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Abstract  

Objective: The differential diagnosis of behavioral variant frontotemporal dementia (bvFTD) and 

Alzheimer’s disease (AD) remains challenging in underrepresented, underdiagnosed groups, 

including Latinos, as advanced biomarkers are rarely available. Recent guidelines for the study of 

dementia highlight the critical role of biomarkers. Thus, novel cost-effective complementary 

approaches are required in clinical settings.  Approach: We developed a novel framework based 

on a gradient boosting machine learning classifier, tuned by Bayesian optimization, on a multi-

feature multimodal approach (combining demographic, neuropsychological, MRI, and EEG/fMRI 

connectivity data) to characterize neurodegeneration using site harmonization and sequential 

feature selection. We assessed 54 bvFTD and 76 AD patients and 152 healthy controls (HCs) from 

a Latin American consortium (ReDLat).  Main results: The multimodal model yielded high AUC 

classification values (bvFTD patients vs. HCs: 0.93 (±0.01); AD patients vs. HCs: 0.95 (±0.01); 

bvFTD vs. AD patients: 0.92 (±0.01)). The feature selection approach successfully filtered non-

informative multimodal markers (from thousands to dozens). Results proved robust against 

multimodal heterogeneity, sociodemographic variability, and missing data. Significance: The 

model accurately identified dementia subtypes using measures readily available in 

underrepresented settings, with a similar performance than advanced biomarkers. This approach, if 

confirmed and replicated, may potentially complement clinical assessments in developing 

countries. 

 

Keywords 

Multimodal neuroimaging, Neurodegeneration, Harmonization, Feature selection, Machine 

learning. 
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Abbreviations 

- AD: Alzheimer’s disease. 

- bvFTD: behavioral-variant frontotemporal dementia.  

- HCs: healthy controls. 

- MRI: Magnetic Resonance Imaging. 

- fMRI: Functional Magnetic Resonance Imaging. 

- rs-fMRI: resting-state Functional Magnetic Resonance Imaging. 

- EEG: Electroencephalography. 

- LMICs: low middle-income countries. 

- SACs: South American countries. 

- SES: Socioeconomic status. 

- PET: Positron Emission Tomography. 

 

1. Introduction 

Global approaches to dementia should address the diversity and heterogeneity of poorly 

characterized, underdiagnosed populations, including Latinos. Despite having greater dementia 

risk, ethnoracially diverse groups are systematically underrepresented in research and clinical trials 

[1, 2]. Dementia prevalence is notably high among diverse populations from upper middle-income 

countries and low middle-income countries (LMICs), including South American countries 

(SACs)[1, 3].  Relative to US and European samples, SACs present more heterogeneous 

populations with shorter lifespans, a preponderance of non-urban backgrounds, lower education 

level and socioeconomic status (SES)[4], and, crucially, greater variability in dementia 

presentation[3]. Considering the impact of genetic, SES[4], and environmental risk factors in 

phenotypic heterogeneity across ethnic groups from SACs, multidimensional studies are urgently 

needed in the region[4, 5]. 
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Mainstream dementia frameworks rely on underlying pathological biomarkers such as β-

Amyloid and tau Positron Emission Tomography (PET) neuroimaging[6]. However, budgetary 

and access constraints limit the use of biomarker approaches in SACs[3, 7]. Moreover, as dementia 

presentation may depend on multiple factors (such as genetics[8], socioeconomic status (SES)[4, 

5], and environmental risk factors[9]), unimodal characterization by a single biomarker may then 

prove ineffective.  Multimodal markers may help to bridge this gap particularly in SACs because 

neurodegenerative diseases usually present heterogeneous profiles across different levels[10]. In 

particular, the combination of multifactorial sources of variability[4] may induce atypical 

presentations of Alzheimer’s disease (AD) and behavioral variant frontotemporal dementia 

(bvFTD). In order to capture the broad spectrum of dementia presentation and heterogeneity, 

cognitive assessments[11], structural magnetic resonance imaging (MRI)[12], 

electroencephalography (EEG)[13], and resting-state functional MRI (rs-fMRI)[14] markers are 

widely available across countries in the world, even in underrepresented populations [10, 11]. 

Unlike traditional univariate approaches, machine learning facilitates the modeling of complex 

interactions between variables across heterogeneous datasets[15]. Automatized diagnostic 

methods used as decision support tools have shown promising results in dementia[16], especially 

with high dimensionality methods that proven superior than classical statistical models[17]. 

Therefore, an automatized machine-learning approach to multimodal markers can potentially 

overcome current limitations in the characterization of populations from SACs and other 

underrepresented regions.  

Here, we developed a multi-feature multimodal approach to neurodegeneration (MMAN, 

Fig 1) from diverse samples of AD, bvFTD, and controls from SACs. We combined demographic 

information, neuropsychological outcomes (cognitive screening, executive functions), structural 
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MRI atrophy measures, and dynamic functional connectivity metrics from EEG and fMRI in an 

integrative approach using the eXtreme Gradient Boosting (XGBoost) machine learning classifier 

[18, 19]. The XGBoost parameters were tuned by Bayesian Optimization, including a data 

harmonization technique to remove possible site-specific biases [20]. The differential 

characterization of dementia subtypes such as AD vs. FTD presents several challenges (cf. controls 

vs. patients[18]), including overlapping atrophy patterns and variability in cognitive and 

neuroimaging measures among dementia subtypes[21]. To overcome these limitations, we 

combined cognitive screening, MRI-based morphometry, measures of EEG connectivity[22], and 

dynamic measures of resting-state fMRI connectivity[23]. To this end, we assessed the relative 

weights of each feature (i.e., different markers of cognitive screening, EEG, MRI, ad fMRI) for a 

combined classification of AD and bvFTD using a technique from machine learning called feature 

importance analysis. Most of multimodal machine learning approaches for AD 

characterization[24-28] focusing on MRI data come from High-Income countries such as the 

ADNI [29] and OASIS [30] databases, where both neuroimaging parameters and sample 

demographics are homogeneous. Conversely, our work is developed for real-life clinical scenarios 

with heterogenous acquisition parameters and patients’ diversity across SACs. To the best of our 

knowledge, this is the first multimodal approach intended for a differential characterization 

between two dementia subtypes.  

We implemented a mixed hypothesis- and data-driven approach, including a priori predictions 

based on the literature and machine learning analyses of relevant multimodal data. First, we 

hypothesized that the XGBoost classifier would yield high accuracy to classify patients vs. 

controls, but also AD vs. FTD patients considering clinically relevant multimodal features. 

Second, we anticipated that the most important features to characterize dementia would have 
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maximal predictive power with combined multimodal measures at different levels (cognitive, 

atrophy, EEG/fMRI connectivity). Third, we predicted that the MMAN would outperform all 

unimodal approaches in classifying patients from controls and AD from FTD patients. Moreover, 

classification performance would remain high even when considering (a) demographics (sex, age, 

years of education) as a source of variability, (b) strong reduction in the number of features (from 

thousands to dozens), (c) missing data, and (d) multimodal sources of variability across clinical 

centers. By testing these hypotheses, we aim to assess the robustness of a multimodal 

computational framework for characterizing neurodegenerative diseases in underrepresented 

populations. 

