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Cholesteric liquid crystals exhibit great morphological richness of static metastable states. Understanding the
transitions between such states is key for the development of switchable devices. We show, using a quasi-one-
dimensional model, that cholesterics exhibit distinct uniaxial and biaxial pathways between distinct minima. We
study transitions between different layer numbers and prove, and show, that transition states are distinguished
either through splay-mediated untwisting, understood through contact topology, or the presence of biaxiality.
Furthermore we characterize a menagerie of additional saddle points that dictate the connectivity of the solution
landscape.
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Cholesteric liquid crystals display rich morphology, partic-
ularly in confinement. For a given geometry, with specified
boundary conditions, one typically finds a huge variety
of metastable states [1]. These include arbitrarily knotted
disclination lines [2–5], torons [6,7] and Hopf solitons [8],
inverse torons [9], point defect constellations [10,11], com-
plex patterns in shells, cylinders and droplets [12–16], and
Skyrmion lattices [17] amongst many others. This richness
gives cholesteric liquid crystals great potential for the creation
of soft devices. There is another key strength to cholesterics
and all liquid crystal systems, they flow (spontaneously in the
case of active systems) and readily respond to applied fields
[18]; in other words, they are switchable. For a switchable de-
vice, understanding and controlling pathways between stable
states is just as important as understanding the stable states
themselves, non-energy-minimizing critical points play cru-
cial roles in switching mechanics and selection of minimizers
[19]. In a cholesteric system, chirality leads to many complex
metastable configurations and one expects similar richness in
the space of transition pathways between metastable states.

Many liquid crystalline configurations are distinguished by
their topology, using homotopy theoretic invariants [20–22].
However, these invariants often cannot distinguish between
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two cholesteric configurations that appear qualitatively dis-
tinct. We consider the simplest example in this letter [23];
the number of layers in a cholesteric cell, with all even (or
odd) layer numbers equivalent from a homotopy-theoretic
perspective. An alternative approach uses ideas from contact
topology [9,11,23] to provide more sophisticated topological
invariants. In this theory, the key role is played by the twist
density; if the twist density is nowhere-zero, the liquid crystal
configuration is labeled as being chiral. Using the tools of
contact topology [24], one can rigorously define new invari-
ants (e.g., the layer number [9,23,25]) that can distinguish
between chiral configurations, for example helices with dif-
ferent numbers of twists/layers. This gives a new heuristic
understanding of the cholesteric solution landscape, which
we explore in this letter. We investigate pathways between
helices with different numbers of twists, and use sophisticated
topological and numerical studies to discover a dichotomy;
the helices or equivalently the different chiral sectors can
be connected by“untwisted states” or they can be connected
by exotic biaxial defects, which avoid the untwisting. Which
pathway is preferred or observed is a delicate question that de-
pends on the geometry, temperature, and material properties,
and careful investigations of the parameter space can allow
us to steer these pathways and manipulate the corresponding
solution landscapes. Our work is a first step in the theoretical
demonstration of such dichotomies for the simplest model
cholesteric system, and our tools will extend to more complex
higher-dimensional cholesteric systems to navigate through
the labyrinth of metastable states and the pathways between
them.

We study a cholesteric sample inside a cell of height h,
� = {(x, y, z) ∈ R3| 0 � z � h}. We work in the powerful

2643-1564/2022/4(3)/L032018(6) L032018-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.L032018&domain=pdf&date_stamp=2022-08-02
https://doi.org/10.1103/PhysRevResearch.4.L032018
https://creativecommons.org/licenses/by/4.0/


HAN, DALBY, MAJUMDAR, CARTER, AND MACHON PHYSICAL REVIEW RESEARCH 4, L032018 (2022)

Landau–de Gennes (LdG) formalism, where the cholesteric
state is described by the LdG Q-tensor order parameter, with
Cartesian components Qi j . The LdG Q-order parameter is a
symmetric, traceless 3 × 3 matrix [26]

Q =
3∑

i=1

λiei ⊗ ei,

where the eigenvectors, ei, model the preferred material di-
rections and the corresponding eigenvalues, λi, measure the
degree of orientational order about ei. The eigenvector with
the largest positive eigenvalue is the nematic director n [26].
A Q-tensor is uniaxial if it has two equal nonzero eigenvalues
and biaxial if it has three distinct eigenvalues [27]. In particu-
lar, Q is said to be quasi-uniaxial if it has nonzero eigenvalues
and a well-defined director, and maximally biaxial if it has a
single zero eigenvalue.

