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Abstract: Data-driven normal behaviour models have gained traction over the last few years as a
convenient way of modelling turbine operational health to detect anomalies. By leveraging high-
dimensional operational relationships, temperature thresholds can be automatically calculated based
on each individual turbine unique operating envelope, in theory minimising false alarms and provid-
ing more reliable diagnostics. The aim of this work is to provide further insight into practical uses
and limitations of implementing normal behaviour temperature models in practice, to inform practi-
tioners, as well as assist in improving wind turbine generator fault detection systems. Results suggest
that, on average, as little as two months of data are adequate to produce stable temperature alarm
thresholds, with the worst case example requiring approximately 200–290 days of data depending on
the component and desired convergence criteria.

Keywords: wind turbine; SCADA; machine learning; temperature; modelling; threshold; alarm

1. Introduction

As wind turbines continue to increase in size and capacity, wind farm availability
also becomes increasingly important to reduce unplanned downtime and minimise lost
production. One of the most promising ways to contribute to this goal of maximising
availability is through advanced turbine monitoring and anomaly detection. The aim is
to flag a range of issues allowing asset managers time to effectively plan and perform
proactive maintenance activities.

Wind turbine behaviour is complex and is influenced by a variety of operational pa-
rameters including changing wind speed, direction, turbulence, temperature and humidity,
as well as externally controlled actions such as curtailment. Techniques are required that
can detect subtle changes in individual turbine behaviour over all expected operating
regions to help detect anomalies and minimise false alarms. To this end, normal behaviour
models (NBM) have gained interest in both academic research and industry.

1.1. Literature Review

Research published involving NBM’s have been popular in recent years across various
condition monitoring applications. The full process of developing a NBM will be discussed
in later sections; however, the key principle behind NBMs is that they rely on empirically
modelling a measured parameter during a training phase to set the boundaries of what is
considered normal behaviour. The residual of the measured parameter minus the predicted
modelled parameter is used as a fault indicator, with normal behaviour having residual
values of approximately zero (±expected noise). Ref. [1] differentiated NBMs into two
distinct categories; Full Signal ReConstruction (FSRC) and AutoRegressive with eXogenous
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input modelling (ARX). The former uses only signals other than the target variable to
predict the target variable, while the latter also makes use of the historical values of the
target variable. This work will use the former, implementing a random forest regressive
model. Ensemble methods in machine learning utilise multiple algorithms to gain more
accurate and stable predictions than could be achieved with a single algorithm. Random
forests can be considered an ensemble of decision trees, which aims to overcome some of
the limitations of a single decision tree of overfitting and high variance [2].

Models in literature range from simple linear and polynomial fits such as [3], which
used a linear ARX model to detect generator bearing failure by modelling bearing tem-
perature and [4], which developed higher order polynomial FSRC models of drive train
temperatures. Similar approaches have also been shown to detect faults of other wind
turbine components such as transformers in [5]. To improve upon these modelling tech-
niques, ANNs were introduced to capture nonlinear relationships between observations
and increase model dimensionality, as demonstrated in [6] through detection of bearing
damage in offshore wind turbines. In [7], it was demonstrated how ANNs could be used
to detect main bearing damage three months before the turbine was stopped due to over-
heating by modelling main bearing temperature. ANNs’ adaptability to different data
was also shown in [8], where high frequency SCADA data was successfully used to detect
bearing faults. Two back propagated Neural Networks (BPNNs) were used in [9], one to
select relevant features, and the other to detect anomalies based on the RMSE between the
measured and modelled target parameter. Other presented techniques include [10], which
used a kNN algorithm to detect incipient failure in two turbines up to 6 months before
failure. Nonlinear auto-regressive neural networks with exogenous inputs (NARX) models
have recently been used in [11–13] to detect a range of gearbox component faults. Other
research into fault detection using SCADA data include [14], which used a nonlinear state
estimation technique to model gearbox behaviour, while probabilistic based methods were
presented in [15].

