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Abstract
Robotic sensing is used in many sectors to improve the inspection of large and/or complex parts, enhancing data acquisition 
speed, part coverage and inspection reliability. Several automated or semi-automated solutions have been proposed to enable 
the automated deployment of specific types of sensors. The trajectory to be followed by a robotic manipulator is typically 
obtained through the offline programmed tool paths for the inspection of a part. This method is acceptable for a part with 
known geometry in a well-structured and controlled environment. The part undergoing assessment needs to be precisely 
registered with respect to the robot reference system. It implies the need for a setup preparation phase for each new part, 
which can be very laborious and reliant on the human experience. This work combines real-time robot control and live sensor 
data to confer full autonomy to robotic sensing applications. It presents a novel framework that enables fully autonomous 
single-pass geometric and volumetric inspection of complex parts using one single robotised sensor. A practical and robust 
robot control sequence allows the autonomous correction of the sensor orientation and position to maximise the sensor 
signal amplitude. It is accompanied by an autonomous in-process path planning method, capable of keeping the inspection 
resolution uniform throughout the full extension of the free-form parts. Last but not least, a by-product of the framework 
is the progressive construction of the digital model of the part surface throughout the inspection process. The introduced 
framework is scalable and applicable to widely different fields.

Keywords  Autonomous inspection · Robotic sensing · Path-planning · Data-driven control · Surface mapping · Non-
destructive testing

1  Introduction

1.1 � Motivation

Robotic enabled sensing has become increasingly com-
mon in recent years. Besides being used for manufactur-
ing operations (e.g. welding, assembly, spray-painting), 
industrial robotic arms are also used to perform adequate 

inspections of safety-critical and/or high-value components. 
Indeed, automated non-destructive systems have attracted 
the interest of several industries (e.g. aerospace) to speed 
up the assessment of large and complex parts, overcoming 
the bottleneck associated with the quality assurance phases. 
Non-destructive testing (NDT) is the process of inspecting, 
testing, or evaluating parts and materials, without disrupting 
their functionality. Many NDT methods rely upon differ-
ent physical transduction principles (e.g. sound/ultrasound, 
magnetism, electric field and electromagnetic radiation). 
The capabilities of most currently available NDT methods 
have been combined with some degree of automation in 
recent years to enhance data acquisition speed, part cover-
age and inspection reliability. Therefore, many automated 
or semi-automated inspection systems have been engineered 
to enable the robotic manipulation of specific types of NDT 
sensors. These systems have been accompanied by bespoke 
software applications that allow simultaneous sensor data 
collection and robotic positional feedback reception, merged 

This work was performed at the University of Palermo.

 *	 Carmelo Mineo 
	 carmelo.mineo@icar.cnr.it

1	 Institute for High Performance Computing and Networking, 
National Research Council (ICAR-CNR), Palermo, Italy

2	 Department of Engineering, University of Palermo, Palermo, 
Italy

3	 Centre of Ultrasonic Engineering, University of Strathclyde, 
Glasgow G1 1XW, UK

http://orcid.org/0000-0002-5086-366X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-022-01673-6&domain=pdf


	 Journal of Intelligent & Robotic Systems          (2022) 105:54 

1 3

   54   Page 2 of 19

to produce encoded sensor data maps. Automated inspec-
tion systems are usually operated by generating tool paths 
by offline programming software (OLP). Using the virtual 
model of a given part and a digital mock-up of the robotic 
inspection environment, OLP software can generate the 
required inspection tool path that follows the contour of the 
part surface. Then, the tool path is transferred to the robot 
controller and executed to control the robotic manipula-
tion of the sensor during a given inspection. Although this 
approach works well when an accurate model of the part 
is available, and the automated inspection takes place in a 
well-structured environment, where the part position is pre-
cisely registered with respect to the robot reference system, 
it makes setting up the assessment of new parts very time-
consuming and dependent on the skills and experience of 
the robot programmer.

Moreover, the actual geometry of a part may signifi-
cantly deviate from its digital counterpart, resulting in 
inaccurate tool paths. For these reasons, robotic platforms 
should become able to flexibly scan parts through online 
path planning with as much autonomy as possible. Semi-
autonomous or fully-autonomous inspection systems should 
provide the same guarantee of completeness in surface cov-
erage achieved by a human operator manually inspecting 
the part or by a robot whose tool path is programmed by 
an expert OLP software engineer. This work introduces a 
new approach capable of conferring full autonomy to robotic 
sensing applications, providing a breakthrough in the state-
of-the-art, which can be exploited in areas beyond automated 
NDT systems.

