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Simple Summary: Breast cancer remains a leading cause of female cancer related mortality world-

wide. Loss of genomic stability and dysregulation of cellular metabolism are well-recognized fea-

tures of breast cancer, presenting an opportunity to study the drivers of breast cancer progression 

and resistance to chemotherapy. The overarching goal of this work is to perform combined analysis 

of DNA damage repair and cellular metabolism in response to olaparib treatment in a panel of breast 

cancer cell lines. By applying a combined untargeted metabolomics and molecular biology ap-

proach, our findings show dysregulation of amino acid metabolism and metabolic reprogramming 

from glycolysis to amino acid utilization to be a common feature in all breast cancer cell lines exam-

ined, some of which are consistent with findings from the analysis of clinical breast cancer tumours. 

Functional assessment of genetic alterations offers the scope to design new prognostic tools and 

inform the design of new chemotherapies or drug combinations. 

Abstract: Metabolic reprogramming and genomic instability are key hallmarks of cancer, the com-

bined analysis of which has gained recent popularity. Given the emerging evidence indicating the 

role of oncometabolites in DNA damage repair and its routine use in breast cancer treatment, it is 

timely to fingerprint the impact of olaparib treatment in cellular metabolism. Here, we report the 

biomolecular response of breast cancer cell lines with DNA damage repair defects to olaparib expo-

sure. Following evaluation of olaparib sensitivity in breast cancer cell lines, we immunoprobed 

DNA double strand break foci and evaluated changes in cellular metabolism at various olaparib 

treatment doses using untargeted mass spectrometry-based metabolomics analysis. Following iden-

tification of altered features, we performed pathway enrichment analysis to measure key metabolic 

changes occurring in response to olaparib treatment. We show a cell-line-dependent response to 

olaparib exposure, and an increased susceptibility to DNA damage foci accumulation in triple-neg-

ative breast cancer cell lines. Metabolic changes in response to olaparib treatment were cell-line and 

dose-dependent, where we predominantly observed metabolic reprogramming of glutamine-de-

rived amino acids and lipids metabolism. Our work demonstrates the effectiveness of combining 

molecular biology and metabolomics studies for the comprehensive characterisation of cell lines 

with different genetic profiles. Follow-on studies are needed to map the baseline metabolism of 

breast cancer cells and their unique response to drug treatment. Fused with genomic and tran-

scriptomics data, such readout can be used to identify key oncometabolites and inform the rationale 

for the design of novel drugs or chemotherapy combinations. 
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1. Introduction 

In a bid to develop new therapies against various cancer types, and genomic insta-

bility, its underpinning mechanisms and contribution to tumorigenesis have been exten-

sively investigated over the past few decades. Genomic instability, a well-known contrib-

utor to cancer, presents a therapeutic vulnerability that can be targeted in the develop-

ment of novel chemotherapy agents [1]. 

To maintain their genomic integrity, cells are equipped with a range of DNA damage 

repair (DDR) pathways and responses to counteract DNA lesions formed in response to 

endogenous and exogenous insults [2]. Hereditary mutations in these pathways have 

been correlated with increased cancer susceptibility, such that defects in homologous re-

combination contribute to approximately 10% of all breast cancers. These defects in DDR 

machinery result in the loss of function for genes implicated in DNA repair (i.e., breast 

cancer susceptibility gene 1/2—BRCA1/BRCA2) or dysregulation of cell cycle phases [3–

5]. While these genetic alterations increase the susceptibility to oncogenesis—they serve 

as therapeutic vulnerabilities—such that in the presence of a defective DNA repair path-

way the inhibition of an alternate DDR mechanism will lead to cell death. This concept is 

referred to as synthetic lethality, which has formed the rationale for existing DDR inhibi-

tors [6,7]. One such class of drugs, poly(ADP-ribose) polymerase (PARP) inhibitors, target 

vulnerabilities in the homologous recombination DDR pathway [8]. 

PARP inhibitors, as a class of DDR inhibitors, block the activity of PARP enzymes 

involved in DNA damage repair, therefore leading to accumulation of DNA double-

strand breaks that gives rise to genomic instability and subsequent apoptosis [9]. Several 

PARP inhibitors are currently approved as monotherapies for the treatment of locally ad-

vanced or metastatic breast cancer for patients, with breast cancer harboring germline 

BRCA1/2 mutations or HER2-negative receptor status [8]. In 2022, olaparib was approved 

by the FDA as an adjuvant treatment for patients with human epidermal growth factor 

receptor 2 (HER2)-negative and germline BRCA-mutated breast cancers following 

readout from the OlympiA trial [10]. 

While PARP inhibitors present a therapeutic opportunity for targeting DDR defects 

in breast and ovarian cancers, emerging evidence has shown a role for oncometabolites—

small molecule intermediates of cellular metabolism—in determining the response to 

these chemotherapies. The biology of oncometabolites and their role in modulating DDR 

has been increasingly studied over the past few years, guiding new combination therapies 

and novel biological targets for drug discovery [1]. 

Metabolic reprogramming—a key feature of all cancers [11]—gives rise to chemo-

resistance in both treatment-naïve and treatment-resistant breast cancers [12]. As with ge-

nomic instability, drivers of metabolic reprogramming can be broadly classified as intrin-

sic and extrinsic in origin [13]. Intrinsic stimuli, such as oncogenes and tumor suppressor 

genes, modulate cellular metabolism in breast cancer with several regulators, including 

BRCA1/2, MYC, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), and p53 as exam-

ples. The functional interplay between these regulators of cellular metabolism mediates 

DNA damage repair pathways and subsequent response to DDR chemotherapies. Recent 

evidence has shown that the upregulation of glucose utilization and glutamine metabo-

lism are required to sustain increased tumor bioenergetic and biosynthetic demand, which 

vary according to the cellular genetic makeup [14]. Intermediates from glucose and gluta-

mine metabolism have been identified as key oncometabolites regulating the response to 

chemotherapy drugs, presenting novel biomarkers and potential actionable targets for 

novel drug discovery [13]. 

