values of the propositional and real state variables, respectively, at time t + ε,
flowV = {flowv | v ∈ V } is a numerical expression that represents the change in value of v
from a time point to the next, and durPs = {durps | ps ∈ Ps} is the remaining duration of
each process ps. Note that the durPs variable enforces the duration constraint of a durative
action, not that of a process, as we highlight in the next paragraph.

Following the same manner as in the encoding of classical planning, the SMT formula
is comprised of a conjunction of formulae that represent the dynamics of the given Π+
problem. Then, a plan for Π+ with length n would correspond to the action variables with
true assignments in any proof of the SMT formula of Π+. In order to encode a durative
action in SMT, we split it into two instantaneous actions representing the start and end of
the action respectively, and a process representing the action’s durative portion. The start
and end actions are constructed in a straightforward way, with the addition of a new effect,
whose only purpose is to activate the process. The effect of the process is the continuous
effect of the durative action, plus a continuous decrement of some timer variable. The
instant end action uses that timer variable and the durative action’s duration inequality in
its precondition. This ensures that the start and end of the action are the correct distance
apart in the timeline. It is only this kind of process, representing a durative action, that
has a duration associated with it.

Below, we describe the SMT formulae that characterize a Π+ problem (for a more
thorough description, we refer the reader to Cashmore, Magazzeni, and Zehtabi (2020)).
Formulae (12) to (25) encode the constraints for each happening x0, . . . , xn, and formulae
(26) to (36) are additional constraints needed in the SMT formula Π+:

• Proposition and real variable support: Formulae ensuring that the values of propo-
sitions and real variables remain consistent from P0 ∪ V0 to PB ∪ VB:

B−1∧
i=0

∧
p∈P

pi+1 → (pi
∨

e|p∈eff+
e

ei) (12)

B−1∧
i=0

∧
p∈P
¬pi+1 → (¬pi

∨
e|p∈eff−e

ei) (13)

B−1∧
i=0

∧
v∈V

(
∧

e|v∈effnum
e

¬vi)→ (vi+1 = vi) (14)

• Event preconditions and effects: Formulae enforcing that an event is triggered if and
only if its preconditions hold, and that if an event is triggered, its effects are present in
the next time step:

B−1∧
i=0

∧
e∈E

ei → (pree)i (15)

1483



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

B−1∧
i=0

∧
e∈E

ei → (effe)i+1 (16)

• Action preconditions and effects: Formulae enforcing that an action’s preconditions
must hold in PB ∪ VB and their effects are enforced in P+ ∪ V +:∧

a∈A
a→ (prea)B (17)∧

a∈A
a→ (effa)

+ (18)

• Support across epsilon separation: Formulae ensuring that the values of propositions
and real variables remain consistent from PB ∪ VB to P+ ∪ V +:∧

p∈P
p+ → (pB

∨
a|p∈eff+

a

a) (19)

∧
p∈P
¬p+ → (¬pB

∨
a|p∈eff−a

a) (20)

∧
v∈V

(
∧

a|v∈effnum
a

¬a)→ (v+ = vB) (21)

• Process triggering: Formulae enforcing that a process is active if and only if its pre-
conditions are satisfied in each set P0∪V0 to PB ∪VB, and ensuring that a process cannot
finish outside of a happening:

B∧
i=0

∧
ps∈Ps

psi ↔ (preps)i (22)

∧
ps∈Ps

durps ≥ 0 (23)

∧
ps∈Ps

psB ↔ (durps > 0) (24)

• Action exclusion axioms: Formulae enforcing that only one action can occur at each
time step: ∧

a∈A

∧
a′∈A|a6=a′

(¬a ∨ ¬a′) (25)

• Instance description: Formulae enforcing that the initial state holds in the first hap-
pening and the goal holds in the final happening:

I0 (26)

Gn (27)

t0 = 0 (28)
n∧
i=1

ti ≥ ti−1 + ε (29)

1484



A Logic-Based Explanation Generation Framework for Planning Problems

• Proposition support: Formulae ensuring that the discrete state variables P do not
change between happenings:

n∧
i=1

∧
p∈P

(p0)i → (p+)i−1 (30)

n∧
i=1

∧
p∈P
¬(p0)i → ¬(p+)i−1 (31)

• Invariants: Formulae ensuring that the continuous numeric change between happenings
is valid:

n∧
i=1

∧
ps∈Ps

(psB)i−1 → ((durps)i) = (durps)i−1 + ti − ti+1) (32)

n−1∧
i=0

∧
ps∈Ps

(psB)i ↔ (pre↔ps)i (33)

n−1∧
i=0

∧
e∈E
¬(pre↔e)i (34)

• Continuous change on real variables: Formulae enforcing the continuous change on
real variables:

n−1∧
i=0

∧
v∈V

(flowv)i =

∫ ti+1

ti

⋃
ps∈Ps

(effnum↔ps [v])i dt (35)

n∧
i=1

∧
v∈V

((v0)i = (v+)i−1 + (flowv)i−1) (36)

As mentioned at the end of Section 3.3, there does not exist any optimal PDDL+
planners. Consequently, SMT solvers fall within this category as well. For example, in a
temporal setting, a lower number of happenings does not mean a higher-quality plan. It
could be that by adding happenings, a plan of shorter duration, or with better cost, can
be found. As an example, consider a domain with a car, actions to increase and decrease
acceleration by one step, and a goal to move the car a given distance. The optimal plan
in terms of duration will be to accelerate as many times as possible until the half-way
point, and then to decelerate until the car stops at the specified distance. A plan with the
fewest steps/happening only accelerates and decelerates once each, and takes much longer.
Therefore, a solution found by an SMT solver is not guaranteed to be optimal with respect
to time.

3.4 Explainable AI Planning

In Explainable AI Planning (XAIP) (Kambhampati, 2019), the (planning) agent must have
knowledge of the human model in order to be able to contemplate the goals of humans as
well as foresee how its plan will be perceived by them. This is of the highest importance

1485



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

in the context of explainable planning since an explanation of a plan cannot be one-sided
(i.e., it must incorporate the human’s beliefs of the planner). In a plan generation process, a
planner performs argumentation over a set of different models (Chakraborti, Kambhampati,
Scheutz, & Zhang, 2017). These models are usually the model of the agent incorporating
the planner, the model of the human in the loop, the model that the agent thinks the
human has, the model that the human thinks the agent has, and the agent’s approximation
of the latter. Therefore, the necessity for plan explanations arises when the model of the
agent and the model the human diverge so that the optimal plan in the agent’s model is
inexplicable to the human.

During a collaborative activity, an explainable planning agent (Fox et al., 2017) must
be able to account for such model differences and maintain an explanatory dialogue with
the human so that both of them agree on the same plan. This forms the nucleus of explana-
tion generation of an explainable planning agent, and is referred to as model reconciliation
(Chakraborti et al., 2017).

Human-aware planning, as introduced by Chakraborti, Sreedharan, and Kambhampati
(2019c), couples the model of the human user and the planning agent’s own model into its
deliberative process. Therefore, when there exist differences between those two models such
that the agent’s optimal plan diverges from the human’s expectations, the agent attempts a
model reconciliation process. In this process, the agent provides an explanation that can be
used to update the human’s model such that the agent’s plan is also optimal in the updated
human’s model.

More formally, a Model Reconciliation Problem (MRP) is defined by the tuple Ψ =
〈Φ, π〉, where Φ = 〈MR,MR

H〉 is a tuple of the agent’s model MR = 〈DR, IR, GR〉 and the
agent’s approximation of the human’s model MR

H = 〈DR
H , I

R
H , G

R
H〉 , and π is the optimal

plan in MR. A solution to an MRP is an explanation ε such that when it is used to update
the human’s model MR

H to M̂R,ε
H , the plan π is optimal in both the agent’s model MR and the

updated human model M̂R,ε
H . The goal is to find a cost-minimal explanation, where the cost

of an explanation is defined as the length of the explanation by Chakraborti et al. (2017); We
later propose several other possible cost explanation functions in Section 4.1. Additionally,
while the model reconciliation problem is only defined for optimal plans (Chakraborti et al.,
2017), it can be generalized for any arbitrary plan of the agent, which we do so in Section 4.2.

4. Explanation Generation Framework

In this section, we introduce the notion of an explanation in the following setting, where,
for brevity, we use the term |=x

L for x ∈ {s, c} to refer to skeptical (s) or credulous (c)
entailment:

Explanation Generation Problem: Given two knowledge bases KBa and
KBh and a formula ϕ in a logic L, where KBa |=x

L ϕ and KBh 6|=x
L ϕ, the goal

is to identify an explanation (i.e., a set of formulae) ε ⊆ KBa such that when it

is used to update KBh to K̂B
ε

h, the updated K̂B
ε

h |=x
L ϕ.

When updating a knowledge base KB with an explanation ε, the updated knowledge
base KB ∪ ε may be inconsistent as there may be contradictory formulae in KB and ε.

1486



A Logic-Based Explanation Generation Framework for Planning Problems

As such, to make the knowledge base consistent again, one needs to remove this set of
contradictory formulae γ ⊆ KB from KB. More formally:

Definition 4 (Knowledge Base Update) Given a knowledge base KB and an explana-

tion ε, the updated knowledge base is K̂B
ε

= KB ∪ ε \ γ, where γ ⊆ KB \ ε is a set of

formulae that must be removed from KB such that the updated K̂B
ε

is consistent.8

We now define the notion of a support of a formula w.r.t. a knowledge base KB before
defining the notion of explanations.

Definition 5 (Support) Given a knowledge base KB and a formula ϕ in a logic L, where
KB |=x

L ϕ, ε ⊆ KB is a support of ϕ w.r.t. KB if ε |=x
L ϕ. Assume that ε is a support of

ϕ w.r.t. KB. We say that ε ⊆ KB is a ⊆-minimal support of ϕ if no proper sub-theory of
ε is a support of ϕ. Furthermore, ε is a C-general support of ϕ if there is no support ε′ of
ϕ w.r.t. KB such that ε subsumes ε′.

Definition 6 (Explanation) Given two knowledge bases KBa and KBh and a formula ϕ
in a logic L, where KBa |=x

L ϕ and KBh 6|=x
L ϕ, an explanation for ϕ from KBa for KBh

is a support ε w.r.t. KBa for ϕ such that the updated knowledge base K̂B
ε

h |=x
L ϕ, where

K̂B
ε

h is updated according to Definition 4.

Example 2 Consider propositional logic theories over the set of propositions {a, b, c} with
the usual definition of models, satisfaction, etc. Assume KBa = {a, b, a→ c, a∧b→ c} and
KBh1 = {a}. We have that ε1 = {a, a → c} and ε2 = {a, b, a ∧ b → c} are two ⊆-minimal
supports of c w.r.t. KBa. Only ε1 is a C-general support of c w.r.t. KBa since ε2 C ε1.
Both ε1 and ε2 can serve as explanations for c from KBa for KBh1. Of course, KBa is
itself an explanation for c from KBa for KBh1.

Now consider KBh2 = {a,¬b}. In this case, both ε1 and ε2 are possible explanations for
c from KBa for KBh2, but if ε2 is chosen, then ¬b will need to be removed from KBh2 so
that it is consistent according to Definition 4.

4.1 Preferred Explanations

When considering explanatory systems, a natural question that potentially arises would
be: Are all explanations equal? For example, one would want to differentiate between
trivial and non-trivial explanations. While it might be acceptable in some cases, trivial
explanations,9 which are akin to a parent providing the explanation “because I said so”
when asked “why?” by their child, are not preferred in most cases.

Besides computing an explanation ε, the agent also needs to present that explanation
to the user or, in other words, describe the content of the explanation ε to the user. Given
knowledge bases KBa and KBh and a formula ϕ, there might be several explanations for
ϕ from KBa for KBh. Therefore, an agent might prefer an explanation that requires the

8. Intuitively, one should prefer the set of formula γ that is removed to be as small as possible, though we
chose to not require such a restriction here.

9. There might be cases where we need to explain an assumption or a fact that is missing from a KB, and
therefore, trivial explanations will be succinct and acceptable.

1487



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

least amount of effort10 in presenting explanation ε to the human. One way to characterize
the effort of the agent when presenting an explanation is to associate a cost to the elements
of explanation ε. For example, one might prefer a subset-minimal explanation or a shortest
length explanation over others. Next, we quantify the cost of an explanation, which is then
used in to define a general preference relation over explanations.

We assume a cost function CL that maps knowledge bases and sets of explanations to
non-negative real values:

CL : KBL × Ω→ R≥0 (37)

where Ω is the set of explanations and R≥0 denotes the set of non-negative real numbers.
Intuitively, this function can be used to characterize different complexity measurements
of an explanation. A cost function CL is monotonic if for any two explanations ε1 ⊆ ε2,
CL(KB, ε1) ≤ CL(KB, ε2). CL induces a preference relation ≺KB over explanations as
follows.

Definition 7 (Preferred Explanation) Given a cost function CL, a knowledge base
KBh, and two explanations ε1 and ε2 for KBh, explanation ε1 is preferred over expla-
nation ε2 w.r.t. KBh (denoted by ε1 �KBh

ε2) iff

CL(KBh, ε1) ≤ CL(KBh, ε2) (38)

and ε1 is strictly preferred over ε2 w.r.t. KBh (denoted by ε1 ≺KBh
ε2) if

CL(KBh, ε1) < CL(KBh, ε2) (39)

This allows us to compare explanations as follows.

Definition 8 (Most Preferred Explanation) Given a cost function CL and a knowledge
base KBh, an explanation ε is a most preferred explanation w.r.t. KBh if there exists no
other explanation ε′ such that ε′ ≺KBh

ε.

There are several natural monotonic cost functions. For example:

• C1
L(KBh, ε) = |ε|, the cardinality of ε, indicates the number of formulae that need to be

explained;

• C2
L(KBh, ε) = |ε\KBh|, the cardinality of ε\KBh, indicates the number of new formulae

that need to be explained;

• C3
L(KBh, ε) = length(ε) indicates the number of literals in ε that need to be explained.

4.2 Explanations in Planning Problems

As discussed in the preliminaries section, classical and hybrid planning problems can be
encoded using the logic-based SAT and SMT problems, respectively. As such, our logic-
based notions of explanations proposed in the previous section can be applied to explainable

10. By “effort,” we could use either the effort needed by the robot to present the explanation, the effort
needed by the human to understand the explanation, or a combination of both. For example, the length
of the explanation can be used to represent both the effort needed by the robot to explain as well as the
effort needed by the human to understand.

1488



A Logic-Based Explanation Generation Framework for Planning Problems

planning, particularly the model reconciliation problem, in the context of explaining classical
and hybrid planning problems. Nonetheless, recall that a model reconciliation problem is
strictly defined for explaining optimal plans (see Section 3.4). We can, however, relax this
definition and generalize it for arbitrary, valid plans. The reasoning behind this relaxation
is that, even if optimality cannot be guaranteed, the user may have doubts about the
validity of a plan (i.e., whether the plan is sound and can be executed to achieve the goal).
Therefore, valid plan explanations are crucial for engendering trust in the user. Note that,
in the case of hybrid planning problems, we restrict ourselves to only explaining valid plans,
as guaranteeing optimality is often infeasible for such tasks.

Hereinafter, we focus on the following two problems: (1) Explaining the validity of a plan
to the user, and (2) Explaining the optimality of a plan to the user, where we define them
using logical notations. From now on, we use KBa and KBh to denote the knowledge bases
encoding the planning problem of the planning agent and the human user, respectively.

4.2.1 Plan Validity

Assume π is a valid plan with respect to KBa but not KBh. In other words, it is not
possible to execute π to achieve the goal with respect to KBh. For example, an action in
the plan cannot be executed because its precondition is not satisfied, an action in the plan
does not exist, or the goal is not reached after the last action in the plan is executed. From
the perspective of logic, a plan is valid if there exists at least one model in KBh in which
the plan can be executed and the goal is reached:

Definition 9 (Plan Validity) Given a planning problem Π, a plan π of Π, where αt is
an action of the plan at time step t, and a knowledge base KBh encoding Π, π is a valid
plan in KBh if KBh|=c

Lπ∧gn, where gn is the fact corresponding to the goal of the planning
problem at time step n.

4.2.2 Plan Optimality

Assume that π∗ is an optimal plan in a model of KBa. To explain the optimality of π∗ to
KBh, we need to prove that no shorter (optimal) plan exists in KBh. Thus, we need to
prove that no shorter plan exists in all models of KBh. This can be easily done by using
the notion of skeptical entailment.

Definition 10 (Plan Optimality) Given a planning problem Π, a plan π of Π with length
n, and a knowledge base KBh encoding Π, the plan π is optimal in KBh if and only if
KBh|=c

Lπ ∧ gn and KBh|=s
Lφ, where φ =

∧n−1
t=0 ¬gt and gt is the fact corresponding to the

goal of the planning problem at time step t.

In essence, the query φ in the above definition is that no plan of lengths 1 to n− 1 exists.
Therefore, when combined with the fact that a plan π of length n that achieves the goal
state exists, then that plan must be an optimal plan.

Note that the above definition applies only to classical planning problems and not hybrid
planning problems. The reason is because the cost of a hybrid plan depends on a user-
specified plan metric, and this cost is not explicitly encoded by SMT encodings of hybrid
plans. Nonetheless, we do not view this as a significant loss since finding optimal hybrid
plans is often highly intractable.

1489



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

5. Working Example

For the purpose of clarity and ease of understanding, we have constructed a simplified,
classical planning version of the Generator domain11 as our working example, and use this
to demonstrate different concepts explained throughout this paper. We intentionally kept
the example very simple so that the explanations are succinct and are easy to present and
understand. We refer the interested reader to the appendix where we present an example
on the hybrid planning version of the Generator domain.

The domain and problem files are shown in Listings 1 and 2, respectively. The domain
consists of two actions gen on and gen off . Action gen on consists of one precondition
(= fuel full), one addition effect (= gen running), and one deletion effect (= ¬fuel full).
Action gen off has one precondition (= gen running) and one addition effect (= gen ran).
In this particular problem, the initial state asserts that the fuel is full (= fuel full) and
the goal state is that the generator has been ran (= gen ran). The optimal plan for this
problem is thus to first execute action gen on such that gen running is true, and then
action gen off such that gen ran is true. In other words, π∗ = [gen on0, gen off1].