2. Methods 
 
2.1.Participants 

This study comprised 282 participants from a multicenter protocol[31-33] with sites in Argentina 

(Country-1), Chile (Country-2), and Colombia (Country-3). All centers used the standardized 

diagnostic assessment of the Multi-Partner Consortium to Expand Dementia Research in Latin 

America (ReDLat)[5, 10]. Clinical diagnoses were established by experts in dementia through an 

extensive neurological and neuropsychiatric examination comprising semi-structured interviews 

and standardized assessments, with current criteria for probable bvFTD[34], and NINCDS-

ADRDA clinical criteria for AD[35]. We also included 152 healthy controls (HCs), matched on 

age, sex, and education with the patient groups (Table 1). However, given subtle demographic 

differences, age and education were also included in the machine learning pipeline. All participants 

provided written informed consent following the Declaration of Helsinki. Each institutional Ethics 

Committee approved the protocol. 

In clinical settings, and specially across SAC’s sites, patient’s incomplete evaluations and 
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assessment commonly occurs.  Thus, we evaluated whether our MMAN model was robust against 

missing data in a fraction of subjects and features. As some centers may not have access to specific 

assessments, missing information can constitute an obstacle for this approach. We tested the same 

pipeline on a sub-sample without missing data and on a full sample with missing data. The 

subsample (SS) consisted of 54 HCs (18 from Country-1, 20 from Country-2, and 16 from 

Country-3), 19 patients with bvFTD (7 from Country-1, 7 from Country-2, and 5 from Country-

3), and 32 patients with AD (9 from Country-1, 10 from Country-2, and 13 from Country-3). The 

full sample (FS) consisted of 152 HCs (51 from Country-1, 49 from Country-2, and 52 from 

Country-3), 54 patients with bvFTD (16 from Country-1, 20 from Country-2, and 18 from 

Country-3), and 76 patients with AD (25 from Country-1, 24 from Country-2, and 27 from 

Country-3). The FS was not completely balanced in demographic data, allowing us to test whether 

the classifier is robust even in the presence of these unmatched variables. To handle missing data 

in the FS, we used feature averaging imputation on the features that contained up to 30% missing 

values[36] (Table 2). To this end, we used a single averaged value per feature to be imputed in the 

table fields of the subjects having missing values. 

Table 1. Demographic statistical results for the sub sample and the full sample. 

Variable HCs 

SS n = 54 

FS n = 152 

 

bvFTD 

SS n = 19 

FS n = 54 

 

AD 

SS n = 32 

FS n = 76 

 

Statistics 

(all groups) 

Post-hoc comparisons 

Groups p-

value 

Sex 

(F:M) 

SS 26:28 13:6 14:18 χ2=3.14,  

p = 0.21 a 

bvFTD-AD n.s  b 

HCs-bvFTD n.s  b 

HCs-AD n.s  b 

FS 101:51 22:32 24:54 χ2=29.52,  bvFTD-AD n.s  b 
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p < .05 a HCs-bvFTD 0.001 b 

HCs-AD 0.001 b 

Age SS 71.13 

(6.12) 

68.87 

(10.18) 

74.02 

(5.69) 

F = 2.85, 

p = 0.07 a, 

ηp2 = 0.06 

bvFTD-AD n.s c 

HCs-bvFTD n.s c 

HCs-AD n.s c 

FS 71.54 

(7.32) 

73.91 

(11.63) 

76.51 

(8.65) 

F = 2.91, 

p = 0.06 a, 

ηp2 = 0.08  

bvFTD-AD n.s c 

HCs-bvFTD n.s c 

HCs-AD n.s c 

Years of 

education 

SS 14.16 

(3.74) 

13.98 

(5.19) 

 

12.51 

(3.78) 

F = 2.94,  

p = 0.06 a,  

ηp2 = 0.05 

bvFTD-AD n.s c 

HCs-bvFTD n.s c 

HCs-AD n.s c 

FS 15.32 

(4.32) 

13.76 

(5.52) 

 

12.02 

(4.41) 

F = 2.84,  

p = 0.07 a,  

ηp2 = 0.06 

bvFTD-AD n.s c 

HCs-bvFTD n.s c 

HCs-AD n.s c 

Results are presented as mean (SD). Demographic data was assessed through ANOVAs –except for sex, 
which was analyzed via Pearson’s chi-squared (χ2) test. Effects sizes were calculated through partial eta 
squared (ηp2). HCs: healthy controls, bvFTD: behavioral variant of fronto-temporal dementia, AD: 
Alzheimer’s disease. FS: Full-sample. SS: Sub-sample. 
a p-values calculated via independent measures ANOVA. 
b p-values calculated via chi-squared test (χ2). 
 
 
Table 2. Missing data distribution in the full sample per group. 

Feature HC bvFTD AD 

CogA abstraction 27% 25% 26% 

CogA memory 27% 25% 26% 
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CogA visuospatial 27% 25% 26% 

CogA recognition 27% 25% 26% 

CogA attention 27% 25% 26% 

EF inhibition 24% 22% 25% 

EF conflicting 24% 22% 25% 

EF digits 24% 22% 25% 

EF proverb 24% 22% 25% 

EF motor series 24% 22% 25% 

MRI/fMRI 28% 27% 28% 

EEG 29% 27% 26% 

HCs: healthy controls; bvFTD: behavioral variant of frontotemporal dementia; AD: Alzheimer’s disease; 

CogA: cognitive assessment; EF: executive functions. 

 

2.2.Cognitive markers (cognitive screening and executive functions) 

The Montreal Cognitive Assessment (MoCA)[37] is a brief cognitive screening instrument that 

evaluates attention and concentration, abstraction, object recognition, executive functions, 

memory, language, visuoconstructional and visuospatial skills, conceptual thinking, calculations, 

and orientation (maximum score= 30, higher scores indicate better performance). The MoCA can 

track cognitive decline in patients with neurodegenerative diseases. The INECO Frontal Screening 

(IFS)[38] is a 10-min, easy-to-administer executive functions screening tool. It includes eight 

subtests, assaying three executive functions: response inhibition and set shifting (four tasks), 

working memory (three tasks), and abstraction capacity (one task). The maximum score is 30, 

higher scores indicate better performance. The IFS is sensitive and specific for detection frontal-
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executive dysfunction in patients with neurodegenerative diseases [38]. The MoCA and the IFS 

were not considered for the patient’s diagnostic procedures. 