Assuming translational symmetry in the x and y direc-
tions, the equilibrium or physically observable cholesteric
states correspond to minimizers of the non-dimensionalized
cholesteric energy per unit area [28]

F̄ (Q) = hF (Q)

K0

=
∫ 1

0

{
1

4
(∇ · Q)2+η

4
|∇ × Q + 2σQ|2+λ

fb(Q)

C

}
dz̄.

(1)

The elastic energy density has splay/bend [29] and twist con-
tributions: η = K1/K0 is the ratio of the twist and splay/bend
elastic constants and quantifies the elastic anisotropy;
σ/2π = h/p0 where p0 is the pitch of the cholesteric, gives
the number of 2π rotations of the director in the z direc-
tion; and λ = h2C

K0
is a measure of domain height/size with C

a material-dependent positive constant. Using the parameter
values in Refs. [30,31], a typical value is η = 1

2 . The values of
η can be tailored by the material such as 5CB and PBG [32].
We omit bars from rescaled variables. The bulk energy density
is

fb(Q) := A

2
trQ2 − B

3
trQ3 + C

4
(trQ2)2, (2)

and dictates the isotropic-nematic phase transition as a
function of temperature. The variable A = α(T − T ∗) is a
rescaled temperature, with T ∗ a characteristic temperature,
and B > 0 is material dependent constant (C is as above)
[26]. Typical values for the liquid crystal MBBA are, α =
−0.042 × 106 N/(K m2), B = 0.64 × 106 N/m2, and C =
0.35 × 106 N/m2, as used in our numerical simulations. We
work with low temperatures for which A < 0, so the set of fb

minimizers are uniaxial Q-tensors, of the form Q = s+(n ⊗
n − I/3), for arbitrary unit-vectors fields or nematic directors,
n. Here s+ = (B +

√
B2 + 24|A|C)/4C.

We impose Dirichlet boundary conditions on the top and
bottom of the cell, given by Q(z = 0) = Q(z = h) = s+(ex ⊗
ex − I/3), where ex is a unit vector in the x direction. This
is equivalent to including a Rapini-Papoular surface energy
in the limit of infinite surface anchoring. In the weak anchor-
ing regime, the pathway may proceed via transitions at the
boundary [33–35]. We focus on helical director fields

nw = (cos(πwz/h), sin(πwz/h), 0),

with w ∈ Z the twisting or layer number, and define the asso-
ciated uniaxial Q-tensor to be Qw = s+(nw ⊗ nw − I

3 ). Deep
in the cholesteric phase, the cholesteric free energy will be
minimized by a quasi-uniaxial Q-tensor close to Qw (with a
small degree of biaxiality [36]). Such a helical texture will
satisfy the boundary conditions only if the pitch p satisfies
p = h/|w|. Otherwise the system encounters geometric frus-
tration and one typically finds a number of metastable helices,
with different twisting numbers w [37].

We are interested in pathways between different Qw, ex-
ploiting the full freedom of the Q-tensor formalism. There is a
qualitative difference between an w − 1 → w transition and a
w − 1 → w + 1 transition. In the first case, the parity changes
so that a pathway with fixed boundary conditions, will exhibit
a defect in n, or a point of maximal biaxiality in Q. On
the other hand, weak anchoring could allow for a defect-free
pathway by deforming the texture at the boundary, as has re-
cently been studied in the interesting Refs. [33,34,38]. In this
case, the authors observe an interesting dichotomy between
in-plane director slippage and an out-of-plane pathway, which
has a visual resemblance to the uniaxial pathway observed
here (Fig. 1, uniaxial state S2), whether this connection has
deeper significance remains to be seen. For a w − 1 → w + 1
transition, there is no analogous constraint and a defect-free
quasiuniaxial pathway is admissible, but there are hidden
topological constraints of untwisting and splay along such
quasiuniaxial pathways, as demonstrated in the two theorems
below.