Listing 1: Domain File of Simple Generator

( define (domain Simple−Generator )
( :requirements : s t r ips )
( :predicates ( f u e l f u l l )

( gen ran )
( gen running ) )

( :action gen on
:precondition (and ( f u e l f u l l ) )
: e f f e c t (and (not ( f u e l f u l l ) )

( gen running ) ) )

( :action g e n o f f
:precondition (and ( gen running ) )
: e f f e c t (and ( gen ran ) ) ) )

Listing 2: Problem File of Simple Generator

( define (problem Sample Problem )
( :domain Simple−Generator )
( : i n i t ( f u e l f u l l ) )
( :goal (and ( gen ran ) ) ) )

11. The domain is originally defined for hybrid planning problems and it can be found here: https://github.
com/KCL-Planning/SMTPlan/tree/master/benchmarks

1490



A Logic-Based Explanation Generation Framework for Planning Problems

Given the domain and problem specifications, the knowledge base of the agent KBa,
encoded in propositional logic in the fashion of Kautz et al. (1996), consists of the following
set of formulae:

• Initial states:

fuel full0 (40)

¬gen ran0 (41)

¬gen running0 (42)

• Goal state:

gen ran2 (43)

• Action gen on preconditions and effects:

gen oni → fuel fulli (44)

gen oni → ¬fuel fulli+1 (45)

gen oni → gen runningi+1 (46)

fuel fulli ∧ ¬fuel fulli+1 → gen oni (47)

¬gen runningi ∧ gen runningi+1 → gen oni (48)

• Action gen off preconditions and effects:

gen offi → gen runningi (49)

gen offi → gen rani+1 (50)

¬gen rani ∧ gen rani+1 → gen offi (51)

• Action exclusions:

¬gen oni ∨ ¬gen offi (52)

for i = {0, 1}.

Now, let’s assume the following knowledge base KBh for a human user:

• Initial states:

fuel full0 (53)

¬gen ran0 (54)

¬gen running0 (55)

• Goal state:

gen ran2 (56)

1491



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

• Action gen on preconditions and effects:

gen oni → fuel fulli (57)

gen oni → ¬fuel fulli+1 (58)

gen oni → gen runningi+1 (59)

fuel fulli ∧ ¬fuel fulli+1 → gen oni (60)

¬gen runningi ∧ gen runningi+1 → gen oni (61)

for i = {0, 1}. That is, the human user is missing the set of formulae that represent action
gen off (Lines 49-51) and the action exclusion of the two actions (Line 52), from her
knowledge base.

Due to the omission of that set of formulae, the human user is unaware of the action
gen off and the plan π∗ = [gen on0, gen off1] is thus not only suboptimal but is also in-
valid to the human user (specifically, with respect to the user’s knowledge base). Therefore,
the goal is to explain the validity and/or optimality of π∗ to the human user by reconciling
the two knowledge bases. Couched in terms of propositional logic, we have to find an ex-
planation ε such that K̂B

ε

h|=c
Lπ
∗ when explaining the validity of the plan (see Definition 9)

and/or K̂B
ε

h|=s
L(¬gen ran0 ∧ ¬gen ran1) when explaining the optimality of the plan (see

Definition 10).
Now, the set of formulae that yield an explanation for both plan validity and optimality

is the set of formulae consisting of action gen off and the action exclusion axiom of actions
gen on and gen off , i.e.,

ε =[gen offi → gen runningi, gen offi → gen rani+1, (62)

¬gen rani ∧ gen rani+1 → gen offi,¬gen oni ∨ ¬gen offi] (63)

for i = {0, 1}.
Then, after updating KBh with ε using Definition 4 to get the updated K̂B

ε

h =

(KBh∪ ε)\∅, the plan π∗ is valid (i.e., K̂B
ε

h|=c
Lπ
∗) and optimal (i.e., K̂B

ε

h|=s
L(¬gen ran0∧

¬gen ran1)) to the human user.

6. Computing Explanations

Since finding optimal plans for hybrid planning problems is often infeasible, we focus on
describing algorithms that compute explanations for explaining the validity and optimality
of classical plans to users in this section. Nonetheless, these algorithms can be trivially
adapted to compute explanations for explaining only the validity (but not optimality) of
both classical and hybrid plans, which we will describe in Section 6.2.

Our core algorithmic engine is Algorithm 1, which is a general search algorithm that
searches through the space of explanations in a best-first manner to find one that is optimal
with respect to a given cost function. It takes as inputs two knowledge bases KBa and KBh
of a logic L, two formulae ϕs and ϕc, and a cost function CL. The algorithm will output an
explanation ε such that when it is used to update KBh to K̂B

ε

h according to Definition 4, the

resulting updated knowledge base will credulously entail ϕc (i.e., K̂B
ε

h|=c
Lϕc) and skeptically

entail ϕs (i.e., K̂B
ε

h|=s
Lϕs).

1492



A Logic-Based Explanation Generation Framework for Planning Problems

The algorithm makes three assumptions: (1) First, it assumes that KBa and KBh
encode the version of the same planning problem of the planning agent and human user,
respectively. (2) It assumes that KBa is correct and complete,12 and only KBh can contain
errors or omissions. (3) It assumes that KBa|=c

Lϕc and KBa|=s
Lϕs. The first assumption

is reasonable and follows closely the definition of a model reconciliation planning problem
(see Section 2 and 3.4). The last two assumptions stem from the fact that the explaining
agent bases its explanations on the view (or model) of the specific problem (Miller, 2018).
Therefore, the agent should believe that its model KBa is correct and complete, and that
its model correctly and appropriately entails the queries ϕc and ϕs. Together, these three
assumptions imply that each erroneous formula in KBh will have a corresponding correct
formula in KBa, or, more formally:

Definition 11 (Corresponding Formula) Given two knowledge bases KBa and KBh,
where each knowledge base encodes the same planning problem Π, a formula ϕh in KBh
has a corresponding formula ϕa in KBa if both formulae characterize the same action (or
state) axiom of Π.

This is an important property that our algorithm, which we will explain later, will exploit
to improve efficiency.

Finally, our algorithm also relies on the existence of an algorithm for checking credulous
and skeptical entailment between knowledge bases and formulae (Line 1). For example,
one can use the DPLL algorithm for the SAT encoding for classical planning. If KBh
already credulously entail ϕc and skeptically entail ϕs, then there is no need to compute
an explanation (Lines 1-2). Otherwise, it goes into a search for an explanation, which is
described below.

The key data structures in the algorithm is a priority queue q, initialized to only include
the empty set, of potential explanations ordered by their costs (Line 4) and a set checked of
invalid explanations that have been considered thus far (Line 5). The algorithm repeatedly
loops the following steps:

• Move the explanation ε with the smallest cost from the priority queue q to checked
(Lines 7-8).

• Create a copy of KBh updated with ε according to Definition 4 (Line 9).

• Check if the copy K̂B
ε

h credulously entails ϕc and skeptically entails ϕs. If so, return the
explanation ε (Lines 10-11).

• If not, extend the explanation by 1 (with each formula from KBa \ KBh) and insert
the extended explanations into the priority queue q (Lines 12-16). Only the formulae in
KBa \ (KBh∩KBa) are considered since formulae that are already in KBh will not help
in the entailment process.

This search process continues until an explanation is found. It is impossible to exhaust all
potential explanations and not find a valid explanation. The reason is that, in the worst
case, the entire KBa will serve as an explanation since KBa credulously and skeptically
entail ϕc and ϕs, respectively.

12. By complete we mean that the KB encodes the the full planning problem as specified in the PDDL
domain.

1493



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

Algorithm 1: most-preferred(L,KBa,KBh, ϕs, ϕc, CL)

Input: Logic L, KBs KBa and KBh, formulae ϕs and ϕc, cost function CL
Output: A most-preferred explanation w.r.t. CL from KBa to KBh to skeptically entail

ϕs and credulously entail ϕc
1 if KBh|=c

Lϕc and KBh|=s
Lϕs then

2 return ∅
3 else
4 q = ∅ // priority queue of potential explanations

5 checked = ∅ // a set of sets of elements in KBa considered

6 repeat
7 ε = dequeue(q)
8 insert ε into checked

9 K̂B
ε

h = KBh updated with ε according to Definition 4

10 if K̂B
ε

h|=c
Lϕc and K̂B

ε

h|=s
Lϕs then

11 return ε
12 else
13 for a ∈ KBa \KBh do
14 if ε ∪ {a} 6∈ checked then
15 v = CL(KBh, ε ∪ {a})
16 q = enqueue(ε ∪ {a}) // use v as key

17 until q is empty

Note that this algorithm is defined in terms of logic and is agnostic to the underlying
planning application domain. However, it can be used to find explanations for the MRP
problem in explainable planning by setting ϕc = π∗ ∧ gn to the optimal plan π∗ of length n
that needs to be explained and that the goal state is achieved at time step n; and by setting
ϕs =

∧n−1
t=0 ¬gt to the negation of the goal being reached at all time steps before time step

n. Then, the algorithm will return a most-preferred explanation, with respect to CL, that
explains that the plan π∗ is both valid and optimal.

Constructing the Search Space: Finally, we would like to emphasize on a strategy
that can be employed in Algorithm 1 to speed up its search procedure. Notice that the
formulae in an encoded knowledge base are often repeated across all time steps (see Sec-
tion 3.2.1). For instance, consider the example in Section 5. The preconditon (= fuel full)
of the action gen on in KBa is repeated across time steps i = 0, 1, e.g., {gen on0 →
fuel full0, gen on1 → fuel full1} ∈ KBa. It is straightforward to see that if the knowledge
base is encoded at a larger horizon, the search space of the algorithm (i.e., KBa \ KBh,
Line 13) will increase in size analogously. However, as the same phenomena should hold
across all time steps in a knowledge base encoding a given planning problem, a reason-
able and intuitive strategy would be to construct the search space by aggregating the for-
mulae with respect to the time steps, akin to the lifted representation of action dynam-
ics in a PDDL domain. Specifically, the search space can now consist of macro-formulae,

1494



A Logic-Based Explanation Generation Framework for Planning Problems

e.g., Pre(gen on, fuel full) = {gen on0 → fuel full0, gen on1 → fuel full1}, instead of
formulae representing the same action dynamic at each time step.13

6.1 Pre-Processing Approximation Algorithm

While Algorithm 1 can compute a most-preferred explanation, it is straightforward to see
that the complexity of the problem is at least NP-hard since finding a most-preferred ex-
planation is a combinatorial problem. As the intended use of the algorithm is to provide
an explanation that a particular optimal plan π∗ is both valid and optimal, we now exploit
this assumption and introduce a pre-processing algorithm that can be used to modify KBh.
At a high level, this algorithmic approach can be thought of as “reforming” the knowledge
base of the human user in order to make the agent’s plan valid.

Before describing the algorithm, we make an observation that there exists only a single
model in a knowledge base that is encoding classical and hybrid planning problems that is
consistent with a plan π∗ of the problem.

We formalize this as Proposition 1 below.

Proposition 1 Given a plan π∗ and a knowledge base KBa encoding the classical or hy-
brid planning problem, there exists only a single model in KBa that is consistent with π∗,
i.e., |ACCL(KBa ∧ π∗)| = 1.

Proof. First, observe that both classical and hybrid planning problems are deterministic
planning problems without parallel action execution.

Consequently, for classical planning problems, the transition between states is encoded
by the frame axioms, which enforce that a state literal becomes True (resp. False) if
and only if it was an addition (resp. deletion) effect of an action. The same reasoning
can be extended to hybrid planning problems, where state transitions are described by
happenings, which encode the causal chain of events, processes and instantaneous actions.
Further, due to the action exclusions axioms, only one action can be True at each time
step, and hence only the action literals supported by π∗ can yield an assignment of True.
Therefore, it follows logically that there exists only one model consistent with the plan π∗,
i.e., |ACCL(KBa ∧ π∗)| = 1. �

Using Proposition 1, one can then generalize that the formulae in KBh that are false
according to this model must be erroneous with respect to KBa. A trivial approach would
be to replace these formulae with their corresponding (correct) formulae from KBa (see
Definition 11) before running Algorithm 1 with this modified KBh instead of the original
KBh as the input. The (correct) formulae from KBa as well as the output from Algorithm 1
would then serve as the explanation to KBh.

However, it is important to note that not all formulae need to be corrected in order for
KBh to credulously entail an optimal plan π∗ of length n that reaches the goal at time step n
and skeptically entail that the goal cannot be reached before time step n. For example, there
may be actions that are not used in the optimal plan with wrong preconditions or effects
that need not be corrected. Therefore, we only use a partial model – we only extract the

13. This simple idea can be used during the encoding of a planning problem into a logical knowledge base,
i.e., by creating a hash table mapping macro-formulae to the associated (repeated) formulae.

1495



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

Function 1: extract-partial-model(L,KBa, π
∗)

Input: Logic L, KBa, and optimal plan π∗

Output: Partial model from KBa w.r.t. π∗

18 µ = ∅
19 M = get-SAT-model(KBa)
20 Λ = extract-relevant-literals(KBa, π

∗)
21 for (l, t) ∈M do
22 if l ∈ Λ then
23 µ = µ ∪ {(l, t)}

24 return µ

Algorithm 2: pre-processing(L,KBa,KBh, π
∗)

Input: Logic L, KBs KBa and KBh, and optimal plan π∗

Output: Approximated explanations from KBa to KBh
25 ε = ∅
26 M = extract-partial-model(L,KBa, π

∗)
27 for kh ∈ KBh do
28 if ¬evaluate(L,M, kh) then
29 ε = ε ∪ corresponding formula from KBa

30 return ε

truth value assignments for literals that are directly needed for the optimal plan π∗, i.e., the
literals corresponding to the initial and goal states, to the states that are in the precondition
of any action in the plan as well as the literals corresponding to all the actions in KBa. We
call this the relevant literals with respect to π∗. States that are not preconditions of actions
in the plan are not extracted. Function 1 describes the pseudocode of this procedure. First,
it initializes the partial model µ as an empty set (Line 18) and extracts the satisfying model
M from KBa that credulously entails the optimal plan π∗ of length n and that the goal
state is reached only at time step n and not before, where each element of M is a tuple
consisting of a literal and its respective truth value (Line 19). Then, it extracts the relevant
literals Λ with respect to π∗ (Line 20) before it loops through all elements (l, t) in M and
adds them to partial model µ if the literal l is a relevant literal (Lines 21-23). Finally, the
partial model µ is returned after the loop (Line 24).

It is straightforward to see how this can help speed up the search in Algorithm 1. The
pre-processing step will increase the number of formulae that are in both KBs. Conse-
quently, since the search space of Algorithm 1 is the power set of formulae in KBa that
are not in KBh (see Line 13), our pre-processing step will reduce the search space and
runtime of the algorithm. Finally, as long as atomic explanations are formulae in KBa,
the pre-processing step will provide approximated explanations, that is, the formulae that
are replaced approximate the formulae that are needed for the entailment of the optimal
plan. As this method may yield superfluous information, in so far as the explanations may
contain formulae not needed for the entailment of the plan, we frame this method as an
approximation technique.

1496



A Logic-Based Explanation Generation Framework for Planning Problems

Algorithm 2 describes the pseudocode for this pre-processing algorithm.
First, it initializes its set of explanations ε as an empty set (Line 25) and extracts a

partial model of KBa that credulously entails the optimal plan π∗ of length n and that the
goal state is reached only at time step n and not before (Line 26). Then, the algorithm
loops through all formulae of KBh (Line 27) and checks if each formula evaluates to false
according to the partial model (Line 28). If it is false, then that formula is replaced with the
corresponding formula from KBa and it is added to the explanation set ε (Line 29). The
set of approximated explanations is returned after the whole loop (Line 30). To illustrate
the utility of this procedure, consider the following example.

Example 3 Assume a version of the Generator domain that consists of two actions
gen on = {precondition: fuel full, effect: gen running} and gen on alt = {precondition:
fuel mid, effect: gen running} with initial and goal states fuel full and gen running,
respectively, and a plan π∗ = [gen on]. Also, assume that the human user is not aware that
action gen on has effect gen running. Then, the knowledge bases encoding the models of
the agent and the human are respectively:

KBa = [fuel full0,¬fuel mid0,¬gen running0, gen running1, (64)

gen on0 → fuel full0, gen on0 → gen running1, (65)

gen on alt0 → fuel mid0, gen on alt0 → gen running1, (66)

¬gen running0 ∧ gen running1 → gen on0 ∨ gen on alt0, (67)

¬gen on0 ∨ ¬gen on alt0] (68)

KBh = [fuel full0,¬fuel mid0,¬gen running0, gen running1, (69)

gen on0 → fuel full0, gen on alt0 → fuel mid0, (70)

gen on alt0 → gen running1, (71)

¬gen running0 ∧ gen running1 → gen on alt0,¬gen on0 ∨ ¬gen on alt0] (72)

Now, the partial model we extract from KBa with respect to π∗ is:

M = {fuel full0 = T, fuel mid0 = F, gen running0 = F, gen on0 = T, (73)

gen on alt0 = F, gen running1 = T} (74)

Then, we can see that according to M , the formula ¬gen running0 ∧ gen running1 →
gen on alt0 from KBh evaluates to false. As such, it would be replaced by the corresponding
formula from KBa, namely ¬gen running0 ∧ gen running1 → gen on0 ∨ gen on alt0.

Algorithm 3 describes the complete algorithm that uses Algorithm 2 as a pre-processing
step. After running the pre-processing algorithm and getting the preliminary set of approx-
imated explanations ε (Line 32), it creates a copy K̂Bh with formulae corresponding to ε
replaced with ε (Line 33). Then, it runs Algorithm 1 to find the remaining set of explana-
tions ε′ (Line 34) and returns the union of those both sets (Line 35). The key observation

here is that the input to Algorithm 1 is K̂Bh and not KBh. Since K̂Bh is more similar to

1497



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

Algorithm 3: approximate(L,KBa,KBh, π
∗, CL)

Input: Logic L, KBs KBa and KBh, plan π∗ with length n, cost-function CL
Output: Explanation from KBa to KBh to credulously entail π∗ and the goal state is

reached at time step n, and skeptically entail that the goal state is not reachable
before time step n

31 φ =
∧n−1
t=0 ¬gt

32 ε = pre-processing(L,KBa,KBh, π
∗)

33 K̂Bh = KBh with formulae corresponding to ε (if any) replaced with ε

34 ε′ = most-preferred(L,KBa, K̂Bh, φ, π
∗ ∧ gn, CL)

35 return ε ∪ ε′

KBa, the search space of Algorithm 1 will be smaller and it is thus more efficient. It is im-
portant to emphasize again that this an approximation technique for finding most-preferred
explanations of minimal cardinality.