2.3.EEG markers 

Participants completed a 10-minute-long high density (Hd-EEG) acquisition, on a 128-channel 

system with pre-amplified sensors and a DC coupling amplifier, at a sampling rate of 1024. Across 

centers, data were recorded via Biosemi Active-two 128-channel systems with pre-amplified 

sensors and a DC coupling amplifier, at a sampling rate of 1024 Hz. Analog filters were set at 0.03 

and 100 Hz. A digital bandpass filter between 0.5 and 45 Hz was applied offline to remove 

unwanted frequency components. The reference was set to link mastoids for recordings and re-

referenced offline to the average of all electrodes. Eye movements or blink artifacts were corrected 

with independent component analysis [39] and with a visual inspection protocol [40-42]. Bad 

channels were replaced via statistically weighted spherical interpolation (based on all sensors) 

[43]. The data was divided in 1000-ms segments from the beginning until the end of the recording. 

All EEG signal processing steps were implemented on MATLAB software (vR2016a) through the 

EEGLAB (v14.1.2) [44] toolbox. During the 10-minute-long resting state protocol, participants 

were instructed not to think about anything in particular while keeping awake, still, and with eyes 

closed. We measured linear interactions between oscillatory signals using phase-locking value 

(PLV)[22] and non-linear information sharing via the weighted symbolic mutual information 

(wSMI) metric[45]. Connectivity was averaged across segments to create the adjacency matrix. 

To reduce the number of features while preserving topographic specificity, we defined 16 regions 

of interest (ROIs) of eight electrodes for each lobe and hemisphere. To quantify the strength of 

between- and within-ROI connections, we estimate the averaged connectivity values of all inter-

electrode connections linking electrodes in any two ROIs or within a ROI, respectively. 
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2.4. Structural and functional MRI markers 

We obtained three-dimensional structural volumetric and 10-minute-long resting state MRI 

sequences from all participants –recordings were performed in three scanners (Table 3). MRI 

cortical thickness metrics and volumetric estimates included voxel-based and surface-based 

morphometry [12].The structural volumetric analysis preprocessing included removal of non-brain 

tissue, an automatic Talairach transformation, segmentation of the subcortical WM and deep GM 

volumetric structures (including hippocampus, amygdala, caudate, putamen, and ventricles), 

intensity normalization, tessellation of the GM-WM boundary, an automatic topology correction, 

and surface deformation following intensity gradients to optimally place the GM/WM and 

GM/CSF borders at the location where the greatest shift in intensity defines the transition to the 

other tissue class. All T1 images were processed via surface-based morphometry (SBM) on 

FreeSurfer software suite (v 6.0, https://surfer.nmr.mgh.harvard.edu/). Structural surface-based 

metrics included cortical volume and thickness. SBM avoids registration to a standard space, 

overcoming registration errors, improving parcellation, and offering reliable estimation of region-

specific differences[46]. Once the cortical models were processed, additional procedures were 

performed for further analysis, including surface inflation, registration to a spherical atlas–based 

on individual cortical folding patterns–, parcellation of the cerebral cortex into units relative to 

gyral and sulcal structure, and creation of a variety of surface-based data –including maps of 

curvature and sulcal depth. These methods use both intensity and continuity information of the 

entire 3D MR volume from segmentation and deformation procedures to produce representations 

of cortical thickness, which is calculated as the closest distance from the GM/WM boundary to the 

GM/CSF boundary at each vertex on the tessellated surface. The maps were created using spatial 

intensity gradients across tissue classes; therefore, they were not simply reliant on absolute signal 
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intensity. Since the ensuing maps were not restricted to the voxel resolution of the original data, 

they can detect submillimeter differences between groups. FreeSurfer’s morphometric procedures 

have been demonstrated to show good test-retest reliability across scanner manufacturers and field 

strengths. Full details on the implemented methods can be found elsewhere[47]. Finally, the 

volume, area, and thickness from each segmentation based on the Desikan-Killiany parcellation of 

cortical and subcortical areas [48] were quantified. The plain-text output of the FreeSurfer’s 

pipeline was post-processed on Python (Version 3.7.4, Python Software Foundation) and 

transformed into a better structure for statistical analysis. To avoid potential biases due to 

differences among the participants’ head size [49], volume measures of each area were normalized 

as a percentage of the estimated total intracranial volume (eTIV, provided also in FreeSurfer’s 

results). 

For the resting-state protocol, participants were asked not to think about anything in particular, 

to keep their eyes closed, and to avoid moving or falling asleep.  In each center, we obtained three-

dimensional volumetric and 10-minute-long resting-state MRI sequences from all participants.  

First, to ensure that magnetization achieved a steady state, we discarded the first five volumes of 

each subject’s resting-state recording. Then, images were preprocessed in MATLAB using an 

open-access toolbox: the Data Processing Assistant for Resting-State fMRI (DPARSF V2.3) [50], 

which generates an automatic pipeline for fMRI analysis by calling the Statistical Parametric 

Mapping software (SPM12) [51] and the Resting-State fMRI Data Analysis Toolkit (REST V.1.7 

toolbox) [52]. The images were slice-time corrected (using as reference the middle slice of each 

volume) and aligned to the first scan of the session to correct head movement. To reduce the effects 

of motion and physiological artifacts, six head-motion parameters, as well as white matter (WM) 

and cerebrospinal fluid (CSF) signals, were removed as nuisance variables. WM and CSF masks 
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for this procedure were derived from the tissue segmentation of each subject’s T1 scan in native 

space. As an additional analysis, we calculated the framewise displacement (FD) [53] to check for 

head movement differences between groups. This measure, that indexes the movement of the head 

from one volume to the next, is calculated as the sum of the absolute values of the differentiated 

realignment estimates (by backwards differences) at every timepoint. After calculating FD for each 

group, no statistically significant differences were found after an ANOVA test (Table 4). Using 

the pre-processed rs-fMRI time series as input, we captured static and linear associations using 

Pearson’s R static functional connectivity (SFC)[54]. We also performed a non-linear dynamic 

connectivity fluctuation analysis (DCFA)[23]. This method captures dynamic functional 

connectivity fluctuations[55], allowing for time-dependent connectivity analysis instead of 

averaging connectivity across the whole recording.  We focused our analyses on five well-known 

and standard resting-state networks. The default mode network (DMN), the salience network (SN), 

the executive network (EN), the visual network (VN), and the motor network (MN) [56].  

Table 3. Specific neuroimaging parameters per center 
 Parameters 

Argentina 

(center 1) 

3-T Phillips scanner with a standard head coil, whole-brain T1-rapid anatomical 3D gradient 

echo volumes were acquired parallel to the plane connecting the anterior and posterior 

commissures, with the following parameters: repetition time (TR) = 8300 ms; echo time (TE) 

= 3800 ms; flip angle = 8º; 160 slices, matrix dimension = 224 x 224 x 160; voxel size = 1 

mm x 1 mm x 1 mm. Also, functional spin echo volumes, parallel to the anterior-posterior 

commissures, covering the whole brain, were sequentially and ascendingly acquired with the 

following parameters: TR = 2640 ms; TE = 30 ms; flip angle = 90º; 49 slices, matrix 

dimension = 80 x 80 x 49; voxel size in plane = 3 mm x 3 mm x 3 mm; slice thickness = 3 

mm; sequence duration = 10 minutes; number of volumes = 220. 