Theorem 1. The director field n along any quasi uniaxial
pathway between Qw1 and Qw2 , for w1 �= w2, must untwist,
that is n · ∇ × n must vanish at some point in space and time
along the pathway.

This is a refinement of a result given in Refs. [23], and is
related to a number of results in contact topology [24,39,40].
A proof is given in the Supplemental Material (SM) [41].
Topologically required untwisting can also be observed near
point defects in cholesterics [11,42]. Since cholesterics prefer
to twist, with the term (n · ∇ × n + σ )2 in the Frank free
energy, the topologically required untwisting predicts a chiral
energy barrier between different values of w.

Next, consider a pathway with zero splay (∇ · Q = 0),
such as a linear interpolation between Qω−1 and Qω+1. If
we restrict ourselves to Q-tensors with zero splay, then we
necessarily have

Q′
13 = Q′

23 = Q′
33 = 0. (3)

Denoting the pathway by Q(t, z), we have Q(t = 0) =
Qω−1 and Q(t = 1) = Qω+1, with Q13 = Q23 = 0 and Q33 =
−s+/3 < 0 for all t ∈ [0, 1], so that the nematic director is
always in the xy plane and is splay free. The leading-order
energy is

F (Q) = F (q)

=
∫ 1

0

{
η

2
|∇q|2 + 2ση(q · ∇ × q)

+ λ

C
f̃b(s+, |q|2) + C0(s+, η, σ )

}
dz, (4)
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FIG. 1. The solution landscape with λ = 3500, η = 4.5, σ =
2π , A = −B2/3C. We plot the twisting measure (n · ∇ × n)/2π

(represented by dashed line near biaxial torus), the splay/bend mea-
sure |∇ · Q|/10, the biaxiality measure β = 1 − 6 (trQ3 )2

|Q|6 , the twisting
in xy plane Q12 and the out-of-plane order Q13. We label the critical
points as follows: B indicates the presence of biaxial tori, S indicates
the presence of large splay, and the number at the end is the amount of
rotation in the xy plane, in units of π . The index-4 Biaxial(B2) state
has two biaxial tori and has unstable directions that tune the twisting
periods and connect with the stable One and T hree states. The
Biaxial state connects with three index-2 critical points, B1.5, B2.5,
and BBS2. B1.5 and B2.5 have only one biaxial torus, with 3π/2
and 5π/2 twisting and connect One and T wo, and T wo and T hree,
respectively. BBS2 has a more complex profile with two biaxial tori,
2π twisting, and splay. The defect-free index-1 Uniaxial(S2) state,
is the transition state between the stable One and T hree states. BS2
is the transition state between the stable Q2 and Q3.

where q = ( Q11−Q22
2 , Q12) and C0 is a function depending on

s+, η, and σ , i.e., there are only two degrees of freedom
in the class of splay free configurations. Equation (4) bears
considerable similarity to a one-dimensional model studied
by Golovaty et al. [43]. In the reduced description (4), the
boundary conditions are q = (s+/2, 0) at the top and bottom

of the cell. In the helical state Qw, the vector q winds by
2wπ between the top and bottom. The change in winding
number across the cell height forces a zero in q, and points
of maximal biaxiality correspond to |q| = s+/6. Thus, any
splay-free pathway must cross the circle of maximal biaxiality
as stated below:

Theorem 2. Any smooth zero-splay and bend pathway (∇ ·
Q = 0) between Qw1 and Qw2 , w1 �= w2, must contain points
of maximal biaxiality.