6.2 Modifications for Plan Validity Explanations

Recall that the algorithms described above compute explanations for explaining both the
validity and optimality of classical plans to users. However, they can be easily adapted to
compute explanations for explaining only the validity (but not optimality) of both classical
and hybrid plans. Specifically, the changes are the following:

• For Algorithm 1, one needs to only omit ϕs from the pseudocode. Specifically, ϕs need
not be passed in as an argument, and the checks on Lines 1 and 10 need to be changed
to only check for the credulous entailment of ϕc.

• For Algorithm 2, no changes are necessary, except that the input plan π∗ corresponds to
the plan whose validity needs to be explained. It does not have to be an optimal plan.

• For Algorithm 3, similar to the case above, the input plan π∗ corresponds to the plan
whose validity needs to be explained. Additionally, φ need not be passed in as an argu-
ment on Line 34 and, consequently, Line 31 can be omitted.

7. Experimental Evaluation

We now describe the empirical evaluations of our algorithms for finding explanations on
classical and hybrid planning problems, encoded as SAT and SMT problems, respectively.

Setup and Prototype Implementation: We ran our experiments on a Macbook Pro
comprising an Intel Core i7 2.6GHz processor with 16GB of memory. We implemented our
algorithms in Python and integrated the well known z3 solver (De Moura & Bjørner, 2008)
for satisfiability and entailment checking, which was accessed through the PyZ3 frame-
work.14 The knowledge bases representing the planning problems were each encoded up to
the time step that the optimal (or valid) plan was found. To encode the knowledge bases
for classical planning problems, we used our own implementation of the encoding by Kautz
et al. (1996), whereas for hybrid planning problems we used the encoding provided in
SMTPlan (Cashmore et al., 2016). Further, note that each knowledge base was encoded

14. https://github.com/Z3Prover/z3.

1498



A Logic-Based Explanation Generation Framework for Planning Problems

as a hash table (see Footnote 13). The time limit for all experiments was set to 1500s. We
have also made our source code available in a publicly-accessible repository.15

Our empirical evaluations were tailored around the following three questions:

• Question 1: What is the advantage of using the pre-processing method described in
Section 6.1?

• Question 2: What is the efficacy of our algorithms on classical planning problems?

• Question 3: What is the efficacy of our algorithms on hybrid planning problems?

7.1 Question 1: Advantage of Pre-Processing Approach

With this question, we wanted to examine if there is any advantage in using the pre-
processing approach introduced in Section 6.1 for finding most-preferred explanations. To
do this, we evaluated Algorithm 1 (referred to as alg1), which does not use the pre-
processing method, and Algorithm 3 (referred to as alg3), which does use the method,
to find most-preferred explanations for plan validity and optimality on classical planning
benchmarks from the International Planning Competition (IPC).16 We used the explanation
length |ε| as the cost function of the algorithms and incorporated the knowledge base update
on Line 9 in Algorithm 1 by using a simple linear search algorithm (See Appendix C for
more details).

We used the actual IPC instances as the model of the agent (i.e., KBa), and tweaked
that model and assigned it to be the model of the human user (i.e., KBh). In order to make
a more comprehensive analysis, we considered five different ways to tweak the models,
resulting in the following five scenarios.

• Scenario 1: We removed one random precondition from every action in the human’s
model.

• Scenario 2: We removed one random effect from every action in the human’s model.

• Scenario 3: We removed one random precondition and one random effect from every
action in the human’s model.

• Scenario 4: We removed (on average) fifteen random preconditions and effects from
every action in the human’s model.

• Scenario 5: We removed (on average) ten random predicates from the initial states in
the human’s model.

Table 1 tabulates the length of the explanations |ε| and the runtimes of the two algo-
rithms as well as a third algorithm called cszk, which we will describe in the next section.
We will focus on the comparisons between alg1 and alg3 in this section.

Notice that alg1 and alg3 yielded comparable runtimes in most instances of Scenar-
ios 1 and 2. This is due to the fact that the tweaked KBh produced from those scenarios
is consistent with all candidate explanations from KBa \ KBh (i.e., the search space of
potential explanations). In other words, there is no need to restore the consistency of KBh
during an update with a candidate explanation. In that case, alg1 and alg3 are virtu-

15. https://github.com/YODA-Lab/Explanation-Generation-for-Planning-Problems.
16. https://github.com/potassco/pddl-instances.

1499



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

Prob.
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

|ε| cszk alg1 alg3 |ε| cszk alg1 alg3 |ε| cszk alg1 alg3 |ε| cszk alg1 alg3 |ε| cszk alg1 alg3
B
l
o
c
k
s-

w
o
r
l
d

4 1 0.5s 2.5s 3.0s 2 0.5s 1.0s 0.7s 3 2.0s 3.0s 1.5s 3 32.0s 29.0s 16.0s 2 – 1.5s 0.7s
5 2 2.5s 8.0s 8.5s 3 2.0s 4.0s 2.5s 5 17.0s 6.0s 6.0s 7 – – 194.0s 4 – 4.0s 2.0s
6 1 1.0s 25.0s 25.0s 2 0.5s 5.5s 5.5s 3 3.0s 6.0s 6.0s 4 213.0s – 120.0s 5 – 8.0s 5.0s
8 3 62.0s 296.5s 297.0s 3 1.0s 30.0s 29.5s 6 869.0s 101.0s 30.0s 7 – – 203.0s 5 – 40.0s 27.0s

E
l
e
v
-

a
t
o
r

1 1 0.5s 0.1s 0.1s 2 1.0s 1.5.s 0.1s 2 0.5s 1.0s 0.1s 2 1.0s 5.0s 0.1s 1 – 0.1s 0.1s
10 2 1.5s 0.8s 0.7s 2 0.5s 1.0s 0.5s 3 3.0s 2.5s 0.4s 4 57.0s 30.0s 2.5s 6 – 5.0s 0.2s
15 2 1.5s 2.5s 3.0s 2 1.0s 15.0s 13.0s 3 3.0s 10.0s 2.0s 4 57.0s 61.0s 10.0s 6 – 14.0s 1.2s
19 2 2.0s 7.5s 8.0s 2 0.5s 25.0s 25.0s 3 2.5s 50.0s 10.0s 4 49.0s 123.0s 20.0s 14 – 40.0s 5.0s

R
o
v
e
r 1 1 0.5s 6.5s 6.0s 2 0.5s 10.0s 7.0s 4 33.0s 10.0s 5.0s 6 – 29.0s 5.0s 4 – 1.5 1.5s

2 1 1.0s 4.0s 4.0s 1 0.5s 12.0s 4.0s 4 39.0s 6.0s 4.5s 6 – 125.0s 4.5s 4 – 2.0s 1.3s
3 1 0.5s 7.5s 7.0s 2 0.5s 22.0s 7.5s 4 35.0s 16.0s 7.0s 6 – 173.0s 10.0s 6 – 2.0s 1.5s
4 1 0.5s 4.0s 4.0s 1 0.5s 4.0s 4.0s 2 1.5s 4.5s 4.5s 4 – 33.0s 4.5s 10 – 15.0s 5.5s

G
r
ip
p
e
r 1 1 0.5s 2.0s 1.5s 2 0.3s 3.0s 3.0s 3 1.5s 41.0s 40.0s 5 70.0s 201.0s 45.0s 4 – 3.0s 2.0s

2 1 0.5s 5.0s 5.0s 2 0.8s 19.0s 7.0s 3 2.0s 122.0s 45.0s 5 73.0s 349.0s 49.0s 5 – 15.0s 6.0s
3 1 0.7s 5.5s 5.0s 2 1.0s 22.0s 7.0s 3 2.5s 46.0s 45.0s 5 163.0s 555.0s 60.0s 8 – 20.0s 15.0s
4 1 1.5s 37.5s 38.0s 2 3.0s 224.0s 50.0s 3 5.0s 149.0s 50.0s 5 – 700.0s 80.0s 11 – 66.0 28.0s

H
a
n
o
i 1 1 0.3s 0.5s 0.5s 1 0.2s 0.1s 0.1s 1 0.3s 0.5s 0.1s 1 0.2s 0.1s 0.1s 4 – 0.1s 0.1s

2 1 0.3s 0.5s 0.5s 1 0.3s 2.0s 2.0s 1 0.3s 5.5s 1.5s 5 7.0s 13.0s 3.0s 6 – 2.5s 0.3s
3 1 0.3s 3.5s 3.0s 1 0.4s 7.0s 4.0s 2 0.4s 11.5s 1.5s 6 10.0s 31.0s 14.0s 8 – 6.0s 1.5s
4 1 0.3s 19.5s 20.0s 1 0.3s 21.0s 20.0s 2 0.4s 44.0s 15.0s 6 10.0s 230.0s 30.0s 10 – 30.0s 10.0s

T
P
P

1 1 0.7s 0.5s 0.5s 2 0.2s 0.1s 0.1s 6 23.0s 30.0s 3.5s 11 – 100.0s 20.0s 2 – 0.1s 0.1s
2 1 0.7s 0.5s 0.5s 2 0.3s 3.0s 2.0s 6 24.0s 45.0s 5.5s 11 – 404.0s 27.0s 4 – 3.0s 0.3s
3 1 0.7s 3.5s 3.0s 2 0.4s 11.0s 4.0s 6 25.5s 95.0s 7.0s 11 – 1200.s 70.0s 6 – 9.0s 1.0s
4 1 0.7s 21.0s 20.0s 2 0.3s 71.0s 20.0s 6 25.0s 124.0s 15.0s 11 – – 111.0s 8 – 22.0s 8.0s

D
r
iv
e
r

L
o
g

1 1 1.0s 2.0s 2.0s 4 2.5s 2.0s 1.5s 2 2.5s 11.0s 4.0s 5 – 66.0s 6.0s 3 – 5.0s 2.0s
2 2 24.0s 14.0s 13.0s 5 5.0s 7.5s 7.0s 4 – 239.0s 63.0s 7 – – 90.0s 5 – 14.0s 5.0s
3 2 5.0s 10.0s 10.0s 3 0.5s 11.0s 11.0s 5 – 481.0s 70.0s 6 – – 120.0s 7 – 19.0s 9.5s
4 2 7.0s 11.0s 11.5s 5 4.0s 13.0s 12.5s 5 – 355.0s 55.0s 9 – – 237.0s 9 – 41.0s 22.5s

L
o
g
i-

is
t
ic
s

1 2 1.5s 2.0s 2.0s 3 1.0s 4.0s 2.5s 4 30.0s 15.0s 5.0s 4 168.0s 250.0s 12.5s 2 – 1.5s 1.5s
2 2 2.0s 3.0s 2.0s 3 1.5s 2.0s 2.0s 4 29.0s 5.5s 5.5s 4 169.5s 240.5s 13.0s 3 – 3.5s 1.5s
3 2 2.0s 2.5s 2.5s 3 1.0s 2.5s 2.0s 4 31.0s 5.5s 5.5s 4 167.0s 400.0s 13.0s 4 – 5.0s 2.0s
4 2 2.0s 2.5s 2.0s 3 0.9s 4.0s 3.0s 4 30.0s 28.0s 6.0s 4 168.5s 103.0s 12.5s 5 – 12.0s 2.0s

Z
e
n
o

T
r
a
v
e
l 1 1 0.5s 0.8s 0.7s 1 0.5s 0.5s 0.5s 1 0.5s 1.0s 0.5s 1 0.3s 3.0s 0.4s 3 – 0.5s 0.5s

2 4 10.0s 5.0s 5.0s 1 0.8s 0.5s 0.5s 4 40.0s 12.0s 5.5s 5 – 60.0s 10.0s 5 – 4.0s 2.0s
3 3 8.5s 5.0s 4.5s 3 1.0s 0.5s 0.5s 5 30.5s 45.0s 5.0s 6 – 100.0s 20.0s 7 – 13.0s 3.0s
4 3 10.0s 5.0s 5.0s 3 1.5s 1.0s 0.7s 5 31.0s 50.0s 6.0s 6 – 633.0s 50.0s 9 – 25.0s 4.5s

S
t
o
r
a
g
e 1 1 0.5s 0.5s 0.3s 1 0.3s 1.0s 0.5s 2 0.5s 0.5s 0.3s 3 647.0s 450.0s 10.0s 2 – 0.5s 0.2s

2 1 0.5s 0.5s 0.3s 1 0.5s 0.5s 0.4s 3 4.0s 14.0s 5.0s 5 – 400.0s 11.5s 4 – 3.0s 0.6s
3 1 0.7s 0.5s 0.3s 1 0.5s 0.5s 0.6s 3 5.0s 25.0s 5.0s 4 – 504.0s 21.0s 6 – 22.0s 1.5s
4 5 11.0s 12.0s 12.0s 4 4.0s 22.0s 10.0s 6 41.0s 222.0s 51.0s 4 – 823.0s 46.0s 8 – 41.0s 5.0s

Table 1: Evaluation of alg1, alg3 and cszk on Varying PDDL Domain and Scenario.

ally similar, as they both follow the same general search procedure.17 Nevertheless, the
difference in runtime becomes quite substantial in Scenarios 3, 4, and 5, highlighting the
strength of the pre-processing approach. In fact, these are scenarios in which the tweaked
KBh is either inconsistent (i.e., there is no valid plan in KBh) or becomes inconsistent
with potential explanations from KBa. There are two main reasons as to why alg3 out-
performed alg1 in those scenarios. First, the search space of alg3 may be smaller than
that of alg1 as alg3 employs the pre-processing technique before forming the search space
of potential explanations. Furthermore, alg1 may need to restore the consistency of KBh
multiple times throughout its execution, in the worst case with each potential explanation,
which consequently may increase the total runtime of the algorithm. Note that alg1 per-
forms an uninformed search over what formulae to remove when updating KBh with each

17. Recall that the main advantage of alg3 is the ability to identify (and replace) formulae in KBh that
evaluate to false with respect to KBa’s partial model.

1500



A Logic-Based Explanation Generation Framework for Planning Problems

Optimal Explanation Length |ε|
Plan 2 4 6 8 10

Length cszk alg3 cszk alg3 cszk alg3 cszk alg3 cszk alg3

6 0.5s 1.0s 2.0s 0.9s 9.5s 0.8s 300.0s 1.0s 500s 1.0s
10 0.5s 3.0s 2.5s 2.5s 9.5s 3.0s 300.0s 3.5s 500s 2.5s
12 0.5s 4.5s 2.0s 5.0s 9.0s 6.5s 305.0s 4.5s 505s 7.0s
16 1.0s 28.0s 2.0s 27.0s 10.0s 26.0s 309.0s 27.0s 502s 31.0s
26 1.0s 70.0s 8.0s 75.0s 20.0s 73.0s 312.5s 80.0s – 85.0s

Table 2: Varying Explanation and Plan Lengths for the Blocksworld PDDL Domain.

# of Invalid Shorter-than-Optimal Plans
Prob. 2 4 6 8 10

|ε| cszk alg3 |ε| cszk alg3 |ε| cszk alg3 |ε| cszk alg3 |ε| cszk alg3

1 2 2.5s 0.2s 4 50.0s 1.0s 6 1231.0s 11.0s 8 – 104.0s 10 – 840.5s
2 2 3.0s 0.5s 4 57.0s 1.0s 6 1225.0s 12.5s 8 – 105.5s 10 – 842.0s
3 2 3.0s 2.0s 4 62.0s 2.5s 6 1240.0s 11.0s 8 – 107.0s 10 – 845.0s
4 2 2.5s 3.0s 4 60.0s 1.5s 6 1235.0s 13.0s 8 – 111.0s 10 – 850.0s

Table 3: Varying Invalid Shorter-than-Optimal Plans.

potential explanation (see Appendix C). In contrast, the pre-processing technique of alg3
guarantees that KBh will be consistent with all potential explanations by performing an
informed search over what formulae to remove (i.e., it removes only the necessary set of
formulae that evaluate to false with respect to the partial model of KBa). In conclusion,
these results shows that there is a clear advantage in employing the pre-processing approach
for finding most-preferred explanations within our framework, especially for problems where
the consistency of KBh needs to be restored during an update.

7.2 Question 2: Efficacy on Classical Planning Problems

This question concerns how well our algorithms perform on classical planning problems. To
address this, we compared our algorithms against the current planning-based state-of-the-
art algorithm by Chakraborti et al. (2017), referred to as cszk – the initials of the last names
of the authors.18 In what follows, we will only discuss the results of our best performing
algorithm alg3 and cszk.

Table 1 tabulates the length of the explanations |ε| as well as the runtimes of the algo-
rithms. In general, cszk outperformed alg3 in a majority of cases, except for Scenarios 3
and 4 in all domains. These cases also happen to be the cases where the explanation
length |ε| is larger. We did not report runtimes of cszk for Scenario 5 as the available
implementation could not handle that scenario.

To verify if such correlations exist, we conducted an additional experiment where we
varied the explanation length |ε| as well as the optimal plan length in the Blocksworld
domain. Table 2 tabulates the results. It shows a clear trend that the runtimes of cszk
increases as the explanation lengths increase. The reason is that cszk needs to search over a
larger search space as the explanation length increases. As such, its runtime also increases.

18. We used the implementation of the authors, which is publicly available at https://github.com/
TathagataChakraborti/mmp.

1501



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

In contrast, the runtimes of alg3 remain relatively unchanged with varying explanation
lengths. The reason is that the runtimes of alg3 are dominated by the size of the encoded
knowledge bases, which are independent of the explanation lengths.

The results also show that the runtimes of cszk remain relatively unchanged with vary-
ing optimal plan lengths. The reason is that the runtimes of cszk are dominated by its
search for explanations. cszk runs an A* search over the explanation search space and as
long as the explanation length remains unchanged, the runtime complexity of the search,
which is exponential in the explanation length, remains relatively unchanged as well. How-
ever, the runtimes of alg3 increase as the optimal plan lengths increase. We attribute this
to the following two reasons. First, longer plans means that there are more combinations of
actions to consider in the explanation search space, consequently increasing the runtime of
the algorithm. Additionally, the size of the knowledge bases increases as the plan length in-
creases. Thus, there is an increasing number of formulae, which likely results in an increase
in the runtime of the underlying SAT solver.