Chile 

(center 2) 

Using a 3-T Siemens Skyra scanner with a standard head coil, we acquired whole-brain T1-

rapid gradient echo volumes, parallel to the plane connecting the anterior and posterior 

commissures, with the following parameters: repetition time (TR) = 1700 ms; echo time (TE) 

= 2000 ms; flip angle = 8º; 208 slices, matrix dimension = 224 x 224 x 208; voxel size = 1 
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mm x 1 mm x 1 mm. On the other hand, functional EP2D-BOLD pulse sequences, parallel 

to the anterior-posterior commissures, covering the whole brain, were acquired sequentially 

intercalating pair-ascending first with the following parameters fMRI parameters: TR = 2660 

ms; TE = 30 ms; flip angle = 90º; 46 slices, matrix dimension = 76 x 76 x 46; voxel size in 

plane = 3 mm x 3 mm x 3 mm; slice thickness = 3 mm; sequence duration = 13.3 minutes; 

number of volumes = 300. 

Colombia 

(center 2) 

Using a 3-T Siemens Skyra scanner with a standard head coil, we acquired whole-brain T1-

rapid gradient echo volumes, parallel to the plane connecting the anterior and posterior 

commissures, with the following parameters: repetition time (TR) = 2400 ms; echo time (TE) 

= 2000 ms; flip angle = 8º; 192 slices, matrix dimension = 256 x 256 x 192; voxel size = 1 

mm x 1 mm x 1 mm. Finally, functional EP2D-BOLD pulse sequences, parallel to the 

anterior-posterior commissures, covering the whole brain, were acquired sequentially 

intercalating pair-ascending first with the following parameters fMRI parameters: TR = 2660 

ms; TE = 30 ms; flip angle = 90º; 46 slices, matrix dimension = 76 x 76 x 46; voxel size in 

plane = 3 mm x 3 mm x 3 mm; slice thickness = 3 mm; sequence duration = 10.5 minutes; 

number of volumes = 240. 

 

 

Table 4. Framewise Displacement 
 HCs bvFTD AD Stats 

Framewise Displacement 0.44 (0.21) 0.51 (0.34) 0.59 (0.31) F = 0.59,  p = 0.22 

Framewise Displacement results are presented as mean (SD). Differences between groups were 
assessed through ANOVA. Significance was set to alpha level of p < 0.05. HCs: healthy controls, 
bvFTD: behavioral-variant frontotemporal dementia, AD: Alzheimer’s disease. 

 

2.5. Machine-learning methods 
 
To limit biases and obtain more representative results, we employed a k-fold validation approach 

(k=10) using 80% of the sample for training and validation, and 20% out-of-folds sample as an 

independent test-set. This testing dataset was never used for hyperparameter tuning, data reduction 

or feature engineering to evaluate the generalizability of our results. First, we performed a site 
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normalization process for each feature of both HCs and patients via z-scores based on the mean 

and standard deviation of the corresponding center’s HCs. This process was applied within each 

fold to avoid information leakage (Figure 1C). Afterwards, we performed feature stabilization by 

forward sequential feature selection (SFS) [57] to obtain the best subset of features for each 

subject-group classification pair (Figure 1D). For this, we optimized the accuracy of a random 

forest classifier (RFC) varying the number of features sequentially from a single one to all features 

according to its classificatory relevance. This classifier quantifies the importance of a feature 

depending on how much the average Gini impurity index decreases in the forest due to its use as 

node in a tree. This process was employed for both the full sample (1523 features, while imputing 

the average on missing data), and the sub sample (1513 features without missing data). On each 

step for feature sets evaluation, we employed a RFC on default hyperparameters [57]  to evaluate 

classification accuracy based on a k-fold cross validation (k=10). We used the Gini scores to 

eliminate features by removing features with the lowest importance at each iteration and checked 

for the robustness of our results based on the final number of features after stabilization for both 

samples. Finally, we kept the N first features in the ranking, where N is the optimal number of 

features such that using more than N features fails to improve classifier’s performance. Afterwards, 

to evaluate if the results were unbiased with respect to the acquisition site, we performed an RFC 

analysis (on default hyperparameters) to check if the confusion matrices were yielding non-

significant results (Figure 1E).  

Finally, we used the XGBoost [18] classifier, tuned by Bayesian hyper-parameter 

optimization (Figure 1G), to obtain the patient group classification. The XGBoost algorithm is a 

Gradient Boosting Machines (GBM) implementation that provides parallel computation tree 

boosting, enabling fast and accurate predictions which have proven successful in several fields 
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[58-60]. GBMs are based on the gradient boosting technique, in which ensembles of decision trees 

iteratively attempt to correct the classification errors of their predecessors by minimizing a loss 

function (i.e., a function representing the difference between the estimated and true values) 

pointing in the negative gradient direction [61]. When compared to other GBM algorithms, 

XGBoost provides regularized boosting, helping to reduce overfitting and thus providing more 

generalizable results [60, 62]. For a fast and accurate machine learning model hyper-parameter 

tuning on big datasets comprising of several features, we employed Bayesian optimization [63, 

64]. The XGBoost has several hyperparameters, such as the learning rate, the minimum loss 

reduction required to make a further partition of a leaf node, the maximum depth of a tree, the 

maximum number of leaves, and the regularization weights. In order to choose the best parameters 

for the classification in this high dimensional hyperparameter space, we used Bayesian 

Optimization [63, 64] (Figure 1F). This state-of-the-art optimization framework demonstrated 

wide applicability to different problem settings. This is an iterative algorithm with two key 

ingredients: a probabilistic surrogate model and an acquisition function to decide which point to 

evaluate next. At each step, a new point of the hyper-parameter space to explore is selected to be 

the maximum of an activation function of the prior knowledge and the uncertainty. As this 

optimization progresses, the chances of finding a better solution increase. Compared to other 

techniques such as the grid-search which is undermined by issues of dimensionality or random-

search (where each guess is independent from the previous run), the Bayesian optimization 

algorithm is fast to compute, enabling a thorough optimization of the hyperparameters. To evaluate 

our classification results, we used the area under the curve (AUC) of the ROC curve. The 

confidence intervals were obtained with bootstrapping by resampling 5000 times [57]. 
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Figure 1. Multi-feature and multimodal approach to neurodegeneration (MMAN). (A) Recruitment from 

three centers consisted of of 54 bvFTD patients, 76 AD patients, and 152 HCs. (B) Acquisition of multimodal 

markers consisting of neuropsychological outcomes (NPS), demographics (sex, age, years of education), EEG 

functional connectivity (EEG-FC), atrophy markers, and MRI-FC markers. (C) Normalization of all modalities 

via z-scores. (D) Feature stabilization techniques using recursive feature elimination to find the optimal set of 

features. (E) RFC approach to test for unbiased results by classifying relative to the images’ site of origin. (F) 

For testing different feature combinations, we used a k-fold (k = 10) validation scheme for Bayesian hyper-

parameter tuning to obtain trained XGBoost models. (G)  For ROC analysis, we defined bvFTD group as the 
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“positive” class and AD group as the “negative” class, allowing the sensitivity and specificity metrics being 

applicable to patient group comparisons, and feature importance analysis results. (H) Generalization results 

using an out-of-sample set. BvFTD: behavioral-variant frontotemporal dementia; AD: Alzheimer’s disease; 

HCs: healthy controls; NPS: neuropsychological cognitive and executive markers; EEG-FC: EEG functional 

connectivity; MRI-FC: MRI functional connectivity; RFC: Random Forest Classifiers. 