Research involving data driven methods and high frequency vibration data has also
been published extensively over the last decade in relation to wind turbine diagnostics.
Unlike SCADA analysis, vibration signal analysis can make use of component kinematics
and fault signatures to make a specific diagnosis. Much of the early work focused on wind
turbine gearboxes due to reliability issues and contribution to turbine downtime; however,
this has since extended to other drivetrain components such as generators, main bearings
and blades. It was shown in [16] that diagnosis of gearboxes can be performed using time,
frequency or time-frequency methods to analyse vibration signals. Methods to analyse the
signal in the time domain have been proposed and are often based on statistical analysis
methods to describe the time waveform such as peak value, RMS, kurtosis, mean, standard
deviation and skewness. In lab conditions, this has proven to be a successful approach
for both gearboxes [17] and generator bearings [18]. There are also many techniques
using the frequency domain that have been proposed across different components and
assemblies depending on specific fault signatures. The simplest of these is using Fast
Fourier Transform, which looks at either the whole spectrum or specific frequency bands to
extract features as demonstrated in [19]. When it comes to bearing diagnosis, Fast Fourier
Transform is typically inadequate and requires more advanced signal processing techniques
such as envelope analysis as shown in [20]. Regardless of the method used, once features
have been extracted from the raw vibration signal, machine learning methods have proven
to be a useful method of automatically classifying and detecting faults (as demonstrated
above with SCADA data). An example is shown in [21], which employed an SVM classifier
to successfully detect generator bearing faults. Gaussian Mixture Models (GMMs) were
used in [22] to detect low speed bearing faults using both frequency and time domain
features. A comparison of wind turbine gearbox vibration analysis algorithms based on
feature extraction and classification can be found in [23,24].

Whilst no vibration data or associated analysis was used in this research, the applied
machine learning techniques and modelling processes remain relevant. In an effort to
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optimise CMS activities, a range of machine learning techniques are increasingly being
used to enhance wind turbine diagnostics and prognostics, with multiple review papers
now having been published over the last few years which can be found in [1,25,26]. In a
review by Stecto et.al in 2018 [27], models were classified by typical ML steps, including
data sources, feature selection and extraction, model selection (classification, regression),
validation, and decision-making. Findings showed that most models use SCADA or
simulated data, with almost two-thirds of methods using classification and the rest relying
on regression.

1.2. Problem Statement

Although there has been research published showing the potential benefits of normal
behaviour modelling, there is still much uncertainty over how much data are required.
Papers typically utilise all available data to train and test the models, an approach that
is understandable for turbines that have been operating for several years. The reason
behind this approach is clear, providing that the wind turbine is operating under normal
conditions, using more data makes it more likely that the model has captured all of the
underlying relationships and expected variation. This in theory will allow for more accurate
representation of normal behaviour, producing alarms thresholds that are set accurately to
detect subtle changes in behaviour whilst minimising false flags.

In practice, this approach lends itself to established sites with many years of data to
utilise, handpicking the most suitable data for training and validating the model. For new
developments, however, where data are continuously being gathered from a zero starting
position, this approach is not appropriate. Lots of questions remain about how to optimally
train and develop models in this scenario. This paper aims to provide some insight into
this by developing daily NBM’s over the first year of a wind turbines life, analysing how
temperature thresholds change over time across the generator for different turbines.

1.3. Paper Structure and Novelty

Section 2 outlines the methodology and data used throughout this research. This
will provide details of the data itself, the machine learning algorithm used to build the
NBM’s, model inputs and outputs, model training, as well as how results were generated
from the NBM that allowed thresholds to be compared through time. Section 3 presents
the results, providing a comparison of temperature thresholds across different turbines
and components within the generator. Finally, Section 4 presents the discussion and key
conclusions drawn from the work.

The novelty of this work in the context of the wider research is as follows:

• Highlight the key similarities and differences between temperature thresholds pro-
duced from generator bearings and phase windings NBM’s;

• Detail the variation in NBM temperatures thresholds observed across a fleet of the
same turbine and component across different geographical locations;

• Provide insight into how temperature thresholds adapt over time as more data are
introduced from the SCADA system.