Upon closer inspection of the instances generated the experiments thus far, we observed
that in almost all of these instances, the shortest plan in the human’s model is at least
as long as the optimal plan in the agent’s model. Therefore, the experiments thus far were
strongly biased in favor of explanations for plan validity instead of plan optimality. We thus
conducted an additional experiment where we varied the number of invalid shorter-than-
optimal plans in the human’s model. These plans are invalid because they are comprised of
some actions with wrong or missing preconditions and/or effects and these actions enable
the goal state to be reached earlier than using a plan that is optimal in the agent’s model.
Table 3 tabulates the results. As expected, the results show that the runtime of both cszk
and alg3 increases as the number of invalid plans increases. However, interestingly, the
runtime of cszk grows faster than that of alg3, and alg3 is up to 2 orders of magnitude
faster than cszk (when there are six invalid plans).

All of these observations result in the following three conclusions that highlight the differ-
ent situations for when one should use one algorithm over the other: (1) alg3 outperforms
cszk when explanations are long, and vice versa when explanations are short; (2) alg3
outperforms cszk when optimal plans are short, and vice versa when the optimal plans are
long; and (3) alg3 outperforms cszk when there are many invalid shorter-than-optimal
plans.

7.3 Question 3: Efficacy on Hybrid Planning Problems

In this final question, we wanted to investigate the generality of our approach on problems
beyond classical planning, particularly on hybrid planning problems. As such, we now
provide results on a number of PDDL+ problems.

Recall that finding optimal hybrid plans is often infeasible, and as such, there is
no SAT/SMT planner that can prove optimality for general PDDL+ problems (see Sec-
tion 3.3.1). Therefore, it is not feasible to find optimal plans to explain in our experiments.
However, given that optimality cannot be guaranteed, a user may have doubts about the
validity of a plan (i.e., whether the plan is sound and can be executed to achieve the goal).
Thus, we limited ourselves to experiments for plan validity only.

1502



A Logic-Based Explanation Generation Framework for Planning Problems

Prob.
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8
|ε| alg3 |ε| alg3 |ε| alg3 |ε| alg3 |ε| alg3 |ε| alg3 |ε| alg3 |ε| alg3

l
in
e
a
r

g
e
n
e
r
. 1 0 0.1s 2 0.1s 2 0.2s 1 0.1s 2 0.1s 1 0.1s 3 0.2s 0 –

3 0 0.1s 2 0.2s 2 0.8s 1 0.2s 2 0.2s 1 0.1s 3 0.8s 0 –
5 0 0.2s 2 0.2s 2 2.0s 1 0.4s 2 0.4s 1 0.3s 3 3.0s 0 –
7 0 0.3s 2 0.5s 2 4.0s 1 1.0s 2 0.6s 1 0.5s 3 14.0s 0 –

T
o
r
i-

c
e
l
l
i

1 1 0.2s 2 0.3s 2 0.4s 3 0.6s 4 0.2s 2 0.2s 4 0.2s 0 –
2 1 0.4s 2 1.3s 2 2.0s 3 1.1s 5 0.9s 2 0.4s 4 0.7s 0 –
3 1 0.5s 2 5.0s 2 11.0s 3 2.8s 7 3.6s 2 0.5s 4 2.0s 0 –
4 1 1.0s 2 16.0s 2 38.0s 3 5.8s 5 1.1s 2 1.0s 4 4.0s 0 –

g
e
n
e
r
.

e
v
e
n
t
s 1 1 0.2s 2 0.2s 3 2.5s 3 0.2s 2 0.2s 1 0.1s 4 0.2s 1 0.2s

2 1 0.3s 2 0.5s 3 5.0s 3 0.5s 3 0.2s 2 0.7s 5 0.7s 2 0.4s
3 2 0.8s 2 1.3s 3 10.0s 3 1.5s 4 0.7s 2 0.6s 5 2.0s 2 1.5s
4 1 1.3s 2 2.0s 3 26.0s 3 2.5s 6 0.9s 1 1.0s 4 4.5s 3 4.5s

C
a
r

n
o

d
r
a
g 1 2 0.2s 1 0.3s 3 0.3s 3 0.3s 2 0.2s 1 0.4s 3 0.4s 2 0.5s

2 2 0.2s 1 0.2s 2 0.4s 3 0.3s 3 0.3s 2 0.5s 3 0.3s 2 0.4s
3 2 0.3s 1 0.3s 2 0.2s 3 0.4s 1 0.1s 2 0.3s 3 0.4s 1 0.6s
4 2 0.2s 1 0.2s 3 0.3s 3 0.3s 2 0.2s 1 0.2s 4 0.3s 1 1.0s

n
o
n
l
in
.

g
e
n
e
r

1 1 0.2s 2 0.1s 2 0.3s 1 0.2s 2 0.1s 1 0.1s 3 0.2s 0 –
2 1 0.2s 2 0.2s 1 0.5s 1 0.4s 2 0.2s 1 0.2s 3 0.7s 0 –
3 1 0.3s 2 0.2s 2 1.0s 1 0.3s 2 0.3s 1 0.4s 3 2.0s 0 –
4 1 1.2s 2 0.5s 2 5.0s 1 0.5s 2 0.5s 1 0.5s 3 5.5s 0 –

S
o
l
a
r

R
o
v
e
r 1 1 0.5s 1 0.4s 2 0.4s 3 0.7s 2 0.2s 1 0.1s 3 0.2s 1 0.4s

2 1 0.4s 1 0.5s 1 0.6s 2 1.4s 4 0.2s 1 0.2s 3 0.5s 1 0.4s
3 1 0.8s 1 0.9s 2 1.0s 2 2.0s 6 0.3s 1 0.4s 3 5.0s 1 0.6s
4 1 1.5s 1 2.0s 1 2.0s 3 3.5s 8 0.4s 1 0.5s 5 10.0s 1 1.5.s

p
o
w
e
r
e
d

d
e
sc

e
n
t 1 1 0.2s 1 0.4s 2 0.4s 3 1.0s 2 0.3s 1 0.2s 3 0.8s 1 0.6s

2 1 0.3s 1 0.6s 1 0.5s 2 2.5s 4 0.4s 1 0.1s 3 1.5s 1 0.7s
3 1 0.3s 1 1.0s 2 1.5s 2 3.0s 6 0.3s 1 0.3s 3 3.0s 1 1.0s
4 1 0.7s 1 3.0s 1 3.5s 3 5.5s 8 0.4s 1 0.2s 4 8.0s 1 3.0s

N
o
n
l
in

S
o
l
a
r

R
o
v
e
r

1 1 0.5s 2 0.4s 1 0.6s 3 1.0s 2 0.3s 1 0.3s 3 0.8s 1 0.5s
2 2 1.0s 2 1.0s 2 1.5s 4 3.5s 4 0.4s 2 0.4s 5 1.5s 2 1.5s
3 2 4.0s 3 4.0s 2 2.5s 4 4.0s 6 0.3s 2 0.4s 5 3.0s 2 1.0s
4 3 5.0s 4 4.0s 1 2.0s 6 7.5s 8 0.4s 1 0.3s 4 6.0s 2 1.0s

Table 4: Evaluation of alg3 on Varying PDDL+ Domain and Scenario.

As Algorithm 3, referred to as alg3, was designed to find explanations that explain both
plan validity and optimality, we tweaked it to only check for credulous entailment since that
is sufficient for finding explanations for plan validity (see Section 6.2). We did not compare it
with any other algorithm since to the best of our knowledge existing explanation generation
algorithms are limited to classical planning problems.

Similar to our first experiment for classical planning, we used the actual domain instances
as the model of the agent and tweaked it for the model of the human user. We considered
the same five scenarios earlier as well as the following three additional scenarios:

• Scenario 6: We changed the duration of all the durative actions in the human’s model.

• Scenario 7: We removed (on average) five random preconditions and effects as well as
changed the duration of all durative actions in the human’s model.

• Scenario 8: We removed (on average) two events and processes in the human’s model.

Table 4 tabulates the results. We did not report runtimes for the linear, Toricelli,
and non-linear generator domains for Scenario 8 as these domains do not contain

1503



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

events and/or processes. In general, alg3 was able to maintain small runtimes of less
than 1s in the majority of instances. The reason is that the size of the encoded knowledge
bases are relatively small because SMTPlan uses the iterative encoding facility of the z3
solver. Specifically, the encoding of each layer consists of the following steps: Adding the
new variables and constraints for the next happening, adding the goal constraints to the
new constraint set, pushing the constraint set onto the stack, solving, and popping the goal
constraint set off the stack. As such, at each step in the iterative deepening with z3, only
the latest layer needs to be encoded.

In conclusion, these results demonstrate that our approach can be generalized beyond
classical planning to hybrid planning, improving the applicability of explainable planning
approaches.

8. Proof-of-Concept: Communicating Explanations to Human Users

As noted in Section 1, explanation generation frameworks, especially those targeting human
users, should be able to effectively communicate explanations to them, ideally, in a manner
that minimizes their cognitive effort and maximizes their cognitive effect. In consequence,
this opens up a plethora of research questions one should examine carefully. Among them,
two questions, which we posit are of fundamental consideration, are the following: (Q1) What
form should the explanations take?, and (Q2) What communication medium should be used
to deliver them effectively?

(Q1) Explanation Form: In general, an explanation can take several forms (Hempel &
Oppenheim, 1948; Hempel, 1965; Miller, 2018). Among the most common and intuitive
forms of explanation are: Causal explanation, an explanation in which the explanandum is
derived with deductive arguments (e.g., “All plans reaching state S solve the problem; this
plan reached state S; therefore, this plan solves the problem”); Statistical explanation, an
explanation subsuming the explanandum under a generalization in order to give it inductive
support (e.g., “Most invalid plans have at least one action with an unsatisfied precondition;
this plan is invalid; therefore, this plan has at least one action with an unsatisfied precondi-
tion”); and Social explanation, an explanation that models the expectations of the explainee
(e.g., “This plan is invalid because you are missing this precondition”). As one can see, the
latter form refers to, in essence, the model reconciliation problem that we are tackling in
this paper. In other words, explanations in the form of model reconciliation are social ex-
planations because they explicitly capture the effects of the explainee’s expectations in the
explanation generation process (of the agent).19

Within the context of explainable AI planning, explanations as model reconciliation
can be further categorized according to two properties: Selective, in being able to select
explanations from a pool of competing hypotheses; and Contrastive, in being able to contrast
and differentiate properties of two competing hypotheses (see work by Sreedharan et al.
(2020) for more.) Nevertheless, irrespective of the underlying properties, explanations in the
form of model reconciliation express discrepancies between the action models of the agent
and the human user, or involve differences in the initial and/or goal state assumptions of

19. As we highlight in Section 2, these explanations received a lot of traction because they are consistent
with the Theory of Mind, a normative theory aimed at describing the operations of the human mind
and behavior in social and collaborative settings.

1504



A Logic-Based Explanation Generation Framework for Planning Problems

the planning problems of the agent and the human user. These discrepancies fall into one
of the following two categories:

• Action-space Information: Given a planning problem Π, and an associated domain
D containing actions A, the action-space information corresponds to information about
each action in D and their corresponding conditions.

• State-space Information: Given a planning problem Π, a plan π, and a sequence
of states S involved in the execution of π, the state-space information corresponds to
information about the predicates in each state in S.

As one may need to convey explanations that contain action-space and state-space
information when explaining a plan, an ideal system for presenting explanations should be
able to convey both types of information to human users.

(Q2) Communication Medium: Communicating information to human users can be
typically achieved through four mediums: Verbal, non-verbal, text-based, and visual. One
of the most common computer interfaces to communicate information is the graphical user
interface, where information is presented graphically through a combination of visualizations
and text (Mandel, 2002). From the perspective of communicating explanations, although
text can be a natural representation for an explanation, when presented alone, it can require
increased cognitive effort and possibly increase the likelihood of misunderstanding the task
especially for novice users. In contrast, a well-established educational principle, called the
multimedia learning principle, posits that humans learn better from visuals and words,
than from words alone (Mayer, 1997). For example, Clark and Mayer (2016) showed that
accompanying text-based instructions with visuals improved students’ performance on a
test by a median amount of 89%. Interestingly, students got around 65% of answers correct
after seeing a combination of text and visuals, compared to less than 40% of answers correct
after reading a text comprised of words alone. Similar results have also been obtained in
object assembly tasks (Brunyé, Taylor, & Rapp, 2008). Thus, there is strong evidence within
the psychology community that the use of visual content has a profound effect on increasing
retention and comprehension when compared to text alone.

Motivated by these findings, we posit that communicating explanations for planning
problems to human users should be done through a combined visual and text-based
medium. Specifically, an ideal explainable AI planning system should be able to ground
the explanations on the visualized action-space and state-space of the given planning prob-
lem (i.e., on the visualized plans of the human users). Being able to visualize the plans of
human users provides a straightforward way for highlighting actions and/or states that are
affected by the agent’s explanation. In other words, the explanation can be mapped onto
the human user’s plan, which could assist human users in understanding why their plans
are not valid (or optimal), and why the agent’s plan is. This method could minimize the
cognitive effort needed to understand an explanation, thus maximizing the explanation’s
cognitive effect.

Visualizing planning problems through the development of user interfaces has received a
lot of attention (Freedman, Chakraborti, Talamadupula, Magazzeni, & Frank, 2018). While
some work aim to show human users the space of alternate plans (Gopalakrishnan & Kamb-
hampati, 2018; Chakraborti, Fadnis, Talamadupula, Dholakia, Srivastava, Kephart, & Bel-
lamy, 2018), others aim to create systems to aid human users in the creation of plans

1505



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

(e.g., Planimation (Chen, Ding, Edwards, Chau, Hou, Johnson, Sharukh Syed, Tang, Wu,
Yan, Gil, & Nir, 2020)) or for assistance with domain modeling (e.g., Conductor (Bryce,
Bonasso, Adil, Bell, & Kortenkamp, 2017)). These kinds of systems are essential steps to-
wards the creation of a unified planning interface, especially when human users are involved
in the loop. Indeed, in the next section, we leverage existing planning visualization work to
construct a system for communicating explanations to human users.

Finally, it is worth noting that there may be cases where one would need to communi-
cate complex explanations to human users, either because they are long, or because they
involve complex information, such as properties of hybrid planning problems. In the former
case, a possible resolution would be to break down the explanation in shorter chunks and
communicate each chunk sequentially, with each chunk that is understood and accepted by
the human user triggering the communication of the next chunk. In contrast, if an expla-
nation includes more complex information, then it may be beneficial to expose it to human
users at different levels of granularity (i.e., by abstracting the information at a level that is
associated with the expertise of the user).20

8.1 User Study

As mentioned in Section 2, there has been some supporting evidence suggesting that ex-
planations in the form of model reconciliation are well understood by human users when
explaining classical plans to them (Chakraborti et al., 2019b; Zahedi et al., 2019). However,
to the best of our knowledge, their applicability to hybrid planning problems has not been
investigated thus far. Therefore, in what follows we present a human user study on a hybrid
planning variant of the Logistics domain (McDermott, 2000), where we use visualizations
and text for presenting explanations to human users.

8.1.1 Study Design

Recall that the model reconciliation problem requires that the explaining agent knows both
its model and the model of the human user receiving the explanation. To enforce this as-
sumption, we used variations of the Logistics domain (McDermott, 2000) as the model of
the explaining agent, tweaked that model, and assigned this tweaked model to participating
human users. To ensure the human users understood their assigned model, we presented it
to them at the start of the study and asked them to create a plan given that model. We
removed participants who created plans inconsistent with the tweaked model provided to
them. Then, human users were provided an explanation in the form of model reconciliation
(e.g., from our algorithms) and were asked to answer a series of questions as well as correct
their plans based on their understanding of the explanation.21 The answers to those ques-
tions as well as the human users’ ability to correct their plans reflect their understanding
of the explanations provided. In this study, we hypothesize that explanations in the form
of model reconciliation are effective for explaining hybrid planning plans to human users.

20. Note that abstracting information is oftentimes domain-dependent, and should thus be considered on a
case-by-case scenario. We demonstrate this in our human user study, where we simplify the presentation
of some information such that the study is accessible to human users with no prior planning knowledge.

21. We used a visualization system (see Section 8.1.3) to help users create the plan as well as understand
the explanation.

1506



A Logic-Based Explanation Generation Framework for Planning Problems

Figure 1: A view of the plan editor for the human user study. (1) Action selection; (2) The
initial and goal states; (3) User’s current plan; (4) Test visualization showing validity of the
plan.

The user study was conducted on the online crowdsourcing platform Prolific (Palan &
Schitter, 2018). We created two tasks for each participant as follows:

• Task 1: For this task, participants were asked to create a (shortest) plan based on the
modified model provided to them using the visualization system coupled with a simple
plan editing interface, as shown in Figure 1.22 This interface also allows users to evaluate
their plans, which can subsequently provide information about any errors in their plans
due to their misunderstanding of the provided information in their models.
A participant succeeds in Task 1 if they create and submit a valid plan given their
model. Participants that succeeded in Task 1 continued to Task 2, and participants that
failed in Task 1 were filtered out and ignored. This is important due to the assumption
(in model reconciliation) that the human user’s model is known a-priori. In addition,
participants whose plans were valid in their model but did not require an explanation
(e.g., their plans were also valid in the agent’s model) were also filtered out.

• Task 2: For this task, we informed the participants that the initial model provided to
them contained errors, and presented an explanation for those errors using visualizations
as well as text. They were then asked a series of questions to evaluate their understanding
of the explanation provided (Task 2a). The exact questions we asked the participants
can be found in Appendix D. Then, they were shown the plan editor again and asked
to correct their plan, this time without the ability to evaluate their plans for correctness

22. To eliminate any learning effects, participants were shown the visualization system in Task 1 to ensure
that they are familiar with the system before receiving an explanation using that interface.

1507



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

Figure 2: The initial state of the modified Logistics problem. The goal is to transport the
package from cityA to cityE. A shortest plan here would have the truck load the package
at cityA and move the truck to cityC to refuel before moving it to (the goal location)
cityE.

(Task 2b). A participant succeeded in Task 2b if their corrected plan was valid in the
agent’s model.

To incentivize participants to provide answers to the best of their ability, we provided
a bonus reward to participants who succeeded in Task 1, and an additional bonus to par-
ticipants who also succeeded in Task 2b. Furthermore, we also included two questions for
attention checks in the study, where participants were asked to type a particular string or
select a particular answer in a multiple choice question. Participants who wrongly answered
both of these questions were filtered out of the study.

Additionally, we performed a control experiment, where participants would receive the
exact same tasks, but in Task 2a and Task 2b, they would not be shown the explanations.
Instead, they are expected to correct their plan with just the knowledge of which actions
were wrong. This allows us to see whether providing the explanation has any benefit, or if
just the knowledge of the wrong actions is enough to help users in correcting the plan.