 

3. Results 

3.1. Feature optimization and harmonization results for the sub-sample 

First, we applied the progressive feature elimination technique for the bvFTD vs HCs classification 

in the sub-sample without missing data. For this classification pair, we obtained an optimal number 

of nine specific features that gave a maximum mean validation accuracy of 91.6% (±1.5%) (Figure 

2A, first row). The site-harmonization processing yielded non-statistically significant confusion 

matrices for each country-wise classification after normalization (p > .05) (Figure 2B, second 

column) confirming unbiased results. For the classification between AD patients and HCs, we also 

obtained an optimal number of nine features, yielding a maximum mean validation accuracy of 

92.2% (±4.3%) (Figure 2A, second row). The harmonization analysis showed a non-statistically 

significant country classification at chance level (Figure 2B, second column). Finally, for the 

classification between bvFTD and AD patients, we obtained an optimal number of 10 features 

after stabilization, with a maximum mean validation accuracy of 91.7% (±2.1%) (Figure 2A, third 

row). Here, too, the confusion matrix also revealed non-significant results for each country after 

normalization (Figure 2B, second column).   
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Figure 2. Feature stabilization and RFC analysis in the sub-sample. (A) Feature stabilization curve for 

classification between bvFTD patients and HCs, AD patients and HCs, and bvFTD and AD patients, showing 

accuracy vs. number of features in a logarithmic scale. Starting with a set containing all features available in 

the sub-sample and finally keeping the set of features yielding maximal accuracy. The optimal number of 

features for each classification pair and sample is highlighted in a discontinuous red line. (B) RFC analysis 

results for the non-normalized and normalized samples. A high accuracy rate was observed for classifying 
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subjects per acquisition site prior normalization, and a non-statistically significant classification result for the 

normalized samples, confirming unbiased results. BvFTD: behavioral variant frontotemporal dementia; AD: 

Alzheimer’s disease; HCs: healthy controls. Log: logarithmic scale. 

3.2. Patient group classification in the sub-sample 

After obtaining an optimized subset of features for each classification pair and checking that our 

results were unbiased site-wise, we tested the robustness of the machine learning classifier on the 

patient’s sub-sample dataset. The machine learning classifier when applied on bvFTD patients and 

HCs yielded an AUC of 0.92 (±0.01) in the test set, with a sensitivity of 90% (±3%), and a 

specificity of 91% (±1%), In the feature importance list, the executive functions total score resulted 

as the top feature, followed by the left insula atrophy, left temporal pole atrophy, the nonlinear 

salience network (SN), the nonlinear wSMI EEG connectivity from the central-frontal to the right-

frontal region, the nonlinear DCFA measure of the executive network (EN), the EEG PLV linear 

connectivity in the beta band from the left-frontal to the left-temporal region, the right anterior 

cingulate-cortex atrophy, and the linear SFC measure in the SN (Figure 3, first row). For the 

classification between AD patients and HCs, we obtained an AUC of 0.94 (±0.01) in the test set, 

with a sensitivity of 89% (±2%) and a specificity of 94% (±1%). In the feature importance list, the 

cognitive assessment (total score) constituted the most important feature, followed by atrophy in 

the left entorhinal cortex, atrophy in the left hippocampus, the nonlinear default mode network 

(DMN), the nonlinear EEG marker with from the centra-frontal to the left-frontal region, left 

amygdala atrophy, the linear DMN, the nonlinear EN, and finally, the linear EN. (Figure 3, second 

row). Lastly, for the classification between bvFTD and AD patients, the AUC was of 0.90 (±0.01) 

in the test set, with a sensitivity of 87% (±2%), and a specificity of 89% (±3%). The executive 

function total score was the top feature, followed by cognitive assessment (total score), the 

nonlinear salience network (SN), the left insular atrophy, age (demographic scores), nonlinear 
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EEG connectivity from the left-frontal to the right-central region, the linear SN, the linear EEG 

connectivity in the beta band from the left-temporal to the central-occipital region, the nonlinear 

executive network (EN), and the linear DMN (Figure 3, third row). 

 

Figure 3. MMAN results for the sub-sample. Machine learning results. (A) BvFTD patients vs. HCs. ROC 

curve indicating specificity (true positive rate) and sensitivity (false positive rate), while calculating the area 

under the curve. Confusion matrix for true label and predicted label accuracy details. Feature importance plot 

of the most relevant features for the classification. Results show an AUC of 0.92, a sensitivity of 90%, and a 

specificity of 91%, with the EF total value as the top feature, followed L Insula and L Temp Pole as the top-

three features. (B) AD patients vs. HCs. ROC curve indicating specificity (true positive rate) and sensitivity 

(false positive rate), while calculating the area under the curve. Confusion matrix for true label and predicted 
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label accuracy details. Feature importance plot of the most relevant features for the classification. Results 

yielded an AUC of 0.94, with a sensitivity of 89% and a specificity of 94%. The CogA total value resulted in 

the most important feature, followed by L Entorhinal and L Hipp as the top-three features (C) bvFTD vs. AD 

patients. ROC curve indicating specificity (true positive rate) and sensitivity (false positive rate), while 

calculating the area under the curve. Confusion matrix for true label and predicted label accuracy details. 

Feature importance plot of the most relevant features for the classification. Results yielded an AUC of 0.90, a 

sensitivity of 87%, and a specificity of 89%, with the EF total value as the top feature, followed by CogA total 

and the SN DCFA as the top-three features. ROC: Receiver operating characteristic; AUC: area under the 

curve; bvFTD: behavioral variant frontotemporal dementia; AD: Alzheimer’s disease; HCs: healthy controls; 

EF: executive functions; CogA: cognitive assessment; L Insula: Left insula; L Temp pole: Left temporal pole; 

DCFA: Dynamic Functional Connectivity Analysis; SN: Salience Network; DMN: Default Mode Network; 

EN: Salience Network; wSMI: weighted Symbolic Mutual Information; PLVb: Phase-Locking Value in the 

beta band; CF: Central-Frontal; LT: Left-Temporal; RF: Right-Frontal; L Amygdala: Left-Amygdala.  

