
Density Matrix Renormalization Group for Continuous Quantum Systems

Shovan Dutta ,1,2,3 Anton Buyskikh ,4 Andrew J. Daley ,4 and Erich J. Mueller 2

1T.C.M. Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
2Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA

3Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
4Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom

(Received 20 August 2021; revised 22 March 2022; accepted 6 May 2022; published 8 June 2022)

We introduce a versatile and practical framework for applying matrix product state techniques to
continuous quantum systems. We divide space into multiple segments and generate continuous basis
functions for the many-body state in each segment. By combining this mapping with existing numerical
density matrix renormalization group routines, we show how one can accurately obtain the ground-state
wave function, spatial correlations, and spatial entanglement entropy directly in the continuum. For a
prototypical mesoscopic system of strongly interacting bosons we demonstrate faster convergence than
standard grid-based discretization. We illustrate the power of our approach by studying a superfluid-
insulator transition in an external potential. We outline how one can directly apply or generalize this
technique to a wide variety of experimentally relevant problems across condensed matter physics and
quantum field theory.
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Few computational techniques have improved our under-
standing of strongly correlated quantum systems as much
as the density matrix renormalization group (DMRG) [1].
The DMRG takes advantage of the entanglement properties
of many one-dimensional (1D) physical states [2] to
efficiently truncate the Hilbert space, approximating the
many-body wave function as a variational matrix product
state (MPS). It has been successfully generalized for time
evolution [3] and is the method of choice for simulating
discrete 1D quantum systems, with promising extensions to
higher dimensions and other tensor networks [4]. However,
despite wide-ranging potential applications [5–8], attempts
to generalize the DMRG to continuous systems have
encountered substantial difficulties. Here, we present a
new framework that addresses this long-standing challenge.
Tensor-network approaches require a lattice. To apply

them to continuous systems one must define a network of
local Hilbert spaces. The naive approach involves replacing
the continuum with a lattice [9–11]. Unfortunately, this
strategy scales poorly with the number of grid points and
displays convergence issues in systems with multiple
length scales [12,13], requiring optimization on succes-
sively finer grids [13–15], which becomes intractable for
vanishingly small grid spacing [16]. Alternatively, by

taking this continuum limit one can derive a field-theoretic
description, called continuous MPS (cMPS) [17], which
has had considerable success for translationally invariant
systems [18–22] but faces challenges in the presence of
inhomogeneities, requiring sufficiently preconverged initial
states to avoid instabilities [23]. New ansatzes may solve
some of these challenges [24]. Regardless, cMPS calcu-
lations are intrinsically nonlinear [25,26], and it is not
generally known how to encode symmetries such as
particle-number conservation [17,27].
In contrast, we partition a continuous system intomultiple

segments and choose a flexible set of basis functions in
each segment to describe the local physics. This recipe
turns the Hamiltonian into a sum over segments, with
nearest-neighbor terms imposing continuity at the bounda-
ries. This form can be minimized using standard DMRG
routines [28], used as a local basis for other tensor
network algorithms, or even used for neural-network based
approaches [29]. Like a Hubbard Hamiltonian, one can
easily incorporate symmetries [30] such as particle number,
and the method works equally well for homogeneous
and inhomogeneous systems, regardless of the initial state.
For many segments and few basis functions, it reduces to
discretizing on a grid; however, we show that for interacting
bosons in a box one can optimize the local basis to gain faster
convergence with a small number of segments. We illustrate
the broad applicability of this technique by exploring the
Mott-superfluid transition in a sinusoidal potential.
For concreteness, we consider a paradigmatic

Hamiltonian describing N bosons with contact interactions
[31] trapped in a box of length L,
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where ψ̂ðxÞ is the boson field operator, g is the interaction
strength, VðxÞ is an external potential, and we have set
ℏ ¼ m ¼ 1, where m is the boson mass. This 1D model is
realized for atoms with tight transverse confinement
[32,33], with optical box traps [34] or atom chips
[35,36]. Its physics depends crucially on the ratio of
interaction and kinetic energies, set by the dimensionless
parameter γ ≔ gL=N. When VðxÞ ¼ 0, the model has an
exact Bethe-ansatz solution [37–39], but calculating spatial
correlations is challenging except for γ ≪ 1 [40] and
γ → ∞ [41]. Thus, one typically resorts to low-energy
approximations [42] or, in static cases, Monte Carlo
simulations [43].
To use standard DMRG techniques, one can discre-

tize Eq. (1) on a grid of spacing ϵ, mapping ψ̂ to lattice
bosons, ψ̂ðxÞ → b̂i=

ffiffiffi
ϵ

p
, and replacing derivatives by finite

differences, which gives [44]
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where hi; ji denotes nearest neighbors and M − 1 is the
number of grid points in the bulk, L ¼ Mϵ; see Ref. [14]
for an alternative mapping to hard-core bosons. The
continuum limit is obtained for M → ∞.
Instead, we divide the box into M finite segments with