2. Methodology and Data
2.1. Description of Raw Data

The SCADA data used for this analysis were obtained from 11 identical wind turbines
with rated power of between 2–4 MW. The turbines each had a variable speed doubly-fed
induction generator (DFIG), and were all within the first five years of operation at the
time data were obtained. From the SCADA monitoring system, a total of 16 channels
were made available associated with generator operation: the 10-min average, minimum,
maximum and standard deviation of generator rotational speed and wind speed, the
10-min average generator bearing temperature, phase temperatures (1, 2 and 3), cooling
water temperature and nacelle temperature, along with the 10-min average active power
output from the generator. Continuous 10-min data were obtained for each turbine, which
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gave approximately 52,560 data points per channel per turbine taking into consideration
some variation of each individual turbine due to imperfect data coverage.

2.2. Methodology

The overall methodology described here will provide an overview of how alarm
thresholds were generated from the raw SCADA timeseries. The process is shown in
Figure 1, where the SCADA data are first of all separated by turbine. For each wind
turbine, two NBM’s are created: the first to model the generator bearing temperature and
the second to model the generator winding temperature. Feature engineering involved
normalising and analysing the data to understand the most relevant features to use for
training. Common input features were used across both NBMs, each focused on an
individual target feature as described above. Once features had been identified, data were
then split into 365 progressive sub-datasets each having an additional 1 day of data. This
was done to simulate a new wind farm site, for which more data would be continuously
gathered and made available for training over the course of a year. For example, on
sub-dataset 35, the model is trained with 35 days of data (or approximately 5040 data
samples per feature), whereas, on sub-dataset 140, the model is trained with 140 days
of data (or approximately 20,160 data samples). For each of the bearing and winding
temperature NBM, several temperature thresholds were calculated each week based on the
distribution of error residuals. This is the difference between predicted target temperature
and measured target temperature; however, more detail will be provided in later sections
about this process. Once thresholds had been established, they could be compared through
time.

Figure 1. Methodology for generating NBM temperature threshold.

2.3. Feature Engineering

First of all, let us consider the power curve in relation to the two component temper-
atures that are to be monitored through a NBM. In Figure 2, (a) shows the power curve
in relation to the generator bearing temperature, while (b) shows the same plot for the
generator phase temperature. Note that the raw features have been cleaned to remove all
data gathered while the turbine had a power output of below zero, and then normalised
between 0–1.



Energies 2022, 15, 5298 5 of 13

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

WindSpeed

P
ow
er
O
ut

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

WindSpeed

P
ow
er
O
ut
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Figure 2. Power curves.

It can be seen that the 10-min. average phase temperature more closely correlates with
the average power and wind speed. This is further emphasised in Figure 3, where (a) shows
the direct relationship between the average generator bearing temperature, wind speed and
power output over the same time period. One of the most obvious observations is the more
complex relationship between generator bearing and both operating parameters, where two
distinct relationships appear to be present. The turbine used does not have two generators
(like some earlier models), nor is there any substantial periods of curtailment which may
contribute to this temperature distribution (as seen in the power curve). One possible
explanation could be in relation to the cooling system; however, with the data provided,
it is impossible to state the cause conclusively. Conversely, the observed relationship
between operating parameters and average generator phase temperature is relatively
simple and linear.
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(a) Generator bearing temperature (b) Generator phase temperature

Figure 3. Relationship between component temperature and operating condition.

There are several ways to quantitatively assess feature importance for training a
regressive model. One technique is univariate analysis, for which we can examine each
feature individually to determine the strength of the relationship with the target variable.
This can be useful to disregard irrelevant features which are noisy or uncorrelated, or
conversely where inputs are heavily correlated and provide no additional information. For
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example, one common metric to understand the relationship is the Pearson correlation
coefficient, which measures the linear correlation between two variables. Figure 4 shows
the Pearson coefficient for the input features described previously. The r value has a range
of between −1 and 1, with two features showing total positive correlation if r = 1 and true
negative correlation when r = −1. Two features will be completely uncorrelated if r = 0.
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Figure 4. Pearson coefficient for assessing linear correlation.