 

3.3.  Feature optimization and harmonization results for the full sample 
 
For the machine learning classification between bvFTD patents and HCs in the full sample dataset 

that had missing data, we obtained an optimal number of nine features after the optimization, 

resulting in a maximum mean validation accuracy of 91.1% (±2.3%) (Figure 4A, first row). The 

site-harmonization processing yielded a non-statistically significant confusion matrices for each 

country-wise classification after normalization (p > .05) (Figure 4B, second column)., confirming 

unbiased results. For the classification between AD patients and HCs, we also obtained an optimal 

number of nine features, with a maximum mean validation accuracy of 92.3% (±1.6%) (Figure 

4A, second row).  The harmonization process also yielded a non-statistically significant country 

classification after normalization (Figure 4B, first column). Finally, for the classification between 

bvFTD and AD patients, we obtained an optimal number of 10 features, with a maximum mean 
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validation accuracy of 91.9% (±2.4%) (Figure 4A, third row). The harmonization analysis again 

showed a non-significant profile in the confusion matrix for each country after normalization 

(Figure 4B, second column).  

 

Figure 4. Feature stabilization and RFC analysis in the full sample. (A) Feature stabilization curve for 

classification between bvFTD patients and HCs, AD patients and HCs, and bvFTD and AD patients, showing 
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accuracy vs. number of features in a logarithmic scale. Starting with a set containing all the features available 

in the full sample and finally keeping the set of features yielding the best accuracy. The optimal number of 

features for each classification pair and sample is highlighted in a discontinuous red line. (B) RFC analysis 

results for the non-normalized and normalized samples. High accuracy rates were obtained for classifying 

subjects per acquisition site prior normalization, and a non-significant classification result for the normalized 

samples, confirming unbiased results. BvFTD: behavioral variant frontotemporal dementia; AD: Alzheimer’s 

disease; HCs: healthy controls; Log: logarithmic scale. 

 

3.4. Patient group classification with the full sample 
 
After selecting the optimum features for each classification pair and checking for unbiased results 

in the full sample, we ran the classification analysis between bvFTD patients and HCs using the 

MMAN with the full sample. This classification yielded an AUC of 0.93 (±0.01) in the test set, 

with a sensitivity of 92% (±3%), and a specificity of 90% (±1%). The feature importance list 

showed a similar feature profile with respect to the features obtained in the subsample 

classification. The feature importance top-list included the executive function total score as the top 

feature, followed by left insular atrophy, nonlinear SN, left temporal pole, the inhibition subtest 

(executive score), the nonlinear EN, right frontal to left central nonlinear EEG connectivity, right 

insular atrophy, and the linear EN (Figure 5, first row). For the classification between AD patients 

and HCs, we obtained an AUC of 0.95 (±0.01) in the test set, with a sensitivity of 91% (±2%) and 

a specificity of 95% (±1%). In the feature importance list, the cognitive assessment total score 

represented the most important feature, followed by left hippocampus atrophy, the memory 

subtest, nonlinear DMN, nonlinear EEG connectivity, left amygdala atrophy, nonlinear executive 

network, linear DMN, and linear EEG connectivity between the left frontal and central parietal 

regions (Figure 5, second row). Lastly, for the bvFTD vs. AD classification, the AUC was of 0.92 
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(±0.01) in the test set, with a sensitivity of 88% (±1%), and a specificity of 88% (±1%). The feature 

importance list showed the cognitive assessment (total score) as the top feature, followed by left 

insular atrophy, nonlinear SN, the memory subtest, inhibition subtest (executive score), age 

(demographics), nonlinear DMN, nonlinear EEG connectivity features from right frontal to left 

central regions, nonlinear EN, and the linear EEG connectivity from left frontal to central occipital 

regions (Figure 5, third row). 

 

 

Figure 5. MMAN results for the full sample. Machine learning results. (A) BvFTD patients vs. HCs. ROC 

curve indicating specificity (true positive rate) and sensitivity (false positive rate), while calculating the area 

under the curve. Confusion matrix for true label and predicted label accuracy details. Feature importance plot 
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of the most relevant features for the classification. Results show an AUC of 0.93, a sensitivity of 92%, and a 

specificity of 90%, with the EF total value as the top feature, followed L Insula and the SN DCFA as the top-

three features. (B) AD patients vs. HCs. ROC curve indicating specificity (true positive rate) and sensitivity 

(false positive rate), while calculating the area under the curve. Confusion matrix for true label and predicted 

label accuracy details. Feature importance plot of the most relevant features for the classification. Results 

yielded an AUC of 0.95, with a sensitivity of 91% and a specificity of 95%. The CogA total value constituted 

the most important feature, followed by L Hipp and CogA memory as the top-three features (C) BvFTD vs. 

AD patients. ROC curve indicating specificity (true positive rate) and sensitivity (false positive rate), while 

calculating the area under the curve. Confusion matrix for true label and predicted label accuracy details. 

Feature importance plot of the most relevant features for the classification. Results yielded an AUC of 0.92, a 

sensitivity of 88%, and a specificity of 88%, with the CogA total value as the top feature, followed by L insula 

and the SN DCFA as the top-three features. ROC: Receiver operating characteristic, AUC: area under the 

curve; bvFTD: behavioral variant frontotemporal dementia, AD: Alzheimer’s disease; HCs: healthy controls; 

EF: executive functions; CogA: cognitive assessment; L Insula: Left insula; L Temp pole: Left temporal pole; 

DCFA: Dynamic Functional Connectivity Analysis; SN: salience network; DMN: default mode network; EN: 

Executive Network; wSMI: weighted Symbolic Mutual Information; PLVb: phase-locking value in the beta 

band; CF: Central-Frontal; LT: Left-Temporal; RF: Right-Frontal; L Amygdala: Left-Amygdala.  