ψ̂ðxÞ ¼
XM
j¼1

□Xj−1;Xj
ðxÞψ̂ðxÞ; ð3Þ

where the box function□a;bðxÞ vanishes unless a ≤ x < b;
□a;bðxÞ ≔ θðx − aÞ − θðx − bÞ, with θ denoting the unit
step function. Thus, Xj is the boundary between the jth
and the (jþ 1)th segments, with X0 ¼ 0 and XM ¼ L.
Substituting Eq. (3) into Eq. (1) and keeping track of delta
functions, we find (see Supplemental Material [45])

Ĥ ¼
XM
j¼1

K̂j þ Ûj þ P̂j þ Λ
XM
j¼0

ϒ̂j;jþ1; ð4Þ

where K̂j, Ûj, and P̂j are, respectively, the kinetic,
interaction, and potential energies in the jth segment, given
by integrals between Xj−1 and Xj, and

ϒ̂j;jþ1 ≔ ½ψ̂ðX−
j Þ − ψ̂ðXþ

j Þ�†½ψ̂ðX−
j Þ − ψ̂ðXþ

j Þ� ð5Þ
is a positive-semidefinite measure of the discontinuity
between x → X−

j and x → Xþ
j . We use hard-wall boundary

conditions at the edges of our system, and in Eq. (5) define
ψ̂ð0−Þ ≔ ψ̂ðLþÞ ≔ 0. The prefactor Λ is a formally infinite
energy penalty that projects onto continuous states,

“gluing” the segments together. In our numerical calcu-
lations, we take Λ to be finite, increasing it in consecutive
DMRG cycles. This approach accelerates convergence
because the system takes larger steps through phase space
when Λ is smaller.
Equation (4) has the form of a Hubbard model, with

“on-site” and nearest-neighbor terms. It can be expressed as
a compact matrix product operator (MPO) [1] once we
select n-body basis functions ϕðjÞ

n;kð  rÞ in each segment j,
where n ¼ 0; 1;… up to some cutoff nmax ≤ N, and k
labels the different states for a given n. The construction of
these basis functions is described below and examples of
one- and two-particle states are shown in Fig. 1. In contrast,
for a lattice model as in Eq. (2), the local bases are
simply labeled by the number of particles on each site,
j0ij;…; jnmaxij. Once our continuous bases are chosen, one
calculates matrix elements

hϕðjÞ
n−1;kjψ̂ðxÞjϕðjÞ

n;k0 i ¼
ffiffiffi
n

p Z
Xj

Xj−1

dn−1rϕðjÞ�
n−1;kð  rÞϕðjÞ

n;k0 ðx;  rÞ;

where x ∈ ½Xj−1; Xj� and n ≥ 1. Similar expressions for the
matrix elements of K̂j, Ûj, and P̂j are derived in the
Supplemental Material [45]. Note these operators conserve
particle number and are thus block diagonal. If we choose
the segments to have equal width, then the basis functions
on different segments can be translations of one another,
and the local matrices become independent of j.
We take the basis functions to be piecewise polynomials,

i.e., for Xj−1 ≤ x1 ≤ x2 ≤ … ≤ xn ≤ Xj, ϕ
ðjÞ
n;kð  Rj−1 þ  rÞ ¼P

p A
ðjÞ
n;k;px

p1

1 …xpn
n , and the other sectors are determined by

symmetry under particle exchange. Here, p ¼ fp1;…; png
is a vector of the powers that appear in each monomial. As a
practical strategy, we limit the maximum degree of the
monomials: p1 þ � � � þ pn ≤ dmax, which means one can
approximate the wave function as a Taylor series of order
dmax in each symmetry sector. We choose AðjÞ

n;k;p so that the

basis is orthonormal, hϕðjÞ
n;kjϕðjÞ

n;k0 i ¼ δk;k0 . Given these con-
straints, we wish to construct polynomials that capture the
low-energy physics with a minimum number of states.
For example, the contact interaction in Eq. (1) gives rise
to a kink in the wave function wherever two particles
coincide [31], ∂xiΨðxi→xþi0 Þ−∂xiΨðxi→x−i0 Þ¼gΨðxi¼xi0 Þ.