DDR mechanisms induce cellular metabolic changes through interference with pu-

rine and pyrimidine biosynthetic pathways, amino acid metabolism, protein biosynthesis, 

and energy metabolism, impacting several metabolic routes [15]. Mediators of DDR path-

ways, including PARP, regulate several pathways exemplified by the pentose-phospha-

tase pathway, the TCA cycle, and glycolysis. In breast cancer, PARP inhibition reduces 

glucose consumption and alters amino acid and nucleotide metabolism depending on the 
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different cellular subtypes [16]. Moreover, BRCA-1 deficient breast tumors appear to rely 

on glucose consumption through enhanced glycolysis [17]. Differences in the metabolic 

signature between cell lines harboring different DNA repair mutations and measuring 

their response to PARP inhibitors can inform the rationale for selecting PARP inhibitors 

in certain breast cancer types and explore potential additional vulnerabilities as druggable 

targets [18]. 

DNA repair and regulation of metabolism is critical for maintaining homeostasis in 

normal human cells. However, the extensive dysregulation and aberrant function of both 

these pathways promotes tumorigenesis. Until recently, DNA repair and metabolic path-

ways have routinely been researched as distinct fields within their own right, but emerg-

ing research evidence an intrinsic inter-dependency between these pathways. Here, we 

report the differential cellular response of breast cancer cell line models with different 

mutational signatures (see Supplementary Table S1) and DDR defects to olaparib expo-

sure through combined analysis of DNA damage and metabolomics profiling. Combined 

evaluation of the DNA damage response and metabolic reprogramming offers new op-

portunities in the development of novel chemotherapies against cancer. 

2. Materials 

Cell Lines and Chemicals 

All cell lines used in this study were purchased from the vendor and maintained in 

accordance with manufacturer instructions. All cell culture reagents were obtained from 

Gibco (Thermo Fisher Scientific, Loughborough, Leicestershire, UK). MCF7 (RRID: 

CVCL_0031, Sigma, EACC collection) and MDA-MB-231 cells (RRID:CVCL_0062, ATCC, 

Teddington, Middlesex, UK) were purchased and maintained in Dulbecco’s Modified Ea-

gle Medium (DMEM, high glucose) supplemented with 10% v/v FBS (high glucose, Invi-

trogen, Inchinnan, Renfrewshire, UK), 1% v/v non-essential amino acids (NEAA) and 1% 

v/v penicillin-streptomycin (Invitrogen). Corresponding cell line origins, hormone recep-

tor status and mutational profiles are included in Supplementary Table S1. HCC1937 cells 

obtained from ATCC (RRID:CVCL_0290) were maintained in RPMI supplemented with 

10% v/v FBS and 1% v/v penicillin-streptomycin. All cell lines were maintained at 37 °C 

in a pre-humidified atmosphere containing 5% v/v CO2 and used within ten passages for 

the purposes of this work (passage 2–10). Olaparib (SantaCruz Biotechnology Inc., Wem-

bley, Middlesex, UK) was prepared as a 100 mM stock solution in DMSO, aliquoted, and 

stored at −20 °C until use. γH2AX, p53BP1 primary antibodies (Cell Signaling Technolo-

gies, Danvers, MA, USA), were used for foci immunostaining alongside the Alexa Fluor® 

488-conjugated secondary antibody (Fisher Scientific, Loughborough, Leicestershire, UK). 

3. Methods 

3.1. Cell Viability Assays 

MCF-7, MDA-MB-231, and HCC1937 cells undergoing exponential growth were 

seeded at a density of 4,000 cells/well in 96 well plates and incubated overnight to facilitate 

cell attachment. On the following day, cells were exposed to either blank growth medium 

(control) or growth medium containing different concentrations of olaparib (treatment 

medium) ranging from 0.01–500 µM for seven days at 37 °C and 5% v/v CO2. Treatment 

media were replaced every three days with treatment medium. Following a seven-day 

incubation, cell viability was measured using CellTiter 96® Aqueous Non-Radioactive Cell 

Proliferation Assay (Promega, Chilworth, Southampton, UK) (3-(4,5-dimethylthiazol-2-

yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) reagent. The 

resultant absorbance at 490 nm was measured using a GM3500 Glomax® Explorer Multi-

mode Microplate Reader (Promega). 

Growth curves represent percentage cell growth following treatment with different 

concentrations of olaparib and are plotted as a semi-log dose–response curve. The half 

maximal inhibitory concentration (IC50) was determined using a linear regression model. 
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Statistical analysis was performed using GraphPad Prism (RRID: SCR_002798, v.9.0.1). 

Three independent biological replicates (five wells per treatment concentration) were per-

formed for each cell line. 