 

3.5. Multimodal vs. unimodal comparison 
 
To compare our multimodal results (MMAN, both with the subsample and the full sample) with 

unimodal analyses, we ran the same preprocessing and machine learning pipeline but using 

specific feature sets for each modality type (Figure 6). To statistically compare the performance 

between MMAN (subsample and the full sample) with respect to unimodal approaches, we 

employed a non-parametric permutation comparison. For all classification pairs, the MMAN 

yielded higher performance when compared to the individual unimodal approaches. Moreover, the 

difference in performance was statistically significant in the two MMAN (subsample and the full 
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sample) with respect to all the unimodal analysis (p < 0.05). For the CogA and EF outcomes, we 

pooled a NPS set. For MRI-FC, we grouped the DCFA and SFC values. All atrophy measures 

were put together in the atrophy measure. The EEG-FC consisted of the PLV values (comprising 

all bands) and wSMI (comprising all tau values). Finally, we included demographic variables (sex, 

age, and years of education). For all classification pairs, the MMAN (both FS and SS) results 

outperformed unimodal analysis for the three classification pairs (Fig. 6). For the bvFTD vs. HC 

classification, the MMAN FS AUC was 0.93(±0.01), while the MMAN SS AUC was 0.92(±0.01), 

the NPS AUC was of 0.89(±0.02), for rsFC was 0.86(±0.03), the Atrophy AUC 0.85(±0.02), the 

EEG AUC 0.78(±0.04), and finally the demographic (DEM) AUC was of 0.71(±0.03).  For the 

AD vs. HC classification, we obtained an AUC for MMAN FS of 0.95(±0.01), while the MMAN 

SS AUC was 0.94(±0.01), the NPS AUC was of 0.90(±0.02), the rsFC AUC of 0.87(±0.03), 

atrophy AUC was 0.86(±0.02), the EEG AUC was of 0.85(±0.03), and lastly the DEM AUC was 

of 0.75(±0.02).  Lastly, for the bvFTD vs. AD classification, the MMAN FS AUC was 0.92(±0.01), 

while MMAN SS AUC was 0.90(±0.01), the NPS AUC was of 0.86(±0.02), the rsFC AUC of 

0.85(±0.04), the atrophy AUC of 0.85(±0.03), the EEG AUC of 0.81(±0.02), and finally the DEM 

AUC of 0.77(±0.04).  
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Figure 6. MMAN vs unimodal analysis results. MMAN analysis when using the full sample (FS) and sub-

sample (SS) compared to modality-specific results for classification between bvFTD patients and HCs, AD 

patients and HCs, and bvFTD and. AD patients shown in their respective ROC curves. For the bvFTD vs. HC 

classification, the MMAN FS AUC was 0.93, while the MMAN SS AUC was 0.92, the NPS AUC was of 0.89, 

for rsFC was 0.86, the Atrophy AUC 0.85, the EEG AUC 0.78, and finally the DEM AUC was of 0.71.  For 

the AD vs. HC classification, we obtained an AUC for MMAN FS of 0.95, while the MMAN SS AUC was 

0.94, the NPS AUC was of 0.90, the rsFC AUC of 0.87, atrophy AUC was 0.86, the EEG AUC was of 0.85, 

and lastly the DEM AUC was of 0.75.  Lastly, for the bvFTD vs. AD classification, the MMAN FS AUC was 

0.92, while MMAN SS AUC was 0.90, the NPS AUC was of 0.86, the rsFC AUC of 0.85, the atrophy AUC of 

0.85, the EEG AUC of 0.81, and finally the DEM AUC of 0.77. BvFTD: behavioral variant frontotemporal 

dementia; AD: Alzheimer’s disease; HCs: healthy controls; NPS: Neuropsychological markers; MRI-FC: 

functional connectivity MRI analysis; atrophy: Atrophy analysis; EEG-FC: functional connectivity EEG 

analysis; DEM: Demographic values. 

 

4. Discussion 
 
The MMAN approach provided support for all the proposed hypotheses on the characterization of 

AD and bvFTD patients from underrepresented and heterogeneous samples. Using both a 

subsample with complete data and a full sample with missing data, the MMAN outperformed all 
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unimodal approaches in classifying bvFTD patients and HCs, AD patients and HCs, and bvFTD 

and AD patients. MMAN was robust against confounding variables such as multicentric 

recordings, sociodemographic heterogeneities after harmonization, and overfitting by applying 

feature reduction techniques. Furthermore, we obtained a modality-specific ranking of 

classification performance, providing insights on the relevance of different levels of 

measurements. Overall findings provide a complementary computational framework for diagnosis 

and characterization of underrepresented populations that can complement dementia assessment 

in clinical settings. 

Our multimodal XGBoost classifier yielded high accuracy and showed similarities with respect 

to pathophysiological and cognitive profiles registered in unimodal studies on homogeneous 

populations regarding patterns of atrophy, neuropsychological outcomes, and functional 

connectivity[20, 23, 55, 65]. Top features for the bvFTD vs. HC classification were executive 

dysfunction, insular and temporal atrophy, and non-linear measures of SN connectivity. Executive 

deficits[11] and insular atrophy[66] are critical in bvFTD. Our feature importance analysis shown 

that the salience network and the executive networks were key predictors for this dementia 

subtype[54]. Moreover, dynamical nonlinearities (DCFA) outperformed statistical and linear 

methods (SFC) as previously shown[67]. This pattern also emerged when considering EEG 

connectivity, with non-linear (wSMI) connectivity in frontal hubs emerging as a selected feature 

that also outperformed the linear measures (PLV). Therefore, our method was able to tap into more 

complex and comprehensive brain markers of frontal lobe neurodegeneration and nonlinear 

connectivity. 

Similar advantages were found for the classification between AD patients and HCs, with top 

features involving overall cognitive assessments, hippocampal atrophy, memory-specific 
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cognitive assessments, and non-linear connectivity measures. Overall cognition assessments 

provided highly accurate AD markers.  Direct associations between memory-specific impairments 

and hippocampal atrophy[68] are observed in this condition in standard neuroradiological 

assessments for this dementia subtype. Regarding functional neuroimaging, non-linear FC-MRI 

results mirror previous studies for AD characterization based on the DMN, a network associated 

with autobiographic memory and specific AD-affected hubs[69], alongside EN alterations that are 

also present in amnestic mild-cognitive impairment[70].  Moreover, the non-linear FC-EEG 

measure showed connectivity alterations in fronto-parietal hubs, in line with previous multi-centric 

study[71] and mirroring broad regions of the FC DMN counterpart[69]. In sum, our results 

provided a deeper insight into the different pathophysiological markers for this dementia subtype 

by combining different diagnostic modalities. 

Finally, the most clinically relevant prediction was bvFTD vs. AD, because such classification 

requires a more subtle differentiation between neurodegenerative conditions, and not between 

normal vs neurodegenerative brain health processes. Such accurate differential diagnosis for 

dementia subtypes is also challenged by the overlapped compromise among conditions[21].  

However, cognitive measures (memory and inhibition), insular atrophy, non-linear fMRI and EEG 

connectivity, as well as age emerged as top features for a high accurate classification. A previous 

age-matched cohort study comparing overall cognition in bvFTD and AD patients showed distinct 

patterns of cognitive impairment[72]. In particular, memory impairments and disinhibition are 

hallmark symptoms of AD and bvFTD, respectively[38]. Further divergent results have been 

shown in volumetric studies, where specific decreases in gray matter were found in insular regions 

when comparing FTD to AD[73]. In the MRI-FC connectivity domain, the DCFA on the DMN 

and SN yielded a high feature importance for differentiating between diseases, in line with 

Page 43 of 53 AUTHOR SUBMITTED MANUSCRIPT - JNE-105396.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



32 
 

previous results on specific network anticorrelations differentiating the two disorders[66]. 