(a) (b)

FIG. 1. Examples of (a) one-body and (b) two-body basis
functions in a segment between Xj−1 and Xj. The cusp at x1 ¼ x2
in (b) encodes the physics of contact interactions.
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The numerics are more efficient if we include the same kink
in the basis functions ϕðjÞ

n;kð  rÞ. In the Supplemental Material
[45], we show how to construct generalizations of Legendre
polynomials that possess these cusps. Calculating the local
basis, and the matrix elements of the local operators, only
needs to be done once and makes a negligible contribution
to the computation time, which is dominated by the DMRG
sweeps.
With this construction, the matrix elements of local

operators become piecewise polynomial functions of the

form hϕðjÞ
n;kjF̂ ðxÞjϕðjÞ

m;k0 i ¼
Ppmax

p¼0 F
j;p
nk;mk0 ðx − Xj−1Þp. Thus,

one can evaluate spatial correlations hF̂ †ðxÞF̂ ðx0Þi at any
point once the matrices Fj;p are stored.
Clearly, there is a tradeoff between the basis size set by

fnmax; dmaxg and the number of partitionsM. In practice, it
is sufficient to choose nmax ≫ N=M and increase M for a
given dmax to recover the true continuum limit. See
Supplemental Material [45] for a more detailed discussion
of the convergence parameters.
Figure 2 shows a benchmark calculation for N ¼ 5

strongly interacting bosons in a uniform trap [VðxÞ ¼ 0],
divided into M ¼ 8 equal segments with basis functions
that can describe quartic variations, i.e., dmax ¼ 4. We
initialize the particles in a discontinuous product state,
where each segment contains either zero or one particle,

and the single-particle wave function is uniform, hence
Ec ≔

P
jhK̂j þ Ûji ¼ 0. We use the standard DMRG

algorithm to minimize Ĥ in Eq. (4) with a small penalty
Λ. As shown in Figs. 2(a)–2(b), Ec increases with each
sweep, and the discontinuity drops. After convergence, we
sequentially increase Λ by factors of 10, stopping when the
discontinuity falls below a small threshold. For large Λ, the
energy saturates at Ec ≈ E� − η=Λ with constant η, from
which one can robustly extrapolate E�. Already with
M ¼ 8, E� matches the ground-state energy from Bethe
ansatz [38] to 5 × 10−6. The density in Fig. 2(c) shows
oscillations that are similar to those found in the Tonks gas,
which would model the system for γ → ∞ [41]. In that
limit, these corrugations can be interpreted as the Friedel
oscillations of a free Fermi gas [39], which are not
reproduced in mean-field theory [40]. Similarly, the sin-
gle-particle correlator in Fig. 2(d) has a peak at small
distances, and distinctive steps. The Luttinger-liquid
power-law tail is cut off by hard-wall boundaries [42].
We capture the correlations down to arbitrarily small
distances, and thus recover the 1=κ4 tail in the momentum
distribution nðκÞ (see Supplemental Material [45]), char-
acteristic of contact interactions [47].
Figure 3 explores the performance of our algorithm,

continuous DMRG (cDMRG), and compares it with the
grid-based discretization in Eq. (2). We consider N ¼ 10
particles and piecewise cubic basis states (dmax ¼ 3). As
illustrated by panel (a), as one refines the grid, the error in
ground-state energy falls off as M−2dmax : The energy per
segment can be approximated up to that order. The standard
discretization instead shows an error scaling as M−2.
Increasing dmax allows one to achieve the same accuracy
with fewer segments, at the cost of a larger basis. The
relationship between CPU time and accuracy is shown in

(a) (c)

(b) (d)

FIG. 2. Ground-state calculation for 5 bosons with strong
interactions (γ ¼ 50) in a uniform box, divided into 8 segments.
(a),(b) Starting from a localized state, as the penalty Λ is
increased in powers of 10, the discontinuity falls as 1=Λ2 and
the energy approaches the asymptotic value E�, which is within
5 × 10−6 of the exact Bethe-ansatz result EBA. (The remaining
discrepancy is due to the finite basis set used.) Here, Ec ¼P

jhK̂j þ Ûji and Edisc ≔ ðN=LÞPjhϒ̂j;jþ1i [see Eqs. (4)–(5)].
The inset shows Ec approaching E� as 1=Λ. (c),(d) Density and
correlations in the ground state, showing Friedel oscillations
similar to exact results for the Tonks gas (γ → ∞) and far from a
mean-field Gross-Pitaevskii theory. The mismatch between the
cDMRG and Tonks curves is due to the different values of γ. See
Supplemental Material [45] for a full description of the basis
states and the DMRG parameters.