3.2. Immunostaining for γH2AX and p53BP1 

Foci immunodetection for γH2AX and p53BP1 was performed in both control 

(growth medium) and for cells treated with olaparib (IC10, IC25, and IC50 doses) for seven 

days. Briefly, cell monolayers were fixed in chilled 4% w/v formaldehyde containing 2% 

w/v sucrose in PBS, followed by fixation in ice-cold methanol (100% v/v). Subsequently, 

cells were permeabilized in 0.25% v/v Triton X-100 in PBS, blocked with 5% v/v goat se-

rum/5% w/v BSA, immunoprobed with either a primary rabbit anti-γH2AX antibody 

(RRID:AB_420030) (1:1000) or primary rabbit anti-P53BP1 (1:200) antibody 

(RRID:AB_11211252, CST #2675 for p53BP1) overnight at 4 °C. Cell monolayers were 

treated with goat, anti-rabbit Alexa Fluor® 488 conjugated secondary antibody and coun-

terstained with DAPI. Image acquisition was carried out using an Invitrogen EVOS Auto 

Imaging System (AMAFD1000-Thermo Fisher Scientific) with a minimum of 100 cells im-

aged per treatment condition. Resultant foci images were analyzed in Cell Profiler 

(v.4.2.1.) using a modified version of the speckle counting pipeline. 

3.3. Sample Preparation and Metabolite Extraction 

MCF-7, MDA-MB-231, and HCC1937 cells were seeded at a density of 2 × 106 cells 

per well in 6-well plates, and exposed to growth medium containing olaparib at IC10, IC25 

and IC50 doses, as determined from the MTS assay (n = 5 per treatment concentration). 

Following exposure to olaparib, the growth medium was aspirated from each well, cen-

trifuged to remove cell debris, and stored at −80 °C. Next, treated cells were washed with 

pre-chilled PBS, with the metabolites quenched and extracted in a final volume of 1.5 mL 

pre-chilled (−80 °C) mixed solvent (Methanol:Acetonitrile:Water = 50:30:20). Resultant cell 

pellets were collected, and submerged in liquid nitrogen, vortexed, and sonicated for 3 

min in an ice-water bath. This procedure was performed in triplicate. Resultant extracts 

were centrifuged at 13,000× g for 10 min at 4 °C and the pellets were retained for protein 

quantification using the Bradford assay. The resultant supernatant was collected and 

dried with a Speed vac centrifuge (Savant-SPD121P). Dried metabolite pellets were recon-

stituted in Acetonitrile:Water (50:50) at volumes normalized to the relative protein con-

tent. Quality control (QC) samples were prepared by pooling samples across all control 

and treatment groups. Solvent blank and QC samples were inserted in analytical batch 

after every five samples to assess the stability of detecting system. 

3.4. Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) 

Metabolite separation was performed on a binary Thermo Vanquish ultra-high per-

formance liquid chromatography system, where 5 µL of reconstituted cellular extract was 

injected on to a Thermo Accucore HILIC column (100 mm × 2.1 mm, particle size 2.6 µm). 

The temperature of the column oven was maintained at 35 °C, while the autosampler tem-

perature was set at 5 °C. For chromatographic separation, a consistent flow rate of 500 

µL/min was used where the mobile phase in positive heated electrospray ionisation mode 

(HESI+) was composed of buffer A (10 mM ammonium formate in 95% acetonitrile, 5% 

Water with 0.1% formic acid) and buffer B (10 mM ammonium formate in 50% acetonitrile, 

50% Water in 0.1% formic acid) (Table S2). Likewise, in negative ionization mode (HESI-

), buffer A (10 mM ammonium acetate in 95% acetonitrile, 5% water with 0.1% acetic acid) 

and buffer B (10 mM ammonium acetate in 50% acetonitrile, 50% water with 0.1% acetic 

acid). The elution gradient used for the chromatographic separation of metabolites is in-

cluded in supplementary information. 



Cancers 2022, 14, 3661 5 of 19 
 

 

A high-resolution Exploris 240-Orbitrap mass spectrometer (Thermo Fisher Scien-

tific) was used to perform full scan and fragmentation analyses. Global operating param-

eters were set as follows: spray voltages of 3900 V in HESI+ mode, and 2700 V in HESI-

mode. The temperature of the transfer tube was set as 320 °C with a vaporizer temperature 

of 300 °C. Sheath, aux gas, and sheath gas flow rates were set at 40, 10, and 1 Arb, respec-

tively. Data-dependent acquisitions (DDA) were performed using the following parame-

ters: full scan range was 70–1050 m/z with a MS1 resolution of 60,000. Subsequent MS/MS 

scans were processed with a resolution of 15,000. High-purity nitrogen was used as neb-

ulising and as the collision gas for higher energy collisional dissociation. Further details 

are included in supplementary information. 

3.5. Mass Spectrometry Data Processing 

Raw data files obtained from Thermo Scientific XcaliburTM software 4.2 were im-

ported into Compound DiscovererTM 3.2 software where the “Untargeted Metabolomics 

with Statistics Detect Unknowns with ID Using Online Databases and mzLogic” feature 

was selected (supplementary information). The workflow analysis performs retention 

time alignment, unknown compound detection, predicts elemental compositions for all 

compounds, and hides chemical background (using Blank samples). For the detection of 

compounds, mass, and retention time (RT) tolerance were set to 3 ppm and 0.3 min, re-

spectively. The library search was conducted against the mzCloud, Human Metabolome 

Database (HMDB) and Chemical Entities of Biological Interest (ChEBI) database. A com-

pound table was generated with a list of putative metabolites (known and unknown). 

Among them, we selected all the known compounds fully matching at least two of the 

annotation sources. The selected metabolites were then used to perform pathway and sta-

tistical analysis. 