Moreover, the non-linear EEG connectivity in frontal hubs also confirmed previous reports[74]. 

Finally, the age-demographic feature appeared as a relevant feature, mirroring differences of 

disease progression for each dementia subtype[75].  In summary, when assessing data-driven 

feature differentiation between AD and bvFTD, the model yielded a neurocognitively plausible 

combination of impairments in specific cognitive domains, together with impairments in specific 

neural networks differentially affected in each disease. Moreover, results suggest that 

pathophysiological profiles in neurodegeneration are better described in terms of an integrative 

approach combining NPS, demographics, atrophy and non-linear fluctuations of global brain 

dynamics. 

The MMAN provided more accurate dementia characterizations than its unimodal 

counterparts. When considering modality-specific feature sets for classification, our MMAN (with 

both the subsample and the full sample) significantly surpassed NPS, rsFC, Atrophy, EEG, and 

demographic unimodal classifications. This difference between MMAN (both in FS and SS) and 

all the unimodal analyses was statistically significant (p < 0.05). Possible demographic biases that 

may have an effect in the multimodal approach were checked in our harmonization analysis 

showing that the site-specific classification analysis yielded non-significant confusion matrices 

differences. Moreover, the model performance increase was also statistically significant 

employing the SS, which had not significant differences in sex, age, and education. Although age 

appeared as the 4th most important feature in the AD vs FTD classification, this is an expected 

result since AD onset is usually 10-20 later than FTD onset and can come as a confound when it 

comes to the detection of sporadic AD [76]. Nevertheless, no other classification had any relevant 

sociodemographic feature as shown in the feature importance list. Moreover, similar feature 
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profiles were found in FS and SS, pointing those demographic differences had little effect in 

classification performance. The classification accuracy was subtly improved by adding MRI and 

EEG to NPS.  However, the multifeatured approach was more robust against demographic 

heterogeneity when compared to NPS tasks alone, which can be biased for specific populations. 

Moreover, MRI routine diagnostic protocols and EEG affordable markers can be easily 

incorporated into the dementia assessment to provide a more comprehensive pathophysiological 

profile.  

Our approach successfully integrated cost-effective markers of dementia in a unified 

computational pipeline that can be implemented in clinical diagnostic setting across developing 

countries. Other affordable options, such as CSF and plasma biomarkers, are not employed in 

SACs due to their invasiveness or lack of availability in the region. Major challenges in LMICs, 

and SACs in particular, involve the lack of expertise available at local centers for the correct 

interpretation of each diagnostic modality. Similarly, difficulties on grouping a team of experts of 

each assessment (neuropsychology, MRI/fMRI, EEG) to condense all the interacting factors into 

a multimodal characterization constitute an important barrier in low-resourced clinical settings. 

Moreover, multimodal assessments involved routine clinical assessment and methods that are 

substantially less expensive that PET studies. These, when combined with a robust machine-

learning pipeline, constitute a promising approach for centers with limited budgets and 

infrastructure. Crucially, those protocols should be able to tackle multilevel heterogeneity when 

employed in variable acquisition contexts[5]. MMAN results similar or better than those of 

previous PET studies reporting classifications between AD patients and HCs[77] (PET AUC = 

0.93 vs. MMAN FS AUC = 0.93), bvFTD patients and HCs[78] (PET AUC =  0.89 vs. MMAN 

FS AUC = 0.95), and AD and FTD patients[79] (PET AUC = 0.86 vs. MMAN FS AUC = 0.92). 
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These results suggest that, in the absence of PET access, MMAN can provide a complementary 

option for underrepresented populations. Our approach tackles important clinical tools in the quest 

for accessible markers in underrepresented groups and theoretical implications for a multilevel 

pathophysiological and neurocognitive characterization of dementia subtypes. 

Consortia’s pre-harmonization standards are not massively assessed in UMIC and LMIC. The 

MMAN was also robust against sources of non-harmonized heterogeneity, such as demographics 

(sex, age, years of education), acquisition scanners (1.5 Tesla vs. 3 Tesla) and parameters, and 

missing data. In multicentric data, it is often challenging to balance samples of different 

demographic backgrounds and acquisition parameters because of population heterogeneity and 

unequal access to assessments[3, 5, 7, 10, 80]. Moreover, some centers may not have access to 

specific assessments, resulting in missing data when combining site samples in multi-centric 

studies. The MMAN provided a harmonization protocol that successfully handled heterogeneity, 

as reflected in a site-specific confusion matrix from the Random Forest Classifiers analysis.  

Furthermore, the stability of our results was assessed by using a recursive feature elimination 

process that allowed us to keep the most stable features (from thousands to dozens), providing 

optimal classification accuracy and thus preventing overfitting with an adequate combination of 

multilevel markers. Overall, the reproducibility of our results opens new avenues for optimizing 

current diagnostic protocols in health centers with variable acquisition settings. 

4.1.Limitations and future studies 

Our work features some limitations. First, AD and bvFTD diagnoses were based on clinical 

expertise but without pathological or genetic confirmation. However, this limitation is shared by 

similar works employing traditional statistical and machine-learning techniques to study 

dementia[20, 54]. Future studies may combine confirmative biomarkers for further assessing the 
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ground truth of patient diagnosis. In this line, our MMAN could also benefit from adding PET 

imaging, fluid markers, and genetic markers, at least for comparative purposes because of 

economic constraints in protocol design, to test for synergies between distinct multimodal 

modalities. Second, the sample size, while limited, was comparable to other multicentric studies 

of dementia[81]. Thinking forward, more samples from other world regions may be added to test 

the specificity of the most relevant features in more heterogeneous samples. In the future, we 

expect to add more ReDLat[5] subject data, with more multimodal features such as genetic, 

epigenetic, and social determinant of health measures, to test a more detailed profile for dementia 

characterization. Third, we cannot completely rule out some possible demographic effects in the 

unmatched sample. In particular, age effects in the AD vs FTD classification are relevant, as 

current evidence points that age is a critical factor distinguishing both dementia subtype and 

progression [76]. Future studies may approach age effects in a more systematic way. Finally, these 

integrative assessments will allow more global comparisons of dementia, by comparing 

underrepresented samples with those coming from US or Europe.  

5. Conclusion 

In summary, we report a robust pipeline to characterize different measures and deal with regional 

heterogeneity in underrepresented populations based on low-cost multimodal markers to classify 

dementia subtypes. These findings highlight the relevance of MMAN for multi-centric studies and 

clinical settings, where costly biomarkers are unavailable. Moreover, we gained insights into 

pathophysiological and cognitive profiles for AD and bvFTD, capturing complex associations 

between clinical, cognitive, atrophy, and nonlinear brain connectivity features. Our approach may 

improve and facilitate multimodal characterization of dementia that can be used as a 

complementary decision support tool in clinical settings. 
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