1.2 � Related Work

Minimising the deviation between the tool paths generated 
through offline programming software and the contour of 
the actual parts is a ubiquitous problem in robotic inspec-
tions. Whereas tool paths for parts for which an accurate 
digital-twin model is available can be generated through 
commercial software with a sufficient level of accuracy, the 
tool paths for legacy parts or deformed components are not 
straightforward to generate. Some works demonstrated the 
possibility of obtaining good results through offline correc-
tion of the tool path deviations [1]. However, offline correc-
tion imposes a preliminary additional scanning step of the 
real part geometry before the automatic target operation can 
be carried out through the corrected path. Automated meth-
ods for free-form surface mapping have developed signifi-
cantly in recent years. Photogrammetric solutions involving 
3D or 2D cameras have evolved from heavily user-guided 
[2] to fully automated 3D model reconstruction techniques 
[3, 4]. Although using automated geometry reconstruction 
is a viable approach for some applications, it weakens the 
speed advantage given by robotised NDT. It is the case 

when running one-off inspections of custom parts or scan-
ning composite parts, which suffer from elastic spring-back 
when extracted from the mould during manufacturing [5].

Moreover, geometry reconstruction requires dedicated 
hardware and bespoke tool paths to visit a set of target data-
collection locations around the part when the 3D surface 
mapping instrumentation is automated through a robotic 
manipulator. In the manufacturing field, part geometry tol-
erances are usually measured using Coordinate Measuring 
Machines (CMMs) [6]. Their usage also relies on the user 
to define the sampling locations and/or a sampling spacing 
along a specified planar raster path [7].

The need to perform a preliminary geometry recon-
struction step to inform the accurate path-planning task is 
removed by establishing real-time control feedback loops 
and enabling online corrections to the original paths. There-
fore, different kinds of sensors, such as force-torque sensors 
[8], proximity sensors [9], laser trackers [10] and/or cam-
eras [11, 12], have been employed to correct predefined tool 
paths during their execution. The usefulness to correct pre-
defined tool paths is evident in robotic sensing applications 
and some specific automated manufacturing operations. An 
approach based on RGB-D cameras, acoustic and tactile 
transducers has been proposed to monitor loss of ablation 
and missed coverage due to misalignment in robotic grit-
blasting [13]. To make automated welding more reliable 
and improve weld quality, the scientific literature reports 
methods for tool path correction based on eye-in-hand con-
figurations through cameras [12] and laser profilers [10] for 
the weld seam detection.

Since automated inspection systems can be considered 
commonplace, the research efforts are moving towards ena-
bling more autonomous and adaptable robotic inspections, 
removing the reliance on operator inputted information to 
guide the data-acquisition phase. Some works have inves-
tigated Bayesian optimisation and robust outlier analysis 
to introduce a degree of autonomy through machine learn-
ing [14, 15]. These works cast the autonomous inspection 
problem as an optimisation problem. After an observation is 
taken, a probabilistic algorithm decides where the following 
observation should be taken to maximise a given objective. 
These decisions are thus carried out sequentially as informa-
tion is being gathered. If damage is detected and a sample is 
deemed faulty at a given step, the inspection can stop there 
to avoid further efforts. If no damage is present, such kind of 
autonomous inspection can continue focusing on minimis-
ing risk by means of exploring the space until a given target 
sampling density (number of samples per square surface 
unit) is reached. However, this probabilistic approach was 
only tested on small flat samples, using rectangular user-
specified domains of interest. Indeed, the system autonomy 
is limited to within the domain of interest and assumes the 
presence of a signal at any visited point. Autonomy is mainly 



Journal of Intelligent & Robotic Systems          (2022) 105:54 	

1 3

Page 3 of 19     54 

enabled in the context of real-time signal processing, leaving 
the field of real-time path-planning unexplored for large and/
or complex parts.

Moreover, since this approach allows any two consec-
utive sampling positions to be quite far from each other, 
with respect to the specified domain of interest, it causes an 
increase in robot travel time and scanning duration compared 
with a pre-planned inspection path covering the same area. 
An application field that shows some commonality with the 
problem at stake is the autonomous path-planning for mod-
ern vacuum cleaner robots—however, the solutions deployed 
in this arena work only for relatively flat parts [16]. Further-
more, although they aim to achieve entire surface covering, 
they do not necessarily provide consistent cleaning effort 
over large surfaces (the time spent on the surface unit can 
vary enormously).