3.6. Pathway Analysis with MetaboAnalyst 

Prior to analysis of the metabolic pathways with MetaboAnalyst 5.0 (RRID: 

SCR_015539, https://www.metaboanalyst.ca/, accessed May 6th 2022), a HMDB identifica-

tion code was assigned to each selected metabolite. A joint pathway analysis was per-

formed by integrating the genes relative to each cell line (Table S1) with the list of ID 

compounds and their associated Log2 Fold change values. The integration method com-

bined both genes and metabolites into a single query, then was used to perform the en-

richment analysis. This latter was based on a hypergeometric test. Finally, important 

nodes (compounds) were scored based on their betweenness centrality, and pathway 

analysis results were generated. 

3.7. Statistical Analysis  

All data are presented as mean ± standard deviation (n ≥ 5). For cell viability and 

immunofluorescence quantification data, the Shapiro normality test was performed (Sup-

plementary Table S3). For metabolomics analysis, Principal Component Analysis (PCA) 

was performed to test analytical reproducibility of QC injections, reduce the dimension-

ality of our data, and determine the metabolic profiles of the different sample groups. 

Differential analysis was used to compare differences between control and treatment 

groups and plotted as a Volcano plot (log-fold change vs. −log10 p-value). Peak areas were 

log10 transformed and p values were calculated for the sample group by analysis of vari-

ance (ANOVA) test. A p value < 0.05 and fold-change of 1.5 was deemed to be statistically 

significant. 

4. Results 

4.1. Olaparib Sensitivity Analysis 

To determine the olaparib dose range for subsequent foci and metabolomics experi-

ments, we measured the sensitivity of MCF7, MDA-MB-231, and HCC1937 cell lines to 
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olaparib exposure over a seven-day treatment duration. The rationale behind exploring 

the sensitivity to olaparib in these cell lines was to perform a comparison between two 

triple-negative (MDA-MB-231 and HCC1937) and a non-triple-negative (MCF-7) cell line. 

Our results show that exposure to olaparib caused a reduction in cell viability in all 

cell lines in a dose-dependent manner (Figure 1). We observed superior efficacy of 

olaparib in reducing cell viability in both MCF7 and MDA-MB-231 cells, with a calculated 

half maximal inhibitory concentration (IC50) of 10 µM and 14 µM, respectively. However, 

in the case of HCC1937 cells, a higher concentration of olaparib was required to achieve 

the same reduction in cell viability (150 µM), indicating a lower efficacy of response to 

olaparib in this cell line. 

 

Figure 1. Corresponding MTS dose–response curves for MCF7, HCC1937, and MDA-MB-231 cells 

treated with ascending doses of olaparib (0.1–500 µM) for seven days. The corresponding R2 values 

for fitted dose–response curves in MCF7 (IC50 = 10 µM), MDA-MB-231 (IC50 = 14 µM), and HCC1937 

(IC50 = 150 µM) cells were 0.89, 0.91, and 0.85, respectively. 

4.2. Exposure to Olaparib Induces Dose-Dependent Formation of γH2AX and 53BP1 Foci in 

Breast Cancer Cells  

PARP inhibition induced by olaparib exposure results in the accumulation of DNA 

damage in cells by compromising their DDR mechanisms. Therefore, we next investigated 

the extent to which olaparib exposure at various doses (IC10, IC25, and IC50—determined 

from MTS assays) promotes the accumulation of DNA double strand breaks (DSBs) in 

MCF-7, MDA-MB-231, and HCC1937 cell lines. Key markers for DNA DSB formation in-

clude phosphorylated histone H2 variant H2AX (γH2AX) [19] and the damage sensor 

p53-binding protein 1 (p53BP1), which are rapidly recruited to sites of DNA damage and 

their accumulation is directly proportional to the number of DSB lesions [20]. To measure 

the extent of DNA DSB formation, we performed immunofluorescence of p53BP1 and 

γH2AX foci. 

Based on our results, p53BP1 and γH2AX foci levels increased in a dose-dependent 

manner in both MCF7 and MDA-MB-231 cells in response to ascending doses of olaparib 

(Figures 2a,b,d,e and 3a,b,d,e). However, in HCC1937 cells, a significant increase in foci 

numbers was not observed in comparison to increased foci numbers with ascending 

olaparib doses for MCF-7 and MDA-MB-231 cells. the highest olaparib treatment dose 

(150 µM), in comparison to the 17 and 50 µM exposure doses (Figures S1 c,f and S2 c,f). 

Generally, a higher number of both p53BP1 (mean > 10 foci per cell) and γH2AX (mean > 

20 foci per cell) foci were observed in the HCC1937 cell line, compared to the MCF7 and 

MDA-MB-231 cells, where a mean of <10 foci per cell were measured for both markers. 

These results are consistent with the dose-dependent sensitivity of MCF7 and MDA-MB-

231 cells in response to olaparib exposure, further confirming cell-line-dependent re-

sponse to olaparib exposure. 
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Figure 2. The formation of p53BP1 foci in response to treatment with either growth medium or me-

dium containing olaparib at the IC50 dose. Representative images of immunolabelled P53BP1 foci 

(red), DAPI (blue) nuclear counterstain and composite (p53BP1 (red) and DAPI (blue)) in MCF-7, 

MDA-MB-231, and HCC1937 cells treated with olaparib for seven days (a,c,e). Corresponding 

p53BP1 foci counts determined using Cell Profiler (b,d,f). 9 repeats with, on average, > 100 cells per 

each sample. p-values have been determined through ANOVA test. Dunnett’s multiple comparison 

test was used as a follow up to ANOVA test and the p-values were represented as: ns, non-signifi-

cant; *, 0.05; **, 0.005; ****, >0.00005. 
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Figure 3. The formation of γH2AX foci formation in response to treatment with either growth me-

dium or medium containing olaparib at the IC50 dose. Representative images of immunolabelled 

γH2AX foci (green), DAPI (blue) nuclear counterstain and composite (γH2AX and DAPI) in MCF-

7, MDA-MB-231, and HCC1937 cells treated with for seven days (a,c,e). Corresponding γH2AX foci 

counts determined using Cell Profiler (b,d,f). (>100 cells per sample). Dunnett’s multiple compari-

son test was used as a follow up to ANOVA and corresponding p-values were represented as: ns, 

non-significant; **, 0.005; ****, >0.00005. 