From the data inputs available, we see high positive correlation scores between av-
erage wind speed value and its distribution around the mean. The same can be said for
generator speed when considering the maximum and minimum, although with more
random standard deviation. With regard to operating parameters and surrounding tem-
peratures, high correlation between power, wind speed and generator speed is observed.
Cooling water temperature and nacelle temperature are not correlated linearly to turbine
operation, although they are somewhat correlated to each other. Although useful, these
metrics are quite restrictive and are not suitable for ranking high dimensional nonlinear
relationships. To navigate this issue, another useful way to rank features is through a model
based approach. For ease of application, a tree based model was used and involves training
a random forest model and assessing feature importance based on the average decrease in
impurity across all decision trees in the forest. As this is automatically computed during
the training phase, it offers a convenient approach to assessing feature importance when
dealing with nonlinear relationships. Feature importance of inputs in relation to NBM 1
(generator bearing temperature) and NBM 2 (generator phase winding temperature) are
presented in Figure 5a and 5b, respectively.
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Figure 5. Overall feature importance of inputs and target using random forest impurity score.

In both cases, the most important feature was wind speed by a significant margin.
Generator speed and power output provide the next level of importance in both models,
with the cooling water temperature only significant when modelling the generator bearing.
For both NBM 1 and 2, nacelle temperature was of zero importance. Based on the infor-
mation presented above, Table 1 summarises the features used to train the NBM’s. This
consisted of the average active power output, wind speed, generator speed and cooling
water temperature.
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Table 1. SCADA channels used for NBM development.

SCADA Channel Description Model Feature NBM

Poutput Average Active Power Output Input 1, 2
Ugenerator Average Generator Speed Input 1, 2

Uwind Average Wind Speed Input 1, 2
Tnacelle Average Generator Cooling Water Temperature Input 1, 2
Tbearing Average Generator Bearing Temperature Target 1
Tphase Average Generator Phase Winding Temperature Target 2

2.4. NBM Description

The model used for this case study was a random forest regressive model, with the
model predictors and response features highlighted in Table 1. Features were chosen based
on the feature analysis described in the previous section. Model hyperparameters were
determined through model testing and validation processes. Key hyperparameter values
included: max tree depth of 4, number of tree estimators of 10, minimum samples per split
of 2, with the quality of split measured by the mean squared error (MSE).

2.5. Alarm Generation

The process of actually generating the alarms from the target and input features can
be found in Figure 6. This has been adapted from the conventional NBM development
process published in [1,3]. As the regressive based NBM requires supervised learning,
a training dataset consisting of inputs features x(t) and target feature y(t) is necessary.
Once trained, the available input features can be used to generate predictions of expected
target feature, ŷ(t). This model prediction is then subtracted from the actual target feature
recorded (in this case from the temperature sensor) to give the error residual e(t). From
here, the distribution of the error over the training period can be analysed. For this analysis,
four percentiles of the distribution were investigated, P99, P97, P95 and P90, which were the
99th, 97th, 95th and 90th percentiles, respectively. To convert these percentiles back into
absolute values, they were added to the model prediction to create alarm thresholds A99,
A97, A95 and A90.

Figure 6. Process for creating alarm level through NBM, adapted from [1,3].

3. Results
3.1. Comparison of Alarm Thresholds through Time

Results will be presented for both NBM 1 and 2, representing the generator bearing
temperature and generator phase winding temperature, respectively. For each day of
the year, as described in Figures 1 and 6, four alarm thresholds were calculated based
on different percentiles of the NBM error residuals. Plots showing the alarm thresholds
changing through time are presented in Figure 7: (a) for bearing temperature and (b) for
phase winding temperature.
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Figure 7. Temperature alarm thresholds calculated through time. (a) generator bearing temperature
alarm; (b) generator phase winding temperature alarm.

For each NBM alarm threshold, we see variability between turbines both in time taken
to converge and in absolute value after convergence. In terms of absolute values, Figure 8
shows the variation between turbines after convergence. For each turbine, the average
of the final three values of each temperature threshold was used to create box plots for
direct comparison.
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Figure 8. Variation in alarm threshold between turbines after convergence.

First of all, we see a much lower alarm threshold value for the generator winding
in comparison to the bearing on average. Additionally, as expected due to the error
distribution, a general increase is also observed as the higher percentile is used. With
regard to variation between turbines, there was larger variation in the generator bearing
thresholds compared to the phase windings. For the bearings, the variation between
turbines was fairly consistent for each percentile; however, the windings showed increased
variation when higher percentiles were used.