Finally, each participant had the following interactions in the study: (1) They arrive
at the webpage following the link from Prolific, where they enter their demographics and
some information on their educational background. (2) To ensure that they have the back-
ground necessary to solve the tasks, they are given tutorials on automated planning, the
Logistics domain, and the plan editing interface. (3) Following the tutorials, they are asked
to complete Task 1. (4) If they succeeded in Task 1, they are asked to complete Tasks 2a
and 2b. (5) All participants, including those who failed Task 1, are then asked to provide
feedback on the system’s usability (Holzinger, Carrington, & Müller, 2020) and are informed
of their payments before being redirected back to Prolific.

8.1.2 Domain and Problem

As mentioned, our choice of domain was a variant of the Logistics domain (McDermott,
2000), which we augmented to contain elements of hybrid planning problems. The particular
Logistics problem involves the transportation of packages across cities via trucks. To make
the domain a hybrid planning problem, we included a process by adding a fuel bar to the
truck which is depleted by the execution of the action move-truck, and an event to stall the

1508



A Logic-Based Explanation Generation Framework for Planning Problems

Figure 3: A view of the explanation phase for the modified Logistics problem. We used
a pulsing border on the fuel bar to indicate that the truck has run out of fuel, and thus
stalled. The explanation is also presented in text to the right of the visualization.

truck if it runs out of fuel midway to a city. The truck has a specified fuel consumption rate
in gallons per mile (gal/mi), that is, it burns 2gal/mi. Additionally, we added the action
refuel to refuel the truck, and a predicate is-fuelpump to note locations where the truck
can be refueled. We created a simple problem with five cities and one fuel pump. Figure 2
shows the initial state for this problem. There is one truck available and one package that
needs to be transported to the goal city without stalling the truck.

We considered the following change for the modified model of the human user: We
modified the fuel consumption rate to be 1gal/mi instead of the actual 2gal/mi. This allowed
users to create a shorter plan in the modified domain by directly moving the truck to the
destination instead of going to cityC and refueling. Thus, an explanation is needed to
explain why their plan is invalid, and how to compute a (shortest) valid plan.

8.1.3 Prototype Implementation

Borrowing elements from existing work in plan visualization (Bryce et al., 2017; Mag-
naguagno, Fraga Pereira, Móre, & Meneguzzi, 2020), we created a visualization system,23

that combines the action-space and state-space information of the planning problem and
can visualize plans and their execution as well as present explanations to human users. The
inclusion of the action-space information also conveniently presents a simple way for human
users to select and view different states. Actions whose preconditions are not met in the
human user’s plan are highlighted as red. This helps human users while creating their plan,
ensuring they understand the preconditions specified in the provided model. Moreover, the
state-space shows the “current” state of the world after the execution of the action selected
by the human user in their plan, including information such as the positions of the truck and
package, and the truck’s fuel level. In addition, we used animations showing the movement
of the truck between each city as well as the truck’s fuel consumption.

During the explanation phase (Task 2a), actions are highlighted by using red highlights
to indicate which actions are wrong, with the state-space visualization providing more
details about what exactly went wrong in the human user’s plan. For presenting explanations

23. We created the implementation to run on a web browser, using Flask and Python as back-end, and D3.js
and JavaScript for the front-end.

1509



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

Population Size Comprehension Score Correction Ratio

Main Study 35 6 (out of 8) 91% (32/35)
Control 37 N/A 24% (9/37)

Table 5: Human User Study Results for the Modified Logistics Domains.

within the state-space visualization, we do the following: For each state in the execution
of the plan, starting from the initial state, we display the current state with respect to the
actions that are executed in the human user’s plan, using the agent’s domain. Figure 3
shows the explanation phase.

Note that for the purpose of this study, the text-based explanation (as seen in Figure 3)
was handcrafted. Nonetheless, there may be systematic ways for translating logic-based
explanations from our framework to natural language text. We provide some details in
Appendix D.

8.1.4 Evaluation

The study was conducted with 100 participating users (50 in the main group and 50 in the
control group). All 100 participants have at least some undergraduate education in any
field. Out of all the participants, only data from 72 users was used (35 in the main group
and 37 in the control group), as the rest either failed Task 1 or had created plans that did
not need explanations (e.g., their plans included going to City C to refuel before going to
Cities B and E).

As we mentioned earlier, the goal of this study is to identify if explanations in the form
of model reconciliation can convey to humans the validity of hybrid planning plans. To
evaluate our hypothesis, we used the following measures:

• Comprehension Score: Number of questions users answered correctly in Task 2a.

• Correction Ratio: Proportion of users who succeeded in Task 1 (plan creation phase)
that also succeeded in Task 2b (plan correction phase).

Table 5 summarizes the results of our analysis, where we report the population size and
the two measures used for evaluation. In general, the results seem to suggest that the vast
majority of users in the main study population understood the explanations communicated
to them. In particular, we first scored participants based on the number of correct answers
they gave for the questions asked in Task 2a (comprehension score). With a maximum
possible score of 8, we managed to obtain an overall mean score of 6, which indicates
that the presented explanations had a positive cognitive effect, as most users used the
explanation to reason through the questions and successfully answer most of them. We
then measured how many users were able to accurately correct their plans in Task 2b when
shown the explanation (correction ratio), i.e., the users’ ability to reflect the explanation
presented to them into creating the (agent’s) correct plan. The percentage of users that
succeeded was 91%, showing that most users indeed made use of the explanation by adding
its information to their models and creating the correct plan. From the control group, we
can observe that the explanation does indeed have an effect of how well the participants
were able to correct their plans, as users who did not see the explanations had a much lower
correction ratio (24%), as expected.

1510



A Logic-Based Explanation Generation Framework for Planning Problems

We would also like to address the potential issue of bias in the results from Task 2b. Since
we removed users who failed to complete Task 1, we might have filtered out participants
who did not understand planning and their assigned models or had difficulty creating plans
in general, thus creating a selection bias for users who are better at understanding and
solving planning problems. As mentioned earlier, it was necessary to filter out users who
did not understand their assigned models, as the explanation provided is contingent on the
human model as per the assumptions made by model reconciliation. However, we believe
that the ability to observe errors during plan creation in Task 1 mitigates this issue to some
extent, as all users could observe any errors in their plans during this phase, and as such,
potentially correct them before submitting. Further, since we observe a large difference in
correction ratio for the control group with a similar number of people who completed Task 1,
we believe that this potential bias does not have a major effect.

In conclusion, one can see that these findings corroborate our hypothesis, that is, ex-
planations in the form of model reconciliation are effective for explaining hybrid planning
plans to human users. The results of this study, complemented by the results obtained for
classical planning problems by Chakraborti et al. (2019b) and Zahedi et al. (2019), demon-
strate the real-world efficacy of explanations as model reconciliation for planning problems
beyond classical planning.

9. Related Work

We now provide a discussion of related work from the knowledge representation and reason-
ing (KR) and planning literature. We focus on these two areas as our logic-based approach
bears some similarity to other logic-based approaches in KR and our application domain of
explainable planning has been solved by other planning approaches.

9.1 KR Literature

As our proposed framework bears some similarities with the theory of belief change and
abductive explanations, we start by describing their underlying theory. We then provide
two examples that illustrate the differences between these approaches. Finally, we discuss
some further related work from the KR community.

9.1.1 Belief Change

Belief change is a kind of change that can occur in a knowledge base. Depending on
how beliefs are represented and what kinds of inputs are accepted, different typologies of
belief changes are possible. In the most common case, when beliefs are represented by
logical formulae, one can distinguish three main kinds of belief changes, namely, expansion,
revision, and contraction. In the following, we formally describe the aforementioned notions.

Expansion: An expansion operator of a knowledge base can be formulated in a logical and
set-theoretic notation:

Definition 12 (Expansion Operator) Given a knowledge base KB and a formula φ, +e

is an expansion operator if it expands KB by φ as KB +e φ = {ψ : KB ∪ φ ` ψ}.

1511



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

It is trivial to see that KB +e φ will be consistent when φ is consistent with KB, and that
KB +e φ will be closed under logical consequences.

Revision: A belief revision occurs when we want to add new information into a knowledge
base in such a way that, if the new information is inconsistent with the knowledge base, then
the resulting knowledge base is a new consistent knowledge base. Alchourrón, Gärdenfors,
and Makinson conducted foundational work on knowledge base revision, where they pro-
posed a set of rationality postulates, called AGM postulates, and argued that every revision
operator must satisfy them (Alchourrón & Makinson, 1985; Gärdenfors, 1986; Gärdenfors,
Rott, Gabbay, Hogger, & Robinson, 1995). Although revision cannot be defined in a set-
theoretic manner closed under logical consequences (like expansion), it can be defined as
follows:

Definition 13 (Revision Operator) Given a knowledge base KB and a formula φ, +r

is a revision operator if it satisfies the AGM postulates for revision and modifies KB w.r.t.
φ such that the resulting KB is consistent.

The underlying motivation behind the AGM postulates is that when we change our
beliefs, we want to retain as much as possible the information from the old beliefs. Thus,
when incorporating new information in the knowledge base, the heuristic criterion should
be the criterion of information economy (i.e., minimal changes to the knowledge base is pre-
ferred). As such, a model-theoretic characterization of minimal change has been introduced
by Katsuno and Mendelzon (1991b), where minimality is defined as selecting the models of
φ that are “closest” to the models of KB.

However, the AGM rationality postulates will not be adequate for every application.
(Katsuno & Mendelzon, 1991a) proposed a new type of belief revision called update. The
fundamental distinction between the two kinds of belief revision in a knowledge base, namely
revision and update, is that the former consists of incorporating information about a static
world, while the latter consists of inserting information to the knowledge base when the
world described by it changes. As such, they claim that the AGM postulates describe only
revision and showed that update can be characterized by a different set of postulates called
KM postulates.

Definition 14 (Update Operator) Given a knowledge base KB and a formula φ, +u is
an update operator if it satisfies the KM postulates for update and modifies KB w.r.t. φ
such that the updated KB incorporates the change in the world introduced by φ.

From a model-theoretic view, the difference between revision and update, although
marginal at first glance, can be described as follows: Procedures for revising KB by φ
are those that satisfy the AGM postulates and select the models of φ that are “closest”
to the models of KB. In contrast, update methods are exactly those that satisfy the KM
postulates and select, for each model I of KB, the set of models of φ that are closest to I.
Then, the updated KB will be characterized by the union of these models.24

It is worth mentioning that, on a high level, the key difference between update and
revision is a temporal one: Update incorporates into the knowledge base the fact that the

24. This approach is called the possible models approach (Winslett, 1988).

1512



A Logic-Based Explanation Generation Framework for Planning Problems

world described by it has changed, while revision is a change to our world description of
a world that has not itself changed. We refer the reader to the work by Katsuno and
Mendelzon (1991a) for a comprehensive description as well as an intuitive meaning between
revision and update.

Contraction: Similarly to the AGM postulates for revision, Alchourrón and Makinson
(1985) proposed a set of axioms that any contraction operator must satisfy. Therefore, a
contraction operator is defined by:

Definition 15 (Contraction Operator) Given a knowledge base KB and a formula φ,
−c is a contraction operator if it satisfies the AGM postulates for contraction, and contracts
KB w.r.t. φ by retracting formulae in KB without adding of new ones.

We can see that, as in the case of revision, it is not possible to define contraction in a
set-theoretic manner closed under logical consequences. We illustrate this with the following
example:

Example 4 Consider the Generator domain from Section 4. Assume a subset of the orig-
inal KBa, i.e., KBa = [¬gen running0, gen running1,¬gen running0 ∧ gen running1 →
gen on0] and φ = [gen on0] that we wish to contract. Then, in order to maintain consis-
tency in KBa, one of ¬gen running0, gen running1, or ¬gen running0∧gen running1 →
gen on0 must be retracted. But which one? There is no logical reason for making one choice
rather than the other.

Interestingly, it has been shown that the problems of revision and contraction are closely
related (Gärdenfors, 1988). Despite the fact that the postulates that characterize revision
and contraction are “independent,”25 revision can be defined in terms of contraction (and
vice versa). This is referred to as the Levi identity (Levi, 1978).

Definition 16 (Levi Identity) Assume a knowledge base KB, a formula φ, and operators
+r and −c that satisfy the AGM postulates for revision and contraction, respectively. Then,
KB +r φ = (KB −c ¬φ) +e φ.

Hence, a revision of a knowledge base can be viewed as contracting KB with respect to
¬φ and then expanding (KB −c ¬φ) by φ.

9.1.2 Abductive Explanations

Explanations in knowledge base systems were first introduced by Levesque (1989) in terms
of abductive reasoning, that is, given a knowledge base and a formula that we do not
believe at all, what would it take for us to believe that formula? A more formal definition
is provided below.

Definition 17 (Abductive Explanation) Given a knowledge base KB and a query q
to be explained, α is an explanation of q w.r.t. to KB iff KB ∪ {α} is consistent and
KB ∪ {α}|=s

Lq.

25. In the sense that the postulates for revision do not refer to contraction and vice versa.

1513



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

Usually, such explanations are phrased in terms of a hypothesis set H (set of atomic sen-
tences – also called abducibles), and, generally, is an intuitive methodology for deriving
root causes.

9.1.3 Two Illustrative Examples

To illustrate the differences between our approach and the KR approaches described in this
section, we discuss below how they operate on two simplifications of the Generator domain
example in Section 4.

Problem 1 Assume a simplified version of the Generator domain with only one ac-
tion gen on = {precondition: fuel full, effect: gen running}, and initial and goal states
fuel full and gen running, respectively. Clearly, the plan for this problem is π∗ = [gen on].
Also, assume that the human user is not aware that action gen on has effect gen running.
Now, the knowledge bases encoding the models of the agent and the human, are respectively:

KBa = [fuel full0,¬gen running0, gen running1, (75)

gen on0 → fuel full0, gen on0 → gen running1, (76)

¬gen running0 ∧ gen running1 → gen on0] (77)

KBh = [fuel full0,¬gen running0, gen running1, gen on0 → fuel full0] (78)

Further, without loss of generality, suppose that the explanation needed to explain π∗

to KBh is ε = [gen on0 → gen running1,¬gen running0 ∧ gen running1 → gen on0].

Abductive Explanations: Abductive explanation cannot be applied in this setting be-
cause KBh does not contain any causal rules that can be used to abduce the query.

Revision: Since the union of ε and KBh is consistent, the revision operator will yield a
trivial update according to the second AGM axiom: KBh +r ε = KBh ∪ ε.

Update: To use the update operator, we first need to find the models of KBh and ε:

• ACCL(KBh):
I1 = {fuel full0, gen running1, gen on0},
I2 = {fuel full0, gen running1}.
• ACCL(ε):
J1 = {gen on0, gen running1, fuel full0},
J2 = {gen on0, gen running1},
J3 = {gen on0, gen running1, gen running0, fuel full0},
J4 = {gen on0, gen running1, gen running0},
J5 = {gen running1, gen running0, fuel full0},
J6 = {gen running1, gen running0},
J7 = {gen running0, fuel full0},
J8 = {gen running0},
J9 = {fuel full0},
J10 = {}.

1514



A Logic-Based Explanation Generation Framework for Planning Problems

Now, according to the KM postulates, we need to find the models of ε that are closest to
I1 and I2. Then, the updated KB will be the disjunction of the conjunction of the variables
in each model. Now, let the function Diff(m1,m2) denote the set of propositional letters
with different truth values in models m1 and m2.

Then, for I1, it is easy to see that the closest model is J1 because Diff(I1, J1) = ∅ <
Diff(I1, Jk) for all k. So, J1 is selected. For I2, we need to calculate the difference for every
model of ε:

Diff(I2, J1) = {gen on0},
Diff(I2, J2) = {gen on0, fuel full0},
Diff(I2, J3) = {gen on0, gen running0},
Diff(I2, J4) = {gen on0, gen running0, fuel full0},
Diff(I2, J5) = {gen running0},
Diff(I2, J6) = {fuel full0, gen running0},
Diff(I2, J7) = {gen running0, gen running1},
Diff(I2, J8) = {gen running0, gen running1, fuel full0},
Diff(I2, J9) = {gen running1},
Diff(I2, J10) = {fuel full0, gen running1}

where sets with the minimal elements are underlined. So, J1, J5, and J9 are selected and
the final result is the union of all selected models, that is, ACCL(KBh +u ε) = {J1, J5, J9}.
Thus, the resulting KB must satisfy all three models, yielding the following: KBh +u ε =
[
(
gen on0∧gen running1∧fuel full0∧¬gen running0

)
∨
(
gen running1∧gen running0∧

fuel full0 ∧ ¬gen on0

)
∨
(
fuel full0 ∧ ¬gen running1 ∧ ¬gen on0 ∧ ¬gen running0

)
].

Our Approach: As a first step, our method will first check if KBh is consistent with the
model of KBa. Since it is, it will simply insert ε to KBh, yielding K̂B

ε

h = KBh∪ ε just like
revision.

In conclusion, this problem demonstrates that it is possible for belief revision to yield the
same update as our approach, which is when KBh ∪ ε is consistent (per AGM postulates).
It also highlights why belief update is not applicable for explainable planning, namely that
the updated knowledge base KBh +u ε violates the action dynamics of classical planning
problems (Kautz et al., 1996).

Problem 2 Now assume a version of the Generator domain which consists of two actions
gen on = {precondition: fuel full, effect: gen running} and gen on alt = {precondition:
fuel mid, effect: gen running} with initial and goal states fuel full and gen running,
respectively, and a plan π∗ = [gen on]. Also, assume that the human user is not aware that
action gen on has effect gen running. Then, the knowledge bases encoding the models of
the agent and the human are respectively:

KBa = [fuel full0,¬fuel mid0,¬gen running0, gen running1, (79)

gen on0 → fuel full0, gen on0 → gen running1, (80)

gen on alt0 → fuel mid0, gen on alt0 → gen running1, (81)

¬gen running0 ∧ gen running1 → gen on0 ∨ gen on alt0, (82)

1515



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

¬gen on0 ∨ ¬gen on alt0] (83)

KBh = [fuel full0,¬fuel mid0,¬gen running0, gen running1, (84)

gen on0 → fuel full0, gen on alt0 → fuel mid0, (85)

gen on alt0 → gen running1, (86)

¬gen running0 ∧ gen running1 → gen on alt0,¬gen on0 ∨ ¬gen on alt0] (87)

As in the previous problem, we now assume that the explanation needed is ε =
[gen on0 → gen running1,¬gen running0 ∧ gen running1 → gen on0 ∨ gen on alt0].