4.3. Biomolecular Pathways Altered in Response to Olaparib Exposure Vary across Different Cell 

Lines 

To comprehensively measure the extent of variation induced by olaparib exposure in 

MCF-7, MDA-MB-231, and HCC1937 cell lines, we profiled their metabolome using an in-

house untargeted liquid chromatography-mass spectrometry-based metabolomics pipe-

line (Figure S3a). After data acquisition, data processing and analysis were performed in 

Compound Discoverer 3.2. First, we used principal component analysis (PCA) to visualize 

and interpret the clustering of quantified metabolite data to examine global differences 

between treatment groups and cell lines examined, which was followed by pairwise PCA 

between control and treated groups across positive and negative analysis modes (Figure 4). 
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Figure 4. Statistical analyses of global metabolic features identified in MCF7, MDA-MB-231, and 

HCC1937 upon exposure to the IC50 olaparib dose for seven days acquired in positive and negative 

ionization mode. For each treatment group, five replicates were used. Data points in the two-dimen-

sional PCA score plot were central scaled. (a) PCA pairwise analysis and differential analysis of 

metabolites altered in IC50-treated cells, (b) Volcano plots displaying enriched (blue) and depleted 

(grey) metabolic features by representing the log2 fold change in altered features and the −log10 

adjusted p-values with cut off values selected at >1.5 and <0.05, respectively. Upward arrows repre-

sent enrichment of features, while downward arrows represent depleted features. 

Pooled QC data confirm the stability of the data acquisition system across all the 

measurements performed in positive and negative ionization acquisition modes (Figure 

S3b). Distinct clustering patterns were observed, with better separation for the IC50 

olaparib treatment dose across all cell lines (Figures 4a and S4). Volcano plots indicate the 

differential number of metabolic features that are significantly altered following exposure 

to olaparib, relative to control (Figures 4b and S5, Table S5). From a metabolic perspective, 

we observed that HCC1937 (BRCA1-mutated) cells were the most susceptible to exposure 

at the IC50 olaparib treatment dose, while the MCF7 cells showed a higher number of sig-
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nificantly altered metabolic features at the IC25 olaparib treatment concentration. To-

gether, these findings show a differential dose- and cell-line-dependent metabolic re-

sponse to olaparib exposure. 

4.4. Amino Acid and Lipid Metabolism Are Significantly Altered in Response to Olaparib 

Exposure  

To analyze specific biomolecular pathways altered by olaparib exposure, we used 

MetaboAnalyst to identify key metabolic pathways significantly perturbed by olaparib 

treatment and performed enrichment analysis for both control and treated samples (Fig-

ures 5 and S6). Among the pathways ranked in the top ten, we selected altered pathways 

with a corresponding pathway impact > 0.1, and a p-value < 0.05. 

 

Figure 5. Pathway enrichment analysis of MCF7 (10 µM), MDA-MB-231 (14 µM), and HCC1937 (150 

µM) cells following a seven-day exposure to olaparib. Enrichment analysis was based on the hyper-

geometric test. Topological analysis was based on betweenness centrality. The tight integration 

method was used by combining genes and metabolites into a single query. A p < 0.05, and pathway 

impact > 0.1 were deemed significant. 

Across all cell lines examined, the top ten putative pathways significantly altered in 

Metaboanalyst (Figure 5, Table S6) were based on amino acid (arginine biosynthesis, glu-

tamine, glycine, serine, and threonine metabolism) and lipid metabolism (butanoate me-

tabolism). Following the identification of metabolic pathways altered by olaparib expo-

sure, we constructed a Venn diagram (Figure S7) to outline common overlapping and cell 

line-specific altered metabolic features. 

Overlapping pathways are mostly represented by amino acid metabolism (gluta-

mine, glutamate, aspartate, alanine, arginine, and proline), suggesting a strong reliance of 

breast cancer cell metabolism on amino acids under baseline conditions (control samples). 

Upon olaparib exposure, the same pathways (amino acid metabolism) were among the 

most significantly altered across all cell lines, while fatty acid (butanoate metabolism) and 

vitamin B6 metabolism were only significantly perturbed in MCF-7 cells. 

Next, we explored individual metabolites that were associated with significantly al-

tered metabolic pathways in response to olaparib exposure and evaluated relative 

changes in their levels between control and treatment samples. These results are presented 

through a heatmap clustering analysis (Figure 6). A correlation analysis between each me-

tabolite is shown in Figure S8, and a wider list of compounds specific for each cell type is 

provided (Table S7). 
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Figure 6. Heatmap cluster analysis of relevant metabolites associated with the pathways altered 

upon exposure to olaparib in MCF7 (10 µM), MDA-MB-231 (14 µM), and HCC1937 (150 µM) cells 

for seven days. Clustering and distance function are Ward and Euclidean, respectively. Normalized 

areas indicate chromatographic peaks areas that have been normalized based on the QC samples to 

compensate for batch effects. 