(a) (b)

FIG. 3. (a) Relative error vs number of segments (grid points)
and (b) CPU time vs relative error in finding ground states for
N ¼ 10 using cDMRG (solid lines) and discretization on a grid
(dotted lines). For cDMRG, E is the extrapolated energy E� >
EBA (see Fig. 2). We retained up to cubic basis functions in each
segment, causing the error to fall off as M−6, instead of M−2 for
discretization. Empirically, tCPU ∼ j1 − E=EBAj−0.2 for cDMRG
at small errors, whereas for discretization this exponent is −0.75
for γ ¼ 0.1 and −1 for γ ¼ 10. Note, tCPU was measured in
seconds from the number of clock cycles during all DMRG
sweeps on single quad-core CPUs. The saturation at large errors
in (b) is due to larger bond dimensions [45].
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Fig. 3(b). The traditional discretization is more efficient for
low-accuracy calculations, where the smaller local Hilbert
space is beneficial. Our algorithm uses fewer computational
resources for high-accuracy calculations, where precise
modeling of the local physics is crucial. The crossover
point depends on the interaction strength: cDMRG is more
efficient for strong repulsive interactions, which suppress
the occupation of basis states containing more particles.
Similarly, the error in the single-particle correlations decays
as M−ðdmaxþ1Þ [45].
Since the ground-state entanglement entropy of this

system grows as lnN [48–50], we find a linear rise in
the DMRG bond dimension [51] with particle number, and
the computation time roughly scales as N3 [1]. Our
calculations were done using the ITensor library [28], using
a two-site DMRG algorithm with a singular-value cutoff of
10−14, resulting in bond dimensions of order 100 (see
Supplemental Material [45] for details).
Next, we consider VðxÞ ¼ V0cos2ðNwπx=LÞ, with Nw

potential wells between 0 and L, which makes the system
nonintegrable. There are two simple limits: (i) For
V0 ≫ Er ¼ N2

wπ
2=ð2L2Þ, where Er is the recoil energy,

a tight-binding approximation reduces the problem to a
Bose-Hubbard model with Nw sites and slightly nonuni-
form parameters [45]. (ii) For γ → ∞, the systemmaps onto
free fermions [52]. Figure 4(a) shows how the cDMRG
reproduces these limits and smoothly connects the tight-
binding and Bethe-ansatz regimes for all γ. For Nw ¼ N,
we find signatures of the superfluid-to-Mott-insulator

transition [53] for both deep (V0 ≫ Er) and shallow lattices
(V0 ∼ Er): As γ is increased, the ground-state coherences
localize, i.e., the algebraic variation of the correlation
functions [Fig. 4(c)] becomes exponential [Fig. 4(d)],
accompanied by a drop in the condensate fraction
[Fig. 4(b)]. Similar to unbounded systems [54,55] and
those with periodic boundary conditions [56,57], the low-
energy physics for V0 → 0 is described by a quantum sine-
Gordon Hamiltonian [58], which gives a Mott phase for
γ > γc ≈ 3.5þ 7.5=N (see Supplemental Material [45]).
Hence, the superfluid phase is found only for γ < γc and
sufficiently small V0.
Crucially, our approach allows one to compute the

spatial bipartite entanglement entropy S directly in the
continuum. To form a bipartition at an arbitrary posi-
tion X ∈ ðXj−1; XjÞ, we divide the jth segment into
left and right zones, with their own basis functions
ϕ�
n;k, and write the original basis as a tensor pro-

duct, ϕðjÞ
n;k ¼ P

n0;k� Cn;kn0;kþ;k−ϕ
þ
n0;kþϕ

−
n−n0;k− [45]. Thus, one

expresses the local tensor Tj of the MPS in the product
basis [Fig. 5(a)], and calculates SðXÞ via a Schmidt
decomposition [1]. For bipartition at a segment boundary,
the subdivision step can be skipped. Figure 5(b) shows the
entropy variation in a shallow lattice. At weak coupling,
where there are large number fluctuations, the entropy is
peaked about the center, characteristic of the critical
superfluid phase [59]. In contrast, at strong coupling the
entropy is largely flat, corresponding to the short-range
“area-law” entanglement expected in the Mott phase [2].
Additionally, there are small wiggles that are related to
Friedel oscillations [Fig. 2(c)]. This spatial variation can be
measured in current experiments [7] and used as a tool to
characterize continuous phases.
Finally, we give examples of how our framework can

be applied more generally. First, for multicomponent
bosons with contact interactions [5], one can partition
each component σ into the same segments, altering
Eq. (4) to