Abductive Explanations: The method of abductive explanations will fail in this setting
due to the fact that KBh is inconsistent. Further, even if KBh was consistent, we would
still not be able to find any abductive explanations due to the lack of causal rules in KBh.

Revision: Following AGM postulates, revision cannot be applied because KBh is individ-
ually inconsistent.

Update: Again, as KBh is inconsistent, and according to KM update postulates, it cannot
be repaired using update.

Our Approach: As KBh ∪ ε is inconsistent, our approach will identify the erroneous
formula ¬gen running0 ∧ gen running1 → gen on alt0 and replace it with the correspond-
ing correct formula ¬gen running0 ∧ gen running1 → gen on0 ∨ gen on alt0 from KBa,
thereby restoring consistency. The updated knowledge base will be:

K̂B
ε

h = [fuel full0,¬fuel mid0,¬gen running0, gen running1, (88)

gen on0 → fuel full0, gen on0 → gen running1, (89)

gen on alt0 → fuel mid0, gen on alt0 → gen running1, (90)

¬gen running0 ∧ gen running1 → gen on0 ∨ gen on alt0, (91)

¬gen on0 ∨ ¬gen on alt0] (92)

In summary, this problem demonstrates that when KBh is inconsistent, abductive expla-
nations, revision, and update cannot be applied but our approach can be applied.

Therefore, a key distinction between the previous approaches and our approach is that,
historically, belief change refers to a single agent revising its belief after receiving a new piece
of information that is in conflict with its current beliefs; so, there is a temporal dimension
in belief change and a requirement that it should maintain as much as possible the belief
of the agent, per AGM postulates. Our notion of explanation is done with respect to two
knowledge bases and there is no such requirement (with respect to KBh). For example, if
the agent believes that block A is on block B, the human believes that block B is on block
A, and the explanation does not remove this fact from the human’s KB, then the agent and
the human will still have some conflicting knowledge about the positions of blocks A and
B after the update. Thus, the previous notions of belief change cannot accurately capture
and characterize the MRP problem.

1516



A Logic-Based Explanation Generation Framework for Planning Problems

9.1.4 Some Further Discussion

Similar to belief change, explanation differs from other similar notions, such as diagno-
sis (Reiter, 1987). In general, a diagnosis is defined with respect to a knowledge base KB, a
set of components H, and a set of observations O. Given that KB∪O∪{¬ab(c) | c ∈ H} is
inconsistent, a diagnosis is a subset S of H such that KB∪O∪{ab(c) | c ∈ S}∪{¬ab(c) | c ∈
H \ S} is consistent. Here, ab(c) denotes that the component c is faulty. Generalizing this
view, the inconsistency condition could be interpreted as the query q and KB ∪ O|=s

L¬q.
Then a diagnosis is a set S ⊆ H such that KB ∪ O ∪ S|=s

Lq. An explanation for q from
KBa to KBh is, on the other hand, a pair (e+, e−) such that (KBh \ e−) ∪ e+|=s

Lq. Thus,
the key difference is that an explanation might require the removal of some knowledge of
KBh while a diagnosis does not.

Another earlier research direction that is closely related to the proposed notion of ex-
planation is that of developing explanation capabilities of knowledge-based systems and
decision support systems, which resulted in different notions of explanation such as trace,
strategic, deep, or reasoning explanations (see review by Moulin, Irandoust, Bélanger, and
Desbordes (2002)). All of these types of explanations focus on answering why certain rules
in a knowledge base are used and how a conclusion is derived, which is not our focus in
this paper. The present development differs from earlier proposals in that explanations are
identified with the aim of explaining a given formula to a second theory. Furthermore, the
notion of a cost-optimal explanation with respect to the second theory is proposed.

There have been attempts to using argumentation for explanation (Cyras, Fan, Schulz,
& Toni, 2017; Cyras, Letsios, Misener, & Toni, 2019) because of the close relation be-
tween argumentation and explanation. For example, argumentation was used by Cyras
et al. (2019) to answer questions such as why a schedule does (does not) satisfy a criteria
(e.g., feasibility, efficiency, etc.); the approach was to develop for each type of inquiry, an
abstract argumentation framework (AF) that helps explain the situation by extracting the
attacks (non-attacks) from the corresponding AF.

The problem of restoring consistency in a knowledge base in our framework is similar in
spirit to the notion of minimal repairs/diagnoses studied by Ulbricht and Baumann (2019).
However, they consider an AF as an agent’s knowledge base, whereas we consider knowledge
bases encoding planning problems. In addition, restoring consistency intersects with the
problem of finding minimally unsatisfiable sets (MUSes) and minimal correction sets (MC-
Ses) (Marques-Silva, 2012; Marques-Silva, Heras, Janota, Previti, & Belov, 2013). However,
most MUS and MCS algorithms, with the exception of one of our prior work (Vasileiou,
Previti, & Yeoh, 2021), are specialized for propositional logic and, to the best of our knowl-
edge, are with respect to a single theory. In contrast, our notion of retracting unsatisfiable
sets is with respect to two theories (i.e., KBa and KBh).

It is worth to point out that the problem of computing a most preferred explanation for
ϕ from KBa to KBh might look similar to the problem of computing a weakest sufficient
condition of ϕ on KBa under KBh as described by Lin (2001). As it turns out, the two
notions are quite different. Given that KBa = {p, q} and KBh = {p}. It is easy to see
that q is the unique explanation for q from KBa to KBh. On the other hand, the weakest
sufficient condition of q on KBa under KBh is ⊥ (Proposition 8, (Lin, 2001)).

1517



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

A recent research direction that is closely related to the proposed notion of explanation
is that by Shvo, Klassen, and McIlraith (2020), where they propose a general belief-based
framework for generating explanations that employs epistemic state theory to capture the
models of the explainer (agent in this paper) and the explainee (human user in this paper),
and incorporates a belief revision operator to assimilate explanations into the explainee’s
epistemic states. A main difference with our proposed framework is that our framework
restricts knowledge to be stored in logical formulae, while theirs considers epistemic states
that can characterize different types of problems and have no such restriction.

Finally, in another line of our work, we laid the theoretical foundations and empha-
sized the knowledge representation aspects of model reconciliation to problems that can
be formulated as logic programs (Son, Nguyen, Vasileiou, & Yeoh, 2021). Additionally, we
have also developed a dedicated ASP-based solver (Nguyen, Vasileiou, Son, & Yeoh, 2020)
for solving these problems. These prior work, combined with our current work, reflect
that knowledge representation and reasoning can provide a fertile ground for explanation
generation in model reconciliation problems and explainable planning.

9.2 Planning Literature

As the main theme of the paper falls under the general umbrella of explainable AI planning
(XAIP), it is important to provide a general overview of XAIP and discuss current trends
as well as situate our contributions within the related work in this area.

While there is some work on adapting planning algorithms to find easily explainable
plans (i.e., plans that are easily understood and accepted by a human user) (Zhang, Sreed-
haran, Kulkarni, Chakraborti, Zhuo, & Kambhampati, 2017), most work has focused on
the explanation generation problem (i.e., the problem of identifying explanations of plans
found by planning agents that, when presented to users, will allow them to understand
and accept the proposed plan) (Kambhampati, 1990; Langley, 2016). Within this context,
researchers have tackled the problem where the model of the human user (1) must be
learned (Zhang et al., 2017); and (2) is of a different form or abstraction than that of
the planning agent (Tian, Zhuo, & Kambhampati, 2016; Sreedharan, Srivastava, & Kamb-
hampati, 2018). However, when designing explanatory planning systems, one of the main
considerations is taking into account the personality of the explainee (Langley, 2019). Cur-
rently in the literature, there are three personalities considered:

• Domain designer: The person working in acquiring the model that the system works
with;

• Algorithm designer: The developer of the algorithms of the planning system; and

• End user: The person interacting/collaborating with the system in the form of a user.

Naturally, these different personas will require different kinds of explanations. These expla-
nations fall under two primary classes of explanations: Algorithm-based explanations and
model-based explanations (see the survey by Sreedharan et al. (2020) for a comprehensive
discussion).

Algorithm-based explanations generally target expert users (i.e., algorithm designers)
and attempt to explain the inner workings of the underlying planning algorithm. For exam-
ple, Magnaguagno et al. (2020) developed a state-space search visualization that represents
how the distance to the goal state changes during the search procedure by defining a heuris-

1518



A Logic-Based Explanation Generation Framework for Planning Problems

tic gradient using heat maps. The gradient colors the states based on their estimated
distance to the goal state and can be used to highlight that the estimated distance can be
different according to the heuristic used in the algorithm. One interesting aspect of this
work is that it can visualize failed planning instances, which can be practical for debugging
purposes.

In contrast, model-based explanations are considered in a very large number of XAIP
papers. This category consists of algorithm-agnostic explanations that can be evaluated
independently of the method used to come up with. For instance, Borgo, Cashmore, and
Magazzeni (2018) and Cashmore, Collins, Krarup, Krivic, Magazzeni, and Smith (2019)
created a service that allows users to hold a dialogue with the system by means of specifying
contrastive questions about the plan. Essentially, they assume questions specified by users
can be best understood as constraints on the plans they are expecting (i.e., a certain action
to be included or excluded in the plan). The explanation is then to identify an exemplary
plan that satisfies those constraints and, thus, demonstrating how the computed plan is
better. Such kinds of explanations fall under the broad umbrella of contrastive explanations,
where explanations answer questions of the form “Why not A (instead of B)?”, where A is an
alternative (or foil) suggested by the human to decision B taken by the agent. An explanation
can explain why A is suboptimal or why the agent’s decisions are better than the foil. There
are multiple forms this contrastive question can take, i.e., having the user present an entire
plan or specific actions as foils, and it can also take on the more general form of “Why B?”,
where the implicit comparison is to all possible alternatives. Contrastive explanations have
been gathering interest in literature, with applications in linear temporal logic systems to
answer factual questions (Kasenberg, Thielstrom, & Scheutz, 2020), and in oversubscription
planning to explain goal subsets (Eifler & Hoffmann, 2020) being recent examples. There
has also been work towards user interfaces for decision support that gives users suggestions
in response to foils provided to AI generated plans in an interactive manner (Karthik,
Sreedharan, Sengupta, & Kambhampati, 2021).

On a similar thread, Göbelbecker, Keller, Eyerich, Brenner, and Nebel (2010) have con-
sidered the case of explaining why a planning problem is unsolvable. In particular, they
transform an unsolvable planning problem Π into a new problem Π′ by adding predicates
or objects to initial states, which they refer to as excuses, such that Π′ becomes solvable. It
is interesting to note that a logic-based method, like our proposed framework, could also be
used to explain the unsolvability of planning problems; Notice that an unsolvable planning
problem Π translates to an unsatisfiable knowledge base KB encoding Π. Specifically, for
a given time horizon h, KB is unsatisfiable if and only if there exists no plan of length h.
As such, one could find the reason for the unsatisfiability of KB by computing a minimal
unsatisfiable set (MUS) (Ignatiev, Previti, Liffiton, & Marques-Silva, 2015) over KB, which
would then serve as an explanation. Additionally, one could also compute a maximal satis-
fiable set (MSS) (Ignatiev et al., 2015) over the KB in order to find potential subproblems
of Π that are solvable, and which may provide useful information for Π. We leave this
interesting problem for future work.

Nevertheless, the explanations considered above do not capture directly the user’s knowl-
edge of the given planning problem and are thus not a realistic inception of a true explana-
tory system targeting non-expert human users. It is widely accepted that human users often
come with their own preconceived notions and/or expectations of the system (Carroll & Ol-

1519



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

son, 1988) and, as such, human users might evaluate plans on their own models, which may
disagree with the system’s outcome or quality.

A key paper that considers the mental models of human users is by Chakraborti et al.
(2017), who introduced the model reconciliation problem that we are tackling in this pa-
per. The high-level difference between our two approaches is that our approach is based
on KR while theirs is based on automated planning and heuristic search techniques. How-
ever, both approaches share a lot of similarities. Particularly, explanations generated in
both approaches can be characterized according to two properties defined in Chakraborti
et al. (2017): Completeness, that is, the plan is valid (or optimal) in the updated hu-
man user’s model; and Monotonicity, that is, there are no model differences in the agent’s
and human user’s models that can change the completeness of an explantion (i.e., no fur-
ther model updates can invalidate an explanation). In consequence, both approaches share
similar types of explanations that can be found. For example, the ⊆-minimal support in
Definition 5 is equivalent to minimally complete explanations (MCEs) (the shortest ex-
planation that is complete), while the C-general support can be viewed as similar to the
minimally monotonic explanations (MMEs) (the shortest explanation that is complete and
monotonic). Additionally, model patch explanations (MPEs) (includes all the model up-
dates) are trivial explanations and are equivalent to our definition that the entire KBa
itself serves as an explanation for KBh. Note that, in our approach (as also in the original
model reconciliation problem), we allow for explanations on “mistaken” expectations in the
human model (Algorithm 2). However, a similar property can be seen if the mental model is
not known and, therefore, by taking an “empty” model as the starting point, explanations
can only add to the human’s understanding but not mend mistaken ones.

Although the model reconciliation problem is a good stepping stone towards creating
good explanatory planning systems, it makes a strong assumption that the system has
knowledge of the human user’s mental model. An alternative approach that relaxes this
requirement is called model-free model reconciliation, which predicts how model information
can affect the expectation of the human user by learning a model that characterizes the
human user’s expectation and using it to drive the search to determine what information
should be exposed to the human user (Sreedharan et al., 2019). However, there might be
caveats in going model-free. The explanations generated by such systems might be purposely
false in order to satisfy the human user. For example, in the model reconciliation problem
the explanation was guaranteed to be consistent with the ground truth. Researchers have
showed that this guarantee can be relaxed in such a way that allows the model reconciliation
process to generate erroneous explanations and, hence, create ethical quandaries that would
need further investigation (Chakraborti & Kambhampati, 2019; Chakraborti, Kulkarni,
Sreedharan, Smith, & Kambhampati, 2019a).

Another popular theme in XAIP is that of plan summarization, where the main interest
is in presenting a long plan to a single human user (Myers, 2006), or to multiple human
users (e.g., human teams) (Kim et al., 2020). One possible way to approach this would be to
use the model reconciliation process with an empty model of the human user and compute
the minimal explanation (e.g., causal links) necessary to explain every action in the plan.
Another possibility would be to approach this issue through a process called verbalization
of plans, that is, paths taken by an agent along different levels of abstraction (Rosenthal,
Selvaraj, & Veloso, 2016). Interestingly, there have also been efforts on approaching plan

1520



A Logic-Based Explanation Generation Framework for Planning Problems

summarization with contrastive explanations. For example, Kim, Muise, Shah, Agarwal,
and Shah (2019) proposed on a Bayesian approach to infer contrastive linear temporal logic
specifications aimed at explaining how two sets of plan traces differ.

Finally, it is worth mentioning that our plan validity check bears some similarity with
the validity check that is provided by VAL (Howey, Long, & Fox, 2004). The key difference
is that, in case of an invalid plan, VAL identifies the first action in the plan with unsatisfied
preconditions, and identifies the precondition that is not satisfied. In contrast, the validity
check that is provided here identifies all the differences in the model that prevents the plan
to be valid.

10. Conclusions and Future Work

When designing explanatory systems, a question that often arise is how to identify, repre-
sent, and provide explanations. There is a general belief that logic-based systems are well
equipped to address this question. For example, logic-based models such as decision trees
produce explanations stemming directly from the model (Lakkaraju, Bach, & Leskovec,
2016; Ignatiev, Pereira, Narodytska, & Marques-Silva, 2018). In this paper, we examined
and evaluated this belief by creating a logic-based explanation generation framework for
classical and hybrid planning problems for the model reconciliation problem.

The model reconciliation problem is a specific problem within the area of explainable
AI planning, where the plan of a planning agent is unacceptable to a human user due
to differences in their models of the problem. As such, the agent needs to provide an
explanation of that plan in terms of model differences. In this context, we made the following
contributions: (1) We approached the MRP problem from the perspective of knowledge
representation and reasoning by proposing the notion of explanations and defined plan
validity and optimality in terms of knowledge bases; (2) We proposed several complexity
cost functions to reflect preferences between explanations; (3) We developed algorithms
for computing most-preferred explanations for plan validity and optimality; and (4) We
empirically showed that our approach complements the current state of the art and is able
to generalize beyond classical planning to hybrid planning. Finally, through our proof-of-
concept, we show that explanations from our algorithms can be effectively communicated
to human users on problems beyond classical planning.

For future work, we plan to investigate an iterative conversational extension, where the
agent converses with the human user and, through that process, the agent is able to update
its belief of the human’s knowledge base similar to Zhang et al. (2017) and Sreedharan
et al. (2018). In addition, we are also interested in pursuing a more personalized approach
to generating explanations. Naturally, in human-to-human explanations, the explainer will
usually decide how much detail to include in the explanation by choosing a conceptual
model that they think will mesh with that of the explainee. Thus, explanations can be
given at different levels of abstraction, based on different conceptual models (Sreedharan
et al., 2018; Sreedharan, Srivastava, Smith, & Kambhampati, 2019).

1521



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

Acknowledgments

We thank the anonymous reviewers, whose suggestions improved the quality of our paper.
Stylianos Loukas Vasileiou, William Yeoh, and Ashwin Kumar are partially supported by
the National Science Foundation (NSF) under award 1812619. Tran Cao Son is partially
supported by NSF under awards 1757207, 1812628, and 1914635. The views and conclusions
contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the sponsoring organizations,
agencies, or the United States government.

Appendix A. Working Example: PDDL+ Problem

In this example, we consider a simplified version of the Generator domain, where we are
interested in explaining the validity of plan. Note that, to the best of our knowledge, there
does not exist optimal PDDL+ planners, and therefore we restrict ourselves to explaining
the validity of plans.

The domain and problem files are shown in Listings 3 and 4, respectively. The initial
state asserts that there is one generator; the generator’s capacity is 1060; and initial fuel
level is 1020. The goal state is that the generator has been run for a given amount of time:
generator-ran. The plan for this problem, as found by SMTPlan (Cashmore et al., 2020),
is π = generate [1000.0].

Listing 3: Linear generator domain.