Multiple amino acids (glutamine, glutamate, arginine, proline, methionine, glycine, 

threonine, taurine, and hypotaurine) were found to be depleted following olaparib expo-

sure (relative to control) in all cell lines examined. Arginine and proline metabolism were 

significantly depleted by olaparib exposure, with depletion of their derived polyamines 

detected in all cell lines examined. Conversely, catabolic products of arginine and proline 

metabolism (N8-Acetylspermidine, N1-N8-Diacetylspermidine, and N1-N12-Diacetyl-

spermine) were enriched. Elevated levels of serine were observed in MCF7 and MDA-

MB-231 cells, while depletion of serine levels was seen in HCC1937 cells. 

Alpha-ketoglutarate (α-KG-glutamine-derived intermediate of the TCA cycle) was 

enriched in MCF7 and depleted in MDA-MB-231 and HCC1937 cells. A negative correla-

tion was observed between α-KG and glutamine levels, and a positive correlation between 

α-KG, and citric and fumaric acid (TCA cycle intermediates). Aspartate (a TCA cycle prod-

uct) accumulated in the KRAS-mutant MDA-MB-231 cells, while aspartate depletion was 

observed in MCF7 and HCC1937 cells. Glucose levels were significantly elevated relative 

to control samples in HCC1937 cells. Asparagine (a byproduct of aspartate) was absent in 

MDA-MB-231 cells, while its enrichment was detected in MCF7 and HCC1937 cells. In 
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parallel, accumulation of AMP was observed in both MCF7 and HCC1937 cell lines, while 

it was absent in MDA-MB-231 cells, and enrichment of PPi was detected in all cell lines 

examined following olaparib exposure. 

In the case of lipid metabolism, we observed a global depletion of phosphocholines 

(PC) and phosphoethanolamines (PE) in all cell lines following olaparib treatment. Acyl-

carnitine levels varied across the cell lines, with an overall enrichment of long (C14–C21) 

and very-long chain acylcarnitines (>C22) in all cell lines treated with olaparib. Moreover, 

we observed enriched alpha-linoleic acid (a polyunsaturated fatty acid-PUFA) levels in 

MCF7 and MDA-MB-231 cells, which was absent in HCC1937 cells. 

Compared to non-treated cells, elevated levels of glucose were detected in all cell 

lines studied following olaparib treatment, while downregulation of most nucleobases 

was observed. Finally, NAD+ downregulation was detected in all cell lines treated with 

olaparib. 

An overview of the metabolic features altered in response to olaparib exposure is 

given in Figure 7, where we mapped cell line differences in metabolite levels through the 

Kyoto Encyclopaedia of Genes and Genomes (KEGG) database. Moreover, in the figure 

we represented the fitness effect score of metabolic enzymes relative to each Olaparib-

treated cell, which have been obtained through a cross-comparison with the Dependency 

Map Portal (DepMap; Table S8). The fitness effect score measures the effect of knocking 

out a gene on cell proliferation. A negative score indicates that the knocked-out gene 

causes a slower cell proliferation, while a positive score is indicative of a consequent en-

hanced proliferation [21]. 

 

Figure 7. A summary of putatively identified metabolic pathways altered in response to olaparib 

exposure at IC50 doses. Significantly altered features with a Log2 fold change of >1.5 (blue-enriched 

and grey-depleted). Fitness effect score of metabolic enzymes (light-blue boxes) in relation to PARP 

expression in each cell line. Positive and negative scores are in green and red, respectively. MCF-7 (

), MDA-MB-231 ( ), and HCC1937 ( ). Fitness effect score is based on the Chronos algo-

rithm. 

  



Cancers 2022, 14, 3661 13 of 19 
 

 

5. Discussion 

PARP inhibitors have shown promising results in the treatment of metastatic breast 

cancers harboring germline BRCA1/2 mutations [22,23]. Recent clinical studies have 

shown evidence of PARP inhibitor efficacy in the management of breast cancer, irrespec-

tive of tumor BRCAness. Prior work has shown that BRCA1-mutated cells carrying a TP53 

mutation are resistant to treatment with PARP inhibitors [24]. Therefore, additional fac-

tors beyond BRCAness may govern sensitivity to PARP inhibition. 

In this study we analyzed the sensitivity of two triple-negative (MDA-MB-231 and 

HCC1937) and MCF-7 (ER+, PR−, HER2−) cell lines to olaparib PARP inhibition 

(PARP1/2). The rationale for selecting these cell lines was to explore how their different 

genetic profiles (see Supplementary Table S1) define the observed differential biomolecu-

lar perturbations in response to olaparib treatment. Initially, we examined the responsive-

ness of MCF-7, MDA-MB-231, and HCC1937 cell lines to olaparib exposure using the MTS 

cell viability assay (Figure 1). Our results show differential sensitivity to olaparib expo-

sure across the cell lines examined, with MCF-7 and MDA-MB-231 showing sensitivity to 

olaparib treatment at lower micromolar concentrations, and the BRCA1-mutant HCC1937 

cell line showing less sensitivity (IC50—150 µM). These findings are in agreement with 

previous reports of HCC1937 resistance to PARP inhibition, where the identification of 

predictive biomarkers of response to PARP inhibitor treatments was recommended be-

yond BRCA1/2 status [24]. 

Our analysis of γH2AX and p53BP1 DNA DSB immunolabelled foci (Figure 3) 

showed a higher occurrence of DNA damage foci in HCC1937 cells in comparison with 

MCF-7 and MDA-MB-231 cells with wild-type BRCA status. These observations suggest 

that BRCA status does not necessarily translate to olaparib sensitivity, and additional 

DDR components may define responsiveness. At present, routine clinical decision making 

surrounding the selection of treatment interventions are based on BRCA status, anatomi-

cal location, hormone receptor status and tumor stage, with very limited attention given 

to other mediators of DDR—namely homologous recombination—known to confer a 

BRCAness phenotype similar to BRCA 1 or 2 loss. Several recent studies have used whole-

genome sequencing or the integration of homologous recombination panel scoring sys-

tems to provide an additional framework for predicting responders to PARP inhibitor 

treatment [25,26]. 