3.2. Alarm Threshold Convergence

Convergence is used in this instance as a measure of how much data are required
for the model to produce consistent alarms and hence capture the expected variability of
turbine normal behaviour. A more convenient way to visualise this is by looking at the rate
of change of the alarm, which will settle around zero as the threshold converges. Figure 9
shows the daily change in temperature threshold:

dA =
Ax − A(x−1)

An
(1)

where dA is the percentage change in alarm level relative to the final converged
threshold An, and Ax is the normalised alarm level for data sample x of dataset with
length n.

For each of the two NBM’s shown in Figure 9a,b, threshold convergence of 2%, 3%, 4%
and 5% were considered across all alarm percentiles. Results are presented in Figure 10
and showed significant variation between turbines, even when considering the same
alarm percentile and convergence criteria. In general, it was found that decreasing the
convergence percentage from 5% to 2% led to longer convergence times. This would be
expected due to tighter convergence constraints. The average convergence time based on
3% was between 50–60 days, with the majority of turbines not requiring more than 120 days,
or approximately four months of data. These times significantly increased when using the
2% convergence criteria, which will be discussed in more detail during the next section.
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Figure 9. Temperature alarm thresholds converging over time. (a) generator bearing alarm conver-
gence; (b) generator phase winding alarm convergence.
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Figure 10. Convergence times.

4. Discussion and Conclusions

This work presented a comparative analysis of NBM temperature thresholds for gen-
erator bearings and phase windings. Four thresholds were utilised, each calculated from
different percentiles of the temperature error residual distribution. For each tempera-
ture threshold, four convergence percentages were analysed to understand how much
variability can be expected across components and turbines, as well as linking these to
threshold convergence time to better understand how much data are required to produce
robust alarms.

First of all, in terms of absolute residual alarm levels (measured temperature minus
predicted temperature), results show that there is significantly more variation in the gen-
erator bearing temperature when compared to the phase winding temperature. This can
be observed in Figure 3, and means that the input features used to create the NBM cannot
explain the level of variance. This additional unexplained variance is transferred over to the
alarm threshold through the NBM process, where lower performance in anomaly detection
would be expected. Increasing accuracy of prediction would require a higher dimensional
model with additional inputs that can further explain the observed relationship. In practice,
this shows the importance of robust feature engineering, as different components do not
always have the necessary inputs (and sensors) to create models of equal accuracy.

Regardless of modelling accuracy, a percentile can be chosen to reflect the residual
error distribution. If we first of all consider 3%, 4% and 5% convergence (excluding 2% for
now), the vast majority of turbines require less than 150 days to effectively train a stable
threshold. In fact, if you eliminate the threshold based on the 90th percentile, the majority
of turbines require less than 120 days, with the average being approximately 50–60 days.
Only 1 or 2 significant outliers, each representing an individual turbine, lie outside this
range. Once we move to 2% convergence criteria, the required data significantly increase,
in some cases to include all available data, suggesting that the convergence criteria are
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marginally too restrictive. In most cases, however (again excluding the threshold based on
the 90th percentile), less than 250 days of data are required.

Finding the correct balance between minimising false alarms and accurately picking
up anomalies can be difficult. Feature engineering to correctly identify and utilise features
to create an accurate NBM is one part of the overall approach. Analysing and choosing the
correct threshold based on NBM error residuals is equally as important. Results suggest
that, on average, as little as two months of data are adequate to produce stable temperature
alarm thresholds, with the worst case example requiring approximately 200–290 days of
data depending on the component using a 3% convergence.

In practice, this suggests that initial models could be developed with a few months of
data without the risk of increased false alarms and subsequent costly investigations. Once
available, retraining the NBMs with up to 8–10 months of data would be recommended in
order to further ensure alarm threshold convergence is achieved to minimise this risk.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
ARX Auto-Regressive with eXogenous input
DFIG Doubly-Fed Induction Generator
FSRC Full Signal Reconstruction
MSE Mean Squared Error
NARX Nonlinear Auto-Regressive neural networks with eXogenous input
NBM Normal Behaviour Model
RMSE Root Mean Squared Error
SCADA Supervisory Control and Data Acquisition
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