A full proof, and slight generalization, is given in the
SM. Theorem 1 implies that the director field along any
quasi-uniaxial pathway must untwist. Theorem 2 implies any
quasiuniaxial pathway must also have nonzero splay/bend.
This reflects the large number of complex compatibility con-
ditions [44–46] that relate the different deformation modes
(splay, twist, bend, biaxial splay [46–48]) of a director field.
We note this as the twist elastic constant can be substantially
smaller than the splay or bend constants [32]. Combined,
these two Theorems show that any pathway that changes the
twisting number can either introduce defects (maximal biaxi-
ality) or untwist (or both), and this conclusion applies to any
pathway, not just pathways between minimizers of the free
energy but also to pathways between distinct non-equilibrium
states in hydrodynamic flows, where energy principles may
not exist [49–51].

In Fig. 1, we illustrate this dichotomy in pathways between
Qω, by looking at the critical points of the energy (1) for a
large cell with λ = 3500 and η = 4.5. In the λ → ∞ limit,
the bulk energy dominates and energy minimizers tend to be
approximately uniaxial, i.e., solutions of the Euler-Lagrange
equations in the restricted space of bulk energy minimizers
[52]. The leading order minimizer profiles are the helical
states Qω, with ω = σ

π
. We fix σ = 2π in what follows and

focus on (transition) pathways between three locally stable
critical points of the free energy in Fig. 1: Q1 (One, π twist-
ing), Q2 (T wo, 2π twisting) and Q3 (T hree, 3π twisting). The
One and T hree-helical states have the same energy for any λ,
η, and K0, whilst Q2 has the minimum energy amongst the
three helical states.

To compute these pathways, we numerically compute so-
lutions of the Euler-Lagrange equations for (1), which are
critical points of the free energy. The Morse index of a critical
point is the number of negative eigenvalues of the correspond-
ing Hessian of the free energy, evaluated at the critical point
[53]. Minimizers (local and global) have index-0, index-k
saddle points are unstable in k distinguished eigendirections.
We use the high-index optimization-based shrinking dimer
(HiOSD) method [54] and upward/downward search algo-
rithms [55], to compute sample solution landscapes in Fig. 1
(see SM).

To find novel biaxial critical points, we construct an initial
condition with 2π twisting in the xy plane, but with two
discontinuous points of the nematic director, where q = 0 (see
SM). Using Newton’s method and this initial condition, we
can obtain a splay-free critical point, labeled as the Biaxial
solution (see Fig. 1), for various λ and η. The Biaxial solution
has two biaxial tori around the discontinuous points, and each
biaxial torus contains two points of maximal biaxiality and
a point of uniaxiality at the center. The biaxial torus is a
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universal defect structure arising from topological constraints
[56], and can be understood in part by the proof of Theorem 2
in the SM. For sufficiently small K0 (when splay is not heavily
penalized), the Biaxial solution is an unstable saddle point
(index >1), and the Morse index of the Biaxial state increases
as λ increases.

With the Biaxial state as the parent state (state with high-
est index), we compute the solution landscape for λ = 3500
(corresponding to a small cell of about 0.2μm height), and
η = 4.5, in Fig. 1. The computation reveals a menagerie of
critical points, which we classify broadly as either quasiuniax-
ial or biaxial (without and with maximal biaxiality) and with
and without splay (nonzero and zero |∇ · Q|, respectively).
We observe, in passing, that the index of the biaxial critical
points is twice the number of biaxial tori in the splay-free
case, and equal to the number of biaxial tori with splay in
Fig. 1. Notably, we find two competing pathways between
the stable uniaxial One and T hree-helical states. According to
Fig. 1, there is the uniaxial pathway via the index-1 Uniaxial
state, and the biaxial pathway via the index-4 Biaxial state.
Theorem 1 implies that the uniaxial pathway must untwist
(i.e., have n · ∇ × n = 0 at some point) and, as suggested by
Theorem 2, this untwisting is mediated by splay. On the other
hand, the Biaxial state, B2, is splay-free and indeed the entire
pathway in this case can be chosen in the class of splay-free
configurations (4).