Genetic biomarkers are routinely used in the clinical stratification of breast cancers 

and predicting treatment-emergent resistance [27]. While genome-wide studies have im-

proved patient stratification efforts, they lack the potential to account for functional phe-

notypic effects resulting from protein expression levels, or gain- or loss of function effects. 

Metabolomics has emerged in the past decade as an additional research toolbox for stud-

ying potential biomarkers of breast cancer, with a range of applications ranging from early 

detection to the discovery of new metabolites and prognostic classification of patients 

with breast cancer [28]. 

Our goal in the present study was to apply combined analysis of DNA damage foci 

formation with global untargeted mass-spectrometry based metabolomics to map the 

metabolic changes occurring following exposure to olaparib. We examined the baseline 

differences in cellular metabolism across the cell line panel and extended this evaluation 

to examine cell-line-dependent response to olaparib treatment. Under baseline cell culture 

conditions, we found overlapping metabolic features (alanine, aspartate, glutamine, argi-

nine, proline, glycine, serine, and threonine) occurring across all three breast cancer cell 

lines studies, and metabolic signatures that were unique to specific cell lines (MCF7: 

sphingolipid and glycerophospholipid metabolism; MDA-MB-231: taurine and hypotau-

rine metabolism; HCC1937: glyoxylate and dicarboxylate metabolism) (Figures 5 and 6). 

Our analysis of metabolites significantly altered in response to olaparib treatment 

correlate with reports from Bhute et al., where metabolic markers of PARP inhibition were 

reported as changes in amino acid metabolism (glutamine and alanine), downregulation 

of osmolyte levels (taurine, and GPC), phosphocreatine, lactate, and pyruvate in MCF7 
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cells [29]. We reported downregulation of those metabolites in the MDA-MB-231 and 

HCC1937 cells, while low levels of fumarate were observed only in the HCC1937 cells 

(Figure 6). Bhute et al. also reported increased NAD+ levels for cells treated with veliparib. 

In our results, NAD+ levels increased in the MCF7 cells treated with olaparib at the IC10 

treatment concentration, accompanied by a decrease in NAD+ levels at ascending concen-

trations of olaparib. Reduced levels of NAD+ were also detected in the MDA-MB-231 and 

HCC1937 cells at all treatment concentrations. Recent studies have shown that in TNBC 

cells, olaparib enhances the signaling pathways of other NAD+-dependent deacetylase 

(i.e., sirtuins) [29,30]. These findings are in agreement with our observation of depleted 

acetyl-amino acid levels and enrichment of methyl-pyridines, -pyrrolidines, and -nucleo-

sides. Further studies are needed to confirm the divergence of NAD+ flow towards alter-

native pathways and its association with specific breast cancer subphenotypes. 

Glutamine, a precursor for protein, nucleotide, and lipid biosynthesis, is a fundamen-

tal amino acid in breast cancer cell metabolism, playing a pivotal role in providing ana-

plerotic intermediates for the tricarboxylic acid (TCA) cycle [31]. Previous reports have 

indicated a reduction of glutamine levels only for the TNBC cells after treatment with 

veliparib, and in the MCF7 cells only in combination with other DDR inhibitors [16]. Our 

results show reduced glutamine levels in all cell lines treated with olaparib, suggesting 

increased glutamine utilization. Once internalized by cells, glutamine can be converted to 

glutamate and alpha-ketoglutarate (α-KG). α-KG—a by-product of isocitrate—is oxidized 

in the TCA cycle through a reaction catalyzed by isocitrate dehydrogenase (IDH), which 

is frequently mutated in cancer. Several studies have studied α-KG as an oncometabolite, 

where elevated levels induce the reversal of enhanced glycolysis through downregulation 

of the Hypoxia-inducible factor (HIF1), which, following PARP inhibition, leads to cell 

death [32,33]. Recent findings have shown that mutant IDH—and the consequent synthe-

sis of aberrant α-KG forms—confers a BRCAness phenotype [34], downregulating the ex-

pression of the DNA repair enzyme Ataxia-telangiectasia mutated (ATM) kinase [35], al-

tering the methylation status of loci surrounding DNA breaks [36]. Together, these alter-

ations lead to homology-dependent repair (HDR) impairment and increase susceptibility 

to PARP inhibition. On this basis, the reduced α-KG levels observed in olaparib-treated 

MDA-MB-231 and HCC1937 cells shows the basis for potential resistance to the anti-pro-

liferative effects of olaparib. The increased utilization of α-KG by HCC1937 cells is paral-

leled by an increased consumption of serine at ascending doses of olaparib. These obser-

vations are consistent with reports that in BRCA1-mutated TNBC cell lines, approxi-

mately 50% of α-KG results from the flux of serine metabolism [37]. 