(a)

(b) (d)

(c)

FIG. 4. (a) Ground-state energy and (b) condensate fraction for
10 bosons in 10 potential wells of depthV0 using cDMRGwith 20
segments and quartic basis functions (solid lines) and using a tight-
binding approximation (dash-dotted lines). Here, N0 is the
occupation of the single-particle ground state. Dotted lines in
(a),(b) and crosses in (a) show exact solutions for the Tonks gas and
fromBethe ansatz, respectively; the condensate fractions are found
usingMonte Carlo integration [45]. The arrow in (b) marks theN0

for γ ≈ 4.22, when the ground state for V0 → 0 becomes Mott
insulating. In our finite-size system this transition is a crossover.
(c),(d) Single-particle correlations, hψ̂†ðxÞψ̂ðx0ÞiL=N, in a super-
fluid and a Mott state, corresponding to circled points in (b) [45].

(a)

(b)

FIG. 5. (a) Schematic of how one can decompose a tensor Tj of
the MPS by a basis splitting ϕðjÞ → ϕþ ⊗ ϕ− to calculate the
entanglement between arbitrary bipartitions ½0; X� and ½X; L�.
(b) Ground-state entanglement entropy for 10 bosons in a shallow
lattice (V0 ¼ Er) with interactions γ ¼ 0.2 (red), 2 (green), 20
(blue), using cDMRG with the same numerical parameters as in
Fig. 4. We have split each segment at 20 intermediate points [45].
Dashed and dotted curves show exact results for γ ¼ 0 [50] and
γ → ∞ [48], respectively.
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Ĥ ¼
X
j

�X
σ

K̂σ
j þ P̂σ

j þ Λϒ̂σ
j;jþ1 þ

X
σ;σ0

Ûσ;σ0
j

�
; ð6Þ

which still has only on-site and nearest-neighbor terms and
thus the same MPO bond dimension. The basis functions
will carry additional labels to accommodate all the com-

ponents, e.g., ϕðjÞ
n↑;n↓;k

for σ ¼↑;↓. The pairwise interaction

strengths will determine the corresponding kinks in the
basis functions.
Second, multicomponent fermions [6] can be treated on

an equal footing as bosons, only using different basis
functions for the segments. In particular, one replaces the
cusp condition with the requirement that a basis function
must vanish whenever two fermions in the same spin state
coincide, xσi ¼ xσi0 . One can clearly also work with mixtures
of fermions and bosons [6].
Third, long-range interactions will couple pairs of seg-

ments, changing
P

j Ûj to
P

j;j0 Ûj;j0 in Eq. (4). The
simplest case is that of an exponential decay [20],
uðx; x0Þ ¼ e−κjx−x0j, which yields Ûj;j0 ¼ eκδðj−j0ÞV̂þ

j V̂
−
j0

for segments of equal width δ and j < j0, where V̂�
j are

weighted averages of the density in segment j. Such
exponential terms increase the MPO bond dimension
of Ĥ only by 1 [1]. Power-law interactions, uðx; x0Þ ¼
fðjx − x0jÞjx − x0j−ν where fðjxjÞ → 1 for large jxj, can be
approximated by a sum of relatively few exponentials
[60,61]. Optimal basis functions can be estimated from
the two-body problem as well as exact solutions for ν ¼ 2
[62], which can serve as a benchmark for the nonintegrable
cases such as dipolar interactions [63] and Coulomb
repulsion [64].
In summary, our cDMRG technique uses spatial parti-

tioning to map a continuous many-body Hamiltonian to
discrete DMRG, seemlessly integrating with existing
routines: All techniques that accelerate convergence of
traditional DMRG calculations [1] (symmetries, state
prediction, etc.) carry over. By using physically motivated
basis functions, we are able to obtain fast convergence
with a limited number of segments, avoiding the need
for multiscale optimization [13]. Nonetheless, cDMRG
can work in conjunction with such approaches by using
the subdividing algorithm illustrated in Fig. 5 (see
Supplemental Material for further details [45]).
Additionally, our approach may be combined with existing
techniques for time evolution, such as the energy-conserv-
ing time-dependent variational principle [65], or extended
to higher dimensions. This will open exciting applications
to unsolved nonequilibrium problems such as prethermal-
ization of strongly interacting bosons [34], domain wall
instability in Fermi superfluids [66,67], false vacuum decay
in cosmology [68], as well as problems in quantum
chemistry [69].

An open-source code is available at Ref. [70].
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