Recent work has found similar structures to (half of)
our uniaxial pathway in boundary-driven unwinding tran-
sitions, this suggests that the uniaxial critical point may
become further preferred under an applied electric field, be-
yond the Fréedericksz transition [33,34]. Such out-of-plane
pathways may be also be relevant in the study of helical
axis transitions [57]. A related set of uniaxial untwisting
pathways in nematics were considered by Goldbart and Ao
[58,59].

The question then is, which pathway is preferred? This then
depends on η, λ, and the temperature. In the K0 → ∞ limit,
(1), only the splay-free states: Biaxial (B2), B1.5, B2.5, One,
T wo, and T hree, survive as critical points. In particular, the
Biaxial state is always a critical point of Eq. (1) for all K0,
and the index of Biaxial state decreases from 4, to 3, to 2, to
0, as K0 increases from 1 to ∞. The Uniaxial(S2), BS2, and
BBS2, have splay; their Morse indices and energy increase
with K0. As temperature decreases, uniaxiality is energetically
preferred to biaxiality. The Biaxial (B2), B1.5, B2.5, BS2,
and BBS2 critical points have points of maximal biaxiality,
they have increasing energy and Morse indices with decreas-
ing temperature, in contrast to the Uniaxial(S2), One, T wo,
and T hree which have decreasing energy with decreasing
temperature.

Returning now to the choice between the biaxial (B2) and
uniaxial (S2) pathways, the energy barrier of the pathway
is the energy difference between either the Uniaxial (S2) or
Biaxial (B2) critical point, and the stable One (or T hree)
states. The difference between two energy barriers is equal to
the energy difference between Uniaxial (S2) and Biaxial (B2).
When the temperature is high, the energy difference is low
since uniaxiality is only weakly preferred. The uniaxial path-
way cannot be observed for extreme parameter values, such

FIG. 2. The difference between energy barriers [the energy F
before nondimensionalization in Eq. (1)] of the uniaxial and biaxial
pathways as a function of the re-scaled temperature, A and elastic
anisotropy η. Left: small cell with λ = 3500 (h ≈ 0.2 μm); Right:
large cell with λ = 17500 (h ≈ 1.4 μm).

as large K0. More importantly, for the range of A and η

considered in Figure 2, for small and large λ, the uniaxial
pathway is always energetically preferable but the uniaxial
and biaxial pathways have comparable energy barriers, so that
experimental observations of both pathways are possible in
practice.

What are the implications for experiments? During coars-
ening or other dynamic processes (for example, the Helfrich-
Hurault instability [60]) cholesterics will typically undergo
morphological changes whereby layer numbers are observed
to change in a discrete fashion. Our work suggests that a
cholesteric system can choose to mediate such a transition by
either untwisting via splay and bend distortions, or through
biaxiality (defects). Experimentally verifiable optical signa-
tures for these states as well as their pathways are shown in
the SM. Our findings illustrate that biaxiality may become
experimentally observable for these toy systems, with high
temperature and large K0, either as equilibria or in pathways
between distinct equilibria. Further, we conjecture that we
can construct hierarchies of LdG critical points from build-
ing points, e.g., the biaxial torus or untwisting states (the
work of Goldbart and Ao suggests that the barriers we study
increase with the number of twists [58,59]). In higher di-
mensions, cholesterics exhibit great morphological richness,
knotted disclination lines [2–5] and Hopf solitons [8], for
example. Whether the ideas discussed in this letter can be
used to study transition pathways for these complex problems,
remains an interesting open question (we note biaxial tori are
expected to be minimizing for certain problems [56]), and our
major challenge is to discover universal principles for solution
landscapes of confined soft matter systems.

T.M. and B.M.G.D.C. proposed the problem, T.M. con-
ceived and proved Theorems 1 and 2. A.M. led the asymptotic
analysis and mathematical modelling part of the manuscript.
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