( define (domain g e n e r a t o r l i n e a r )
( :requirements : f luents :durative−actions :duration−inequalities

:adl :typing )
( :types generato r )
( :predicates ( gen−ran ) )
( : functions ( f u e l L e v e l ?g −generator ) ( capac i ty ?g − generato r )

( :durative−action gen
:parameters (? g − generato r )
:duration (= ? durat ion 1000)
:condition ( over a l l (>= ( f u e l L e v e l ?g ) 0 ) )
: e f f e c t (and ( decrease ( f u e l L e v e l ?g ) (∗ #t 1) )

( at end ( gen−ran ) ) ) )
)

The knowledge base of the agent comprise the encoding of two happenings (encoded in
the quantifier-free nonlinear arithmetic theory), as described by Cashmore et al. (2016):

KBa =[gen ran1,1 → (gen ran0,1 ∨ genend,1),¬gen ran1,1 → gen ran0,1, (93)

gen ran1,2 → (gen ran0,2 ∨ genend,2),¬gen ran1,2 → gen ran0,2, (94)

fuelLevel0,1 = fuelLevel1,1, fuelLevel0,2 = fuelLevel1,2, (95)

1522



A Logic-Based Explanation Generation Framework for Planning Problems

Listing 4: Linear generator problem.

( define (problem run genera to r )
( :domain g e n e r a t o r l i n e a r )
( :objects gen − generato r )
( : i n i t (= ( f u e l L e v e l gen ) 1020)

(= ( capac i ty gen ) 1060))
( :goal (and ( gen−ran ) ) )

)

gensta,1 → (fuelLevel0,1 ≥ 0), gensta,2 → (fuelLevel0,2 ≥ 0), (96)

genend,1 → (fuelLevel0,1 ≥ 0), genend,2 → (fuelLevel0,2 ≥ 0), (97)

gensta,1 → (gendur,2 = 1000.0), gensta,2 → (gendur,2 = 1000.0), (98)

¬genend,1, genend,2 → gen1, genend,1 → (gendur,1 = 0.0), (99)

genend,2 → (gendur,2 = 0.0), genend,1 → gen ran1,1, (100)

genend,2 → gen ran1,2, gen1 = (gendur,1 > 0), (101)

¬gen1 = gendur,1 = 0, gen2 = (gendur,2 > 0), (102)

¬gen2 = gendur,2 = 0,¬gen starti ∨ ¬gen endi, (103)

¬gen ran0,1, fuelLevel0,1 = 1020, capacity0,1 = 1060, gen ran1,2, (104)

time1 = 0, time2 ≥ time1 + 0.001, gen ran1,1 = gen ran0,2, (105)

gen1 → (fuelLevel0,1 ≥ 0), gen2 → (fuelLevel0,2 ≥ 0), (106)

gen1 → (gendur,2 = gendur,1 + time1 + time2), (107)

gen1 → fuelLevel0,2 = fuelLevel1,1 − time2 + time1, (108)

¬gen1 → (fuelLevel0,2 = fuelLevel1,1), capacity0,2 = capacity0,1] (109)

for i = {1, 2}.

Suppose now that in the human user’s knowledge the duration of action generate is
2000 and that it is missing the effect generator-ran from action generate:

KBh =[fuelLevel0,1 = fuelLevel1,1, fuelLevel0,2 = fuelLevel1,2, (110)

gensta,1 → (fuelLevel0,1 ≥ 0), gensta,2 → (fuelLevel0,2 ≥ 0), (111)

genend,1 → (fuelLevel0,1 ≥ 0), genend,2 → (fuelLevel0,2 ≥ 0), (112)

gensta,1 → (gendur,2 = 2000.0), gensta,2 → (gendur,2 = 2000.0), (113)

¬genend,1, genend,2 → gen1, genend,1 → (gendur,1 = 0.0), (114)

genend,2 → (gendur,2 = 0.0), gen1 = (gendur,1 > 0), (115)

¬gen1 = gendur,1 = 0, gen2 = (gendur,2 > 0), (116)

¬gen2 = gendur,2 = 0,¬gen starti ∨ ¬gen endi, (117)

¬gen ran0,1, fuelLevel0,1 = 1020, capacity0,1 = 1060, gen ran1,2, (118)

time1 = 0, time2 ≥ time1 + 0.001, gen ran1,1 = gen ran0,2, (119)

1523



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

gen1 → (fuelLevel0,1 ≥ 0), gen2 → (fuelLevel0,2 ≥ 0), (120)

gen1 → (gendur,2 = gendur,1 + time1 + time2), (121)

gen1 → fuelLevel0,2 = fuelLevel1,1 − time2 + time1, (122)

¬gen1 → (fuelLevel0,2 = fuelLevel1,1), capacity0,2 = capacity0,1] (123)

for i = {1, 2}.
It is evident that the agent’s plan is invalid according to the user’s knowledge base

(i.e., KBh 6|=c
L π) and, therefore, we have to find an explanation ε such that K̂B

ε

h|=c
Lπ.

Let’s assume that ε consists of the following formulae:

ε =[gen ran1,1 → (gen ran0,1 ∨ genend,1),¬gen ran1,1 → gen ran0,1, (124)

gen ran1,2 → (gen ran0,2 ∨ genend,2),¬gen ran1,2 → gen ran0,2, (125)

gensta,1 → (gendur,2 = 1000.0), gensta,2 → (gendur,2 = 1000.0), (126)

genend,1 → gen ran1,1, genend,2 → gen ran1,2] (127)

Therefore, we can see that K̂B
ε

h|=c
Lπ. It is important to note that in order to insert

this explanation to KBh, we would first have to remove the old formulae representing the
duration of the action (e.g., gensta,1 → (gendur,2 = 2000.0)) because they contradict with
the new formulae in ε (e.g., gensta,1 → (gendur,2 = 1000.0)) (see Definiton 4).

Appendix B. Theoretical Analysis

We first prove the completeness and correctness of the general Algorithm 1 in Theorems 1
and 2, respectively, in the context of finding explanations for optimal (or valid) plans in
model reconciliation problems. We then prove the completeness of our pre-processing Al-
gorithm 2 in Theorem 3, before proving the completeness of the combined Algorithm 3 in
Theorem 4.

Theorem 1 Algorithm 1 is guaranteed to terminate with a solution when one exists.

Proof. First, a solution will always exist because, in the worst case, the entire KBa \KBh
will serve as an explanation to KBh since KBa credulously entails ϕc and skeptically entails
ϕs. We now prove that it is guaranteed to terminate with a solution. As Algorithm 1
iteratively adds sets of formulae of increasing size from KBa \KBh into its priority queue q
(Lines 7 and 13-16), it will eventually add the entire power set of KBa\KBh into the queue.
Since each element in the queue is only evaluated exactly once (Lines 8 and 14), the set of
formulae in KBa \KBh will eventually be evaluated, and when it is used to update KBh
(Line 9), the updated K̂B

ε

h will credulously entail ϕc and skeptically entail ϕs (Line 10).
As a result, ε = KBa \KBh will be returned as a solution upon termination (Line 11). �

Theorem 2 Algorithm 1 is guaranteed to return a most-preferred explanation if the cost
function is monotonic.

Proof. If the cost function CL used by Algorithm 1 is monotonic, then for any two
explanations ε1 ⊆ ε2, CL(KBh, ε1) ≤ CL(KBh, ε2).

1524



A Logic-Based Explanation Generation Framework for Planning Problems

We now prove by contradiction that it is not possible for Algorithm 1 to return an
explanation ε that is less preferred than a most-preferred explanation ε∗ (i.e., CL(KBh, ε) >
CL(KBh, ε

∗)). Assume that the algorithm does return such an explanation ε. Since potential
explanations are popped off the priority queue according to their costs (Line 7 and 16), it
means that when the algorithm popped off explanation ε, the explanation ε∗ is not in the
priority queue since CL(KBh, ε) > CL(KBh, ε

∗). There are the following two cases:

• Explanation ε∗ is not in the queue because it was already popped off earlier. In this case,
the algorithm would have terminated and returned the explanation ε∗, which contradicts
our assumption that the algorithm returned explanation ε.

• Explanation ε∗ is not in the queue because it hasn’t yet been added into the queue.
This means that there exists some subset ε′ ⊂ ε∗ that is in the queue and is not yet
evaluated. Further, it must be the case that CL(KBh, ε) ≤ CL(KBh, ε

′) because, oth-
erwise, ε′ would have been popped off the queue and evaluated. Additionally, since
the cost function is monotonic, CL(KBh, ε

′) ≤ CL(KBh, ε
∗). Combining these two in-

equalities, we get CL(KBh, ε) ≤ CL(KBh, ε
∗), which contradicts our assumption that

CL(KBh, ε) > CL(KBh, ε
∗).

Therefore, it is not possible for Algorithm 1 to return an explanation ε that is less preferred
than a most-preferred explanation ε∗. �

Recall from Section 6 that each formula in KBh will have a corresponding formula in KBa
since KBa is assumed to be complete.26 However, it may not be true that each formula
in KBa will have a corresponding formula in KBh since KBh can be incomplete. We
formalize this statement in the following postulate, and then use it to prove properties of
our pre-processing Algorithm 2.

Postulate 1 For a model reconciliation problem, assume that KBa and KBh encode the
SAT (or SMT) instances of the planning agent and human user, respectively. Then, each
formula in KBh will have a corresponding formula in KBa.

Theorem 3 Algorithm 2 is guaranteed to terminate with a solution when one exists.

Proof. Algorithm 2 iteratively evaluates all formulae in KBh with respect to KBa’s partial
model (Line 20). If any formulae evaluate to false with respect to KBa’s partial model, the
algorithm will replace them with the corresponding ones from KBa (Lines 21-22). Since
the number of formulae in KBh is finite, the algorithm will eventually complete evaluating
all the formulae and return the set of formulae from KBa that correspond to the set of
formulae in KBh that evaluates to false (Line 23). In other words, if a solution exists,
Algorithm 2 is guaranteed to return it. �

Theorem 4 Algorithm 3 is guaranteed to terminate with a solution when one exists.

Proof. As Algorithm 3 comprises of Algorithms 1 and 2, which are guaranteed to terminate
with a solution when one exists (Theorems 1 and 3), the algorithm is also guaranteed to
terminate with a solution when one exists. �

We now describe the worst-case time complexities of the algorithms.

26. Assuming that KBh 6= ∅.

1525



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

Theorem 5 The time complexity of Algorithm 1 is O(2|KBa|+ 2|KBa\KBh|+m), where m is

the maximum number of variables in K̂B
ε

h over all candidate explanations ε.

Proof. On the basic operations, the runtimes for inserting elements into sets (Line 8),
checking for set memberships (Line 14), and computing costs of potential explanations
(Line 15) are all O(1); and the runtimes of inserting and removing elements into priority
queues (Line 7 and 16) are O(log(n)), where n is the size of the queue. On the entailment
checks on Lines 1 and 10, their runtimes are O(2m), where m is the number of variables
in the knowledge base, because that is the number of models in the knowledge base. The
number of times the algorithm has to loop through Lines 6 to 17 is the size of the power set
KBa \KBh, which is O(2|KBa\KBh|), since there are that many unique subsets of potential
explanations to consider. Within the loop, Line 9 takes O(2|KBh|) time because it has to
iterate through the power set of KBh to find the minimal set of formulae to remove according
to Definition 4, and the number of times the algorithm has to loop through Lines 13 to 16
is |KBa \KBh|.

Therefore, in total, the runtime of the algorithm is O(2m) (Line 1) + O(2n) (Lines 6
and 17) ·

[
O(log(n)) (Lines 7-8) + O(2|KBh|) (Line 9) + O(2m) (Line 10) + O(n) (Line 13)

·O(log(n)) (Line 16)
]

= O(2n ·(2|KBh|+2m+n log(n))) = O(2n+|KBh|+2n+m) = O(2|KBa|+

2n+m), where n = |KBa \KBh| and m is the maximum number of variables in K̂B
ε

h over
all candidate explanations ε. �

Theorem 6 The time complexity of Algorithm 2 is O(2n + |KBh| · |KBa|), where n is the
number of variables in KBa.

Proof. The time complexity of extracting the partial model (Function 1) on Line 19 is
as follows. Finding a satisfying model M from KBa for π∗ (Line 25) takes O(2n), where
n is the number of variables in KBa, since it is a Boolean satisfiability problem, which is
NP-complete (Cook, 1971). Extracting the relevant literals (Line 26) takes O(l) time, where
l is the maximum number of relevant literals. Finally, Lines 27-29 take O(|M |). Therefore,
the runtime for Line 19 is O(2n) +O(l) +O(|M |) = O(2n).

The number of times the algorithm has to loop through Lines 20 to 22 is O(|KBh|).
Within the loop, Line 21 takes O(k) time, where k is the length of the longest formula
evaluated,27 and Line 22 takes O(|KBa|) time since it needs to loop through the entire
KBa in the worst case to find the corresponding formula.28

Therefore, in total, the runtime of the algorithm is O(2n) (Line 19) + O(|KBh|) (Line 20)
·
[
O(k) (Line 21) + O(|KBa|) (Line 22)

]
= O(2n + |KBh| · (k + |KBa|)) = O(2n + |KBh| ·

|KBa|), where n is the number of variables in KBa. . �

Theorem 7 The time complexity of Algorithm 3 is O(2|KBa|+ 2|KBa\KBh|+m), where m is

the maximum number of variables in K̂B
ε

h over all candidate explanations ε.

Proof. The pre-processing call on Line 32 takes O(2n + |KBh| · |KBa|), where n is the
number of variables in KBa (Theorem 6).

27. We assume the formula is represented in conjunctive normal form.
28. This upper bound can be tightened by using hash functions, but we consider naive implementations here.

1526



A Logic-Based Explanation Generation Framework for Planning Problems

Algorithm 4: linear-search-update(L,KBh,KBa, ε)

Input: Logic L, knowledge bases KBa and KBh, and a set of formulae ε
Output: Updated KB with ε

1 if KBh ∪ ε 6|=s
L ⊥ then

2 KBh ← KBh ∪ ε
3 return KBh
4 else
5 H← ε ∪ {KBh ∩KBa}
6 S← KBh \ H
7 for s ∈ S do
8 if H ∪ {s} 6|=s

L ⊥ then
9 H← H ∪ {s}

10 return H

To implement the update of the knowledge base KBh with the explanation ε to K̂B
ε

h

on Line 33, we loop through the explanation ε and, for each formula in the explanation, we
loop through KBh to find the corresponding formula. Once found, we replace the formula
in KBh with the formula from the explanation. Therefore, the runtime for this step is
O(|ε| · |KBh|).

Finally, the runtime for Line 34 is O(2|KBa| + 2|KBa\K̂Bh|+m), where n is the maximum

number of variables in K̂B
ε′

h over all candidate explanations ε′ (Theorem 5). Assuming

|KBh| = |K̂Bh|, then the runtime is O(2|KBa| + 2|KBa\KBh|+m).

Therefore, in total, the runtime of the algorithm is O(2m + |KBh| · |KBa|) (Line 32) +

O(|ε| · |KBh|) (Line 33) + O(2|KBa| + 2|KBa\K̂Bh|+m) (Line 34) = O(2m + |KBh| · |KBa|+
|ε| · |KBh|+2|KBa|+2|KBa\K̂Bh|+m) = O(2|KBa|+2|KBa\KBh|+m), where m is the maximum

number of variables in K̂B
ε

h over all candidate explanations ε. �

Appendix C. Knowledge Base Update with a Linear Search Algorithm

As noted in Section 7.1, we used a simple linear search algorithm to perform the knowledge
base update. Specifically, such a procedure is needed to restore the consistency of the
knowledge base if it becomes unsatisfiable with an explanation. Algorithm 4 describes the
pseudocode of this procedure. It starts by checking if the knowledge base KBh conjuncted
with ε is satisfiable (Line 1). If it is, it returns the knowledge base updated with ε (Lines 2-
3), otherwise it proceeds to its main procedure. First, it constructs the following two sets:
A set H comprising of ε and the formulae that are in the intersection of KBh and KBa
(Line 5); and a set S comprising all formulae in KBh but those in H (Line 6). In the
SAT literature, sets H and S are referred to as hard and soft constraints, respectively (Li
& Manya, 2009). Intuitively, in a usual SAT problem, if a knowledge base is partitioned
into hard and soft constraints, the formulae in the hard constraints must be satisfied by the
SAT algorithm, while formulae in the soft constraints may not be satisfied. For the sake of
Question 1 in Section 7, in this implementation, we ensure that ε and the formulae that
are in the intersection of KBh and KBa will not be removed. Then, the algorithm removes

1527



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

one formula s from S at a time (Line 6) and checks if the union of H and s is satisfiable
(Line 8). If it is, then s is added to H (Line 9). Finally, the algorithm returns a satisfiable
KBh updated with ε (Line 10).

Appendix D. Proof-of-Concept: Communicating Explanation to Human
Users

D.1 Human User Study: Comprehension Questions

Q1. What caused the error(s) in your plan? (Multiple Choice)

• I made a mistake in my plan.

• Wrong information provided in domain description.

• Missing information in domain description.

• There were no errors in my plan.

Q2. Given your plan and the explanation provided, why is your plan invalid? Please be as
descriptive as possible. (Open-ended)

Q3. Do you feel you understand what information was different in the domain Rob gave
you? If yes, what was that information? (Open-ended)

Q4. What are the corrections needed to your plan to make it achieve the goal, with the new
information in mind? (Open-ended)

Q5. Where do you think the error in Rob’s domain description was? (Multiple choice)

• In the description of the actions and their preconditions.

• In the description of the states (start state or goal state).

Q6. If applicable, identify areas with wrong or missing preconditions by clicking on the
corresponding region. Double click to unselect. (Users are shown a selection area where
they can click on various actions.)

Q7. If applicable, identify areas with wrong or missing start states by clicking on the cor-
responding region. Double click to unselect. (Users are shown a selection area where they
can click on various states.)

These questions ensured that the participants had to think about what the explanation
meant, and hence allow us to see if they really understood it.

To evaluate the user responses, we scored them for each question, where the maximum
score that can be achieved is 8 points. For the open-ended questions (Q2, Q3, and Q4), we
manually read through the answers and assigned a correct and incorrect flag. For the other
questions, we had an answer key to check against the user responses. All questions except
Q5 are worth 1 point. Q5 is worth 2 points if participants only select the correct answer,
1 point if they select both answers, and 0 otherwise.