Glutamine is also a source of nitrogen groups for the synthesis of nucleobases and 

nucleotides, either directly or through a process involving the transamination of gluta-

mate and the TCA cycle-derived oxaloacetate that generates aspartate [38–40]. Our results 

show that low levels of glutamine are associated with overall reduction in nucleobase and 

nucleotide levels. MCF7 and HCC1937 cells showed accumulation of adenosine mono-

phosphate (AMP), which represents a depleted energy and nutrient status of the cells 

known to activate the metabolic sensor AMP-activated protein kinase (AMPK) leading to 

cell growth inhibition [41]. Different studies have considered activation of AMPK a met-

abolic cancer suppressor and an attractive therapeutic target for TNBC [42], however, its 

signaling network in response to PARP inhibition in different breast cancer cells needs to 

be established. In opposition to what was observed by Bhute et al., aspartate, a byproduct 

of the TCA cycle, accumulated in the MDA-MB-231 cells after PARP inhibition compared 

to its reduction in the MCF7 and HC1937 cells. Lowered plasma aspartate levels have been 

diagnosed in breast cancer patients, suggesting an increased tumor utilization of this me-

tabolite [43]. Moreover, we observed that aspartate metabolism is relevant both in the 

baseline model and in response to olaparib, which suggests a role of this metabolite in 

regulating the different metabolic phenotypes of breast cancer cells. However, its role has 

been poorly investigated, and little is known about its association with PARP inhibition.  
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Among the pathways of aspartate utilization, asparagine is converted through the 

enzyme asparagine synthetase (ASNS). The reaction requires glutamine as a substrate and 

consumption of adenosine triphosphate (ATP) to produce adenosine monophosphate 

(AMP) and pyrophosphate (PPi). Physiological levels of asparagine occur at levels of < 

0.05 mM in human plasma [44]. Cancer cells harboring mutant KRAS (e.g., MDA-MB-231) 

possess lower ASNS expression levels, leading to lower baseline aspartate levels explain-

ing the rationale for the lack of aspartate detection in MDA-MB-231 lines [45]. In breast 

cancer cells, the increased bioavailability of asparagine promotes metastatic progression 

[46] due to its role in protein synthesis and regulation of amino acid homeostasis [47]. We 

found elevated asparagine levels in olaparib-treated MCF7 and HCC1937 cells, suggesting 

a role for asparagine in the observed responses to exposure to PARP inhibitor. 

Beyond asparagine synthesis, aspartate amidation through ASNS presents a source 

of amino building blocks for the synthesis of arginine in the urea cycle, which is in turn 

responsible for the synthesis of polyamines catalyzed by ornithine decarboxylase (ODC). 

Polyamine accumulation has previously been correlated with the increased proliferation 

of both hormone-dependent and independent breast cancer cells [48], and was recently 

found to contribute to BRCA1-mediated DNA repair [49]. Moreover, metabolic profiling 

of plasma samples from patients with TNBC revealed an increase of diacetyl spermines 

associated with elevated expression of MYC, a well-known oncogene driving TNBC de-

velopment and proliferation. Here, we found elevated diacetyl spermine levels following 

olaparib treatment in both TNBC and non-TNBC cells, suggesting an upregulation of pol-

yamine catabolism, irrespective of cell line BRCA- and hormone receptor status. Parallel 

to their relevance in cellular metabolism, amino acids also serve as biological buffers 

through regulation of cellular pH. Low extracellular pH is associated with positively 

charged amino acids and a known hallmark of cancer arising from enhanced glycolysis, 

production and altered lactate metabolism, resulting in altered mTOR pathway activation, 

ultimately regulating cancer cell metabolism [50,51]. 

Glutathione (GSH) is involved in the protection against ROS and regulation of intra-

cellular redox homeostasis. Elevated GSH levels have previously been reported in TNBC 

compared to luminal breast cancers, suggesting the relevance of GSH to our observations 

of lower sensitivity to olaparib in TNBC cell lines [17,52]. 

Lipids mediate various cellular biological functions, including energy storage, cell 

membrane structural composition and signal transduction, the increased biosynthesis of 

which is a marker of metabolic rewiring observed in malignant breast cancers [53,54]. Our 

findings show downregulation of fatty acid biosynthesis following olaparib treatment, 

with a reduction in phospholipid levels, including lysophosphatidylcholines and glycer-

olphosphocholines, in all cell lines. Poly-unsaturated fatty acids (PUFAs) have previously 

been implicated in MCF7 and MDA-MB-231 cell apoptosis through the induction of lipid 

peroxidation and altered cellular redox state [55]. Moreover, elevated PUFA levels have 

been associated with the proteolytic cleavage of PARP and its inhibition, leading to cell 

death [56]. On this basis, the reduced PUFA levels observed in HCC1937 cells may indi-

cate their resistance to olaparib treatment. Only a limited number of studies have reported 

a correlation between PUFAs and breast cancer subphenotypes, requiring further valida-

tion by additional studies. 

Future targeted metabolomics studies using additional TNBC cell lines and clinical 

tumor clinical specimens are required to validate our observations. Validation of our find-

ings could define prognostic biomarkers that will aid evaluation of patient prognosis in 

the clinical setting and enable the implementation of precision medicine in the manage-

ment of breast cancer. 

6. Conclusions 

Our data show differential sensitivity of breast cancer cell lines to olaparib treatment 

that was dose-dependent and demonstrated the increased sensitivity of TNBC cells to 

DNA damage foci accumulation. The application of metabolomics to the study of breast 
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cancer remains in its infancy, with only a handful of studies reporting combined metabo-

lomics and phenotypic analyses. Data acquired from metabolomics analysis can be vali-

dated against routine molecular biology and phenotypic assays, providing a powerful 

platform for biomarker detection or the discovery of novel actionable pathways for drug 

development. 

Our results show that fingerprinting the metabolic profile of cells can be a powerful 

tool for uncovering potential oncometabolites or mechanisms giving rise to chemo-

resistance. Findings from such studies may provide potential additional actionable targets 

for modulating response to drug treatment or the design of new drug combinations that 

will overall enhance DNA damage efficacy, ultimately improving patient response to ra-

diotherapy and adjuvant chemotherapy. 
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