D.2 From Logic-based Explanations to Natural Language

We now describe a simple method for transforming logic-based explanations from our frame-
work into a human-understandable format. To do that, we leverage the expressivity and
symbolic nature of logic. Notice that a knowledge base encoding a planning problem con-
tains logical formulae that represent various phenomena of the problem. These formulae

1528



A Logic-Based Explanation Generation Framework for Planning Problems

Formula Type Template

Initial state: f0 {f}.name must be part of the initial specification of the problem.

Goal state: fn {f}.name must be part of the goal specification of the problem.

Action Precondition: at ⇒ ft Action {a}.name requires precondition {f}.name.

Action Addition effect: at ⇒ ft+1 Action {a}.name requires addition effect {f}.name.

Action Deletion effect: at ⇒ ¬ft+1 Action {a}.name requires deletion effect {f}.name.

Action Duration: at sta ⇒ at dur ≤ duration ∧ at dur ≥ duration Action {a}.name has a duration of {duration}.
Process precondition: pst ⇔ ft Process {ps}.name requires precondition {f}.name.

Table 6: Various formula types and their mapping onto pre-defined natural language tem-
plates.

are of a specific type, i.e., there are formulae encoding the initial and goal states, the ac-
tion dynamics of the problem, and so on (see Sections 3.2.1 and 3.3.1). Each formula is
grounded on propositional variables, with each variable “symbolizing” a planning element
such as an action or a predicate. For example, a0 → p0 is a formula characterizing that
action a0 has precondition p0. As such, given an explanation consisting of a set of logi-
cal formulae, each formula’s variables can be extracted and, depending on the type of the
formula, be mapped onto pre-defined, natural language templates.29 To offer some more
concrete examples, Table 6 shows this method for different types of formulae that may arise
in an explanation.

References

Alchourrón, C. E., & Makinson, D. (1985). On the logic of theory change: Safe contraction.
Studia Logica, 44 (4), 405–422.

Baron-Cohen, S. (1999). The Evolution of a Theory of Mind. Oxford University Press.

Barrett, C., & Tinelli, C. (2018). Satisfiability modulo theories. In Handbook of Model
Checking, pp. 305–343. Springer.

Bogomolov, S., Magazzeni, D., Podelski, A., & Wehrle, M. (2014). Planning as model
checking in hybrid domains. In AAAI, pp. 2228–2234.

Borgo, R., Cashmore, M., & Magazzeni, D. (2018). Towards providing explanations for AI
planner decisions. arXiv preprint arXiv:1810.06338.

Brunyé, T. T., Taylor, H. A., & Rapp, D. N. (2008). Repetition and dual coding in proce-
dural multimedia presentations. Applied Cognitive Psychology, 22 (7), 877–895.

Bryce, D., Bonasso, P., Adil, K., Bell, S., & Kortenkamp, D. (2017). In-situ domain mod-
eling with fact routes. In ICAPS Workshop on User Interfaces and Scheduling and
Planning, pp. 15–22.

Carroll, J. M., & Olson, J. R. (1988). Mental models in human-computer interaction. In
Handbook of Human-Computer Interaction, pp. 45–65. Elsevier.

Cashmore, M., Collins, A., Krarup, B., Krivic, S., Magazzeni, D., & Smith, D. (2019).
Towards explainable AI planning as a service. In ICAPS Workshop on Explainable
AI Planning.

29. Note that within our framework, this becomes relatively straightforward, as our explanations consist of
macro-formulae (see end of Section 6.1), i.e., there will be no formulae repeated across multiple time
steps in our explanations.

1529



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

Cashmore, M., Fox, M., & Giunchiglia, E. (2012). Planning as quantified Boolean formula.
In ECAI, Vol. 242, pp. 217–222.

Cashmore, M., Fox, M., Long, D., & Magazzeni, D. (2016). A compilation of the full PDDL+
language into SMT. In ICAPS, pp. 79–87.

Cashmore, M., Magazzeni, D., & Zehtabi, P. (2020). Planning for hybrid systems via
satisfiability modulo theories. Journal of Artificial Intelligence Research, 67, 235–283.

Chakraborti, T., Fadnis, K. P., Talamadupula, K., Dholakia, M., Srivastava, B., Kephart,
J. O., & Bellamy, R. K. E. (2018). Visualizations for an explainable planning agent.
In IJCAI, pp. 5820–5822.

Chakraborti, T., & Kambhampati, S. (2019). (When) can AI bots lie?. In AAAI/ACM
Conference on AI, Ethics, and Society, pp. 53–59.

Chakraborti, T., Kambhampati, S., Scheutz, M., & Zhang, Y. (2017). AI challenges in
human-robot cognitive teaming. arXiv preprint arXiv:1707.04775.

Chakraborti, T., Kulkarni, A., Sreedharan, S., Smith, D. E., & Kambhampati, S. (2019a).
Explicability? Legibility? Predictability? Transparency? Privacy? Security? The
emerging landscape of interpretable agent behavior. In ICAPS, pp. 86–96.

Chakraborti, T., Sreedharan, S., Grover, S., & Kambhampati, S. (2019b). Plan explanations
as model reconciliation – an empirical study. In HRI, pp. 258–266.

Chakraborti, T., Sreedharan, S., & Kambhampati, S. (2019c). Balancing explicability and
explanations in human-aware planning. In IJCAI, pp. 1335–1343.

Chakraborti, T., Sreedharan, S., Zhang, Y., & Kambhampati, S. (2017). Plan explanations
as model reconciliation: Moving beyond explanation as soliloquy. In IJCAI, pp. 156–
163.

Chen, G., Ding, Y., Edwards, H., Chau, C. H., Hou, S., Johnson, G., Sharukh Syed, M.,
Tang, H., Wu, Y., Yan, Y., Gil, T., & Nir, L. (2020). Planimation. arXiv preprint
arXiv:2008.04600.

Clark, R. C., & Mayer, R. E. (2016). E-learning and the Science of Instruction: Proven
Guidelines for Consumers and Designers of Multimedia Learning. John Wiley & Sons.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In ACM Symposium
on Theory of Computing, pp. 151–158.

Cyras, K., Fan, X., Schulz, C., & Toni, F. (2017). Assumption-based argumentation: Dis-
putes, explanations, preferences. Journal of Logics and Their Applications, 4 (8),
2407–2456.

Cyras, K., Letsios, D., Misener, R., & Toni, F. (2019). Argumentation for explainable
scheduling. In AAAI, pp. 2752–2759.

Davis, M., Logemann, G., Donald, & Loveland (1962). A machine program for theorem
proving. Communications of the ACM, 5 (7), 394–397.

De Moura, L., & Bjørner, N. (2008). Z3: An efficient SMT solver. In TACAS, pp. 337–340.

1530



A Logic-Based Explanation Generation Framework for Planning Problems

Domshlak, C., Hoffmann, J., & Sabharwal, A. (2009). Friends or foes? On planning as
satisfiability and abstract CNF encodings. Journal of Artificial Intelligence Research,
36, 415–469.

Eifler, R., & Hoffmann, J. (2020). Iterative planning with plan-space explanations: A tool
and user study. arXiv preprint arXiv:2011.09705.

Fox, M., & Long, D. (2003). PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20, 61–124.

Fox, M., & Long, D. (2006). Modelling mixed discrete-continuous domains for planning.
Journal of Artificial Intelligence Research, 27, 235–297.

Fox, M., Long, D., & Magazzeni, D. (2017). Explainable planning. arXiv preprint
arXiv:1709.10256.

Freedman, R. G., Chakraborti, T., Talamadupula, K., Magazzeni, D., & Frank, J. D. (2018).
User interfaces and scheduling and planning: Workshop summary and proposed chal-
lenges. In 2018 AAAI Spring Symposium Series.

Gärdenfors, P. (1986). Belief revisions and the ramsey test for conditionals. The Philosoph-
ical Review, 95 (1), 81–93.

Gärdenfors, P. (1988). Knowledge in Flux: Modeling the Dynamics of Epistemic States. The
MIT press.

Gärdenfors, P., Rott, H., Gabbay, D., Hogger, C., & Robinson, J. (1995). Belief revision.
Computational Complexity, 63 (6), 35–132.

Gerevini, A., Saetti, A., & Serina, I. (2006). An approach to temporal planning and schedul-
ing in domains with predictable exogenous events. Journal of Artificial Intelligence
Research, 25, 187–231.

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D., &
Wilkins, D. (1998). PDDL – the planning domain definition language. Tech. rep.
TR-98-003, Yale Center for Computational Vision and Control.

Göbelbecker, M., Keller, T., Eyerich, P., Brenner, M., & Nebel, B. (2010). Coming up with
good excuses: What to do when no plan can be found. In ICAPS, pp. 81–88.

Gopalakrishnan, S., & Kambhampati, S. (2018). TGE-viz: Transition graph embedding for
visualization of plan traces and domains. arXiv preprint arXiv:1811.09900.

Helmert, M. (2002). Decidability and undecidability results for planning with numerical
state variables. In AIPS, pp. 44–53.

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial Intelligence
Research, 26, 191–246.

Hempel, C. G. (1965). Aspects of Scientific Explanation and other Essays in the Philosophy
of Science. New York: Free Press.

Hempel, C. G., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of
Science, 15 (2), 135–175.

Henzinger, T. A. (2000). The theory of hybrid automata. In Verification of Digital and
Hybrid Systems, pp. 265–292. Springer.

1531



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

Holzinger, A., Carrington, A., & Müller, H. (2020). Measuring the quality of explanations:
The system causability scale (SCS). KI-Künstliche Intelligenz, 34 (2), 1–6.

Howey, R., Long, D., & Fox, M. (2004). VAL: Automatic plan validation, continuous effects
and mixed initiative planning using PDDL. In ICTAI, pp. 294–301.

Ignatiev, A., Pereira, F., Narodytska, N., & Marques-Silva, J. (2018). A SAT-based approach
to learn explainable decision sets. In IJCAR, pp. 627–645.

Ignatiev, A., Previti, A., Liffiton, M., & Marques-Silva, J. (2015). Smallest MUS extraction
with minimal hitting set dualization. In CP, pp. 173–182.

Kambhampati, S. (1990). A classification of plan modification strategies based on coverage
and information requirements. In AAAI Spring Symposium Series.

Kambhampati, S. (2019). Synthesizing explainable behavior for human-AI collaboration.
In AAMAS, pp. 1–2.

Karthik, V., Sreedharan, S., Sengupta, S., & Kambhampati, S. (2021). RADAR-X: An
interactive interface pairing contrastive explanations with revised plan suggestions.
In AAAI, pp. 16051–16053.

Kasenberg, D., Thielstrom, R., & Scheutz, M. (2020). Generating explanations for temporal
logic planner decisions. In ICAPS, pp. 449–458.

Katsuno, H., & Mendelzon, A. O. (1991a). On the difference between updating a knowledge
base and revising it. In KR, pp. 230–237.

Katsuno, H., & Mendelzon, A. O. (1991b). Propositional knowledge base revision and
minimal change. Artificial Intelligence, 52 (3), 263–294.

Kautz, H., McAllester, D., & Selman, B. (1996). Encoding plans in propositional logic. In
KR, pp. 374–384.

Kautz, H., & Selman, B. (1992). Planning as satisfiability. In ECAI, pp. 359–363.

Kim, J., et al. (2020). Plan Summarization for Decision Support in Human Team Planning.
Ph.D. thesis, Massachusetts Institute of Technology.

Kim, J., Muise, C., Shah, A., Agarwal, S., & Shah, J. (2019). Bayesian inference of linear
temporal logic specifications for contrastive explanations. In IJCAI, pp. 5591–5598.

Lakkaraju, H., Bach, S. H., & Leskovec, J. (2016). Interpretable decision sets: A joint
framework for description and prediction. In ACM SIGKDD, pp. 1675–1684.

Langley, P. (2016). Explainable agency in human-robot interaction. In AAAI Fall Sympo-
sium Series.

Langley, P. (2019). Varieties of explainable agency. In ICAPS Workshop on Explainable AI
Planning.

Levesque, H. J. (1989). A knowledge-level account of abduction. In IJCAI, pp. 1061–1067.

Levi, I. (1978). Subjunctives, dispositions and chances. Synthese, 34 (4), 423–455.

Li, C. M., & Manya, F. (2009). MaxSAT, hard and soft constraints. Handbook of Satisfia-
bility, 185, 613–631.

1532



A Logic-Based Explanation Generation Framework for Planning Problems

Lin, F. (2001). On strongest necessary and weakest sufficient conditions. Artificial Intelli-
gence, 128 (1-2), 143–159.

Magnaguagno, M. C., Fraga Pereira, R., Móre, M. D., & Meneguzzi, F. R. (2020). Web
planner: A tool to develop classical planning domains and visualize heuristic state-
space search. In Knowledge Engineering Tools and Techniques for AI Planning, pp.
209–227.

Mandel, T. (2002). User/system interface design. Encyclopedia of Information Systems, 1,
1–4.

Marques-Silva, J. (2012). Computing minimally unsatisfiable subformulas: State of the art
and future directions.. Journal of Multiple-Valued Logic & Soft Computing, 19 (1),
163–183.

Marques-Silva, J., Heras, F., Janota, M., Previti, A., & Belov, A. (2013). On computing
minimal correction subsets. In IJCAI, pp. 615–622.

Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions?. Educational
Psychologist, 32 (1), 1–19.

McDermott, D. M. (2000). The 1998 AI planning systems competition. AI Magazine, 21 (2),
35–35.

Miller, T. (2018). Explanation in artificial intelligence: Insights from the social sciences.
Artificial Intelligence, 267, 1–38.

Moulin, B., Irandoust, H., Bélanger, M., & Desbordes, G. (2002). Explanation and ar-
gumentation capabilities: Towards the creation of more persuasive agents. Artificial
Intelligence Review, 17 (3), 169–222.

Myers, K. L. (2006). Metatheoretic plan summarization and comparison. In ICAPS, pp.
182–192.

Nguyen, V., Vasileiou, S. L., Son, T. C., & Yeoh, W. (2020). Explainable planning using
answer set programming. In KR, pp. 662–666.

Palan, S., & Schitter, C. (2018). Prolific.ac—A subject pool for online experiments. Journal
of Behavioral and Experimental Finance, 17, 22–27.

Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind?. Behav-
ioral and Brain Sciences, 1 (4), 515–526.

Reiter, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence, 32 (1),
57–95.

Robinson, N., Gretton, C., Pham, D. N., & Sattar, A. (2009). SAT-based parallel planning
using a split representation of actions. In ICAPS, pp. 281–288.

Rosenthal, S., Selvaraj, S. P., & Veloso, M. M. (2016). Verbalization: Narration of au-
tonomous robot experience.. In IJCAI, pp. 862–868.

Shvo, M., Klassen, T. Q., & McIlraith, S. A. (2020). Towards the role of theory of mind
in explanation. In International Workshop on Explainable, Transparent Autonomous
Agents and Multi-Agent Systems, pp. 75–93.

1533



Vasileiou, Yeoh, Son, Kumar, Cashmore, & Magazzeni

Son, T. C., Nguyen, V., Vasileiou, S. L., & Yeoh, W. (2021). Model reconciliation in logic
programs. In JELIA, pp. 393–406.

Sreedharan, S., Chakraborti, T., & Kambhampati, S. (2018). Handling model uncertainty
and multiplicity in explanations via model reconciliation. In ICAPS, pp. 518–526.

Sreedharan, S., Chakraborti, T., & Kambhampati, S. (2020). The emerging landscape of
explainable automated planning & decision making. In IJCAI, pp. 4803–4811.

Sreedharan, S., Hernandez, A. O., Mishra, A. P., & Kambhampati, S. (2019). Model-free
model reconciliation. In IJCAI, pp. 587–594.

Sreedharan, S., Srivastava, S., & Kambhampati, S. (2018). Hierarchical expertise level
modeling for user specific contrastive explanations. In IJCAI, pp. 4829–4836.

Sreedharan, S., Srivastava, S., Smith, D. E., & Kambhampati, S. (2019). Why can’t you do
that HAL? Explaining unsolvability of planning tasks. In IJCAI, pp. 1422–1430.

Tian, X., Zhuo, H. H., & Kambhampati, S. (2016). Discovering underlying plans based on
distributed representations of actions. In AAMAS, pp. 1135–1143.

Ulbricht, M., & Baumann, R. (2019). If nothing is accepted–repairing argumentation frame-
works. Journal of Artificial Intelligence Research, 66, 1099–1145.

Vasileiou, S. L., Previti, A., & Yeoh, W. (2021). On exploiting hitting sets for model
reconciliation. In AAAI, pp. 6514–6521.

Winslett, M. S. (1988). Reasoning about action using a possible models approach. In AAAI,
pp. 1427–1432.

Zahedi, Z., Olmo, A., Chakraborti, T., Sreedharan, S., & Kambhampati, S. (2019). Towards
understanding user preferences for explanation types in model reconciliation. In HRI,
pp. 648–649.

Zhang, Y., Sreedharan, S., Kulkarni, A., Chakraborti, T., Zhuo, H. H., & Kambhampati,
S. (2017). Plan explicability and predictability for robot task planning. In ICRA, pp.
1313–1320.

1534


	A Logic-Based Explanation Generation Framework for Classical and Hybrid Planning Problems
	Abstract
	1. Introduction
	2. Explanations as Model Reconciliation
	2.1 A Logical Approach to the Model Reconciliation Problem
	3. Preliminaries
	3.1 Logic
	3.2 Classical Planning
	3.3 Hybrid Systems Planning
	3.4 Explainable AI Planning
	4. Explanation Generation Framework
	4.1 Preferred Explanations
	4.2 Explanations in Planning Problems
	5. Working Example
	6. Computing Explanations
	6.1 Pre-Processing Approximation Algorithm
	6.2 Modifications for Plan Validity Explanations
	7. Experimental Evaluation
	7.1 Question 1: Advantage of Pre-Processing Approach
	7.2 Question 2: Efficacy on Classical Planning Problems
	7.3 Question 3: Efficacy on Hybrid Planning Problems
	8. Proof-of-Concept: Communicating Explanations to Human Users
	8.1 User Study
	9. Related Work
	9.1 KR Literature
	9.2 Planning Literature
	10. Conclusions and Future Work
	Acknowledgments
	Appendix A. Working Example: PDDL+ Problem
	Appendix B. Theoretical Analysis
	Appendix C. Knowledge Base Update with a Linear Search Algorithm
	Appendix D. Proof-of-Concept: Communicating Explanation to Human Users
	References