Recently, a completely autonomous surface-profiling and 
part inspection process has been proposed [17]. That ena-
bles in-process surface mapping by acquiring the readings 
of three laser distance sensors conveniently arranged at the 
end-effector of a robotic arm, which is also equipped with 
an NDT probe for the volumetric inspection of the sample. 
The three distance readings are used to infer the local sur-
face normal and the position of the surface with respect to 
the robot reference system. The robot position is corrected, 
bringing the NDT probe to a constant standoff and aligning 
its sampling direction to the surface normal, thus allowing a 
good NDT signal collection. Autonomous surface explora-
tion is enabled through a generalised Flood Fill Algorithm 
(FFA) [18], therein named as Complete-Surface Finding 
Algorithm (CSFA) [17]. Although this system is a signifi-
cant advancement in autonomous robotic sensing, it has lim-
itations. First of all, additional sensors are required, besides 
the NDT inspection probe, to support the in-process surface 
mapping. Secondly, CSFA does not guarantee that the sam-
pling density is kept constant over the extension of complex 
part surfaces and may lead to a lack of inspection coverage. 
Lastly, collision avoidance has not been considered.

1.3 � Contribution

This work introduces a robust approach to performing a 
fully autonomous inspection of complex parts. It is suit-
able for all those situations where the target inspection is 
carried out through a sensor whose sensitivity depends on 
the probe's position with respect to the part surface. For 
example, this is the case for pulse-echo ultrasonic or eddy-
current testing. The maximum signal amplitude is obtained 
when the probe is perpendicular to the test surface and at 
a well-controlled standoff. As a result of this work, a fully 
autonomous single-pass simultaneous geometric and volu-
metric inspection of complex parts, using only one robotised 
sensor, becomes possible. It has been achieved by solving 

three main problems. The contribution of this work flowed 
into the areas highlighted by the blocks with a double-line 
border in Fig. 1.

The first sub-problem consisted in developing an effec-
tive and robust algorithm and robot control sequence to 
enable the autonomous correction of the sensor orientation 
and position to maximise the signal amplitude at a given 
place and maintain a constant probe standoff. The second 
sub-problem relates to autonomous in-process data-driven 
path planning. This work presents a novel solution based 
on computing the next best point to be sampled. At the core 
of this is a mathematical, analytical approach that keeps 
the distance between the new inspection point and already 
visited neighbour points as close as possible to the target 
resolution. As a result, the inspection resolution is kept uni-
form throughout the full extension of the curved surface of 
interest. It is an important point which can lead this proposed 
autonomous robotic inspection system to penetrate the most 

Fig. 1   High-level workflow of the system introduced by this work. 
The inspection autonomy is obtained through the elements within the 
dashed line box. The contribution of this work flowed into the areas 
highlighted by the blocks with a double-line border
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demanding industrial applications in the future. Indeed, local 
degradation of sampling resolution may cause some faults 
to remain undetected, which is unacceptable. The third sub-
problem concerns the tracking of the scanned areas of a part 
to detect the part boundaries and the autonomous sequencing 
of the inspected regions, minimising travel time and avoid-
ing any risk of collisions. The proposed approach does not 
need a user-defined spatial domain of interest. It incremen-
tally creates a virtual representation of the sample geometry 
and the surface boundary, tracking down all regions of the 
target surface until full coverage is reached.

Since a connectivity map of the sampled points is initiated 
at the beginning of the autonomous inspection and updated at 
each new sampled position, a virtual model of the top surface 
of the inspected sample volume is generated as a by-prod-
uct. It can be stored in stereolithography file format (STL), 
which can be used for geometrically assessing the part devia-
tions from a given digital reference. The only requirement is 
that the user accurately defines the starting position of the 
robotic inspection, allowing the surface position to be inferred 
through the collected sensor signal at that first position. The 
method enables following free-form surface geometries that 
cannot be globally represented analytically. Notably, it is scal-
able to different problem sizes, spanning from inspection of 
relatively small parts (e.g. through industrial robotic arms) to 
land surface mapping (e.g. through drones). The limitation is 
that the target inspection resolution cannot be smaller than 
the minimum curvature radius of the part surface. Therefore, 
in the case of significant surface discontinuities (e.g. sharp 
edges), the autonomous inspection system will not always 
be able to cross the discontinuities and continue the surface 
discovery on the other side of it. In practical deployments, 
besides being a function of the minimum defect size that 
one wants to detect through the inspection system, the tar-
get inspection resolution (the scanning step) must be chosen 
small enough to allow complete autonomous discovery of the 
whole surface of interest. The MATLAB-based implementa-
tion of all investigated methods is made publicly available at 
https://​doi.​org/​10.​5281/​zenodo.​59402​01 and can be used by 
the research community for future developments.

1.4 � Article Structure

The remainder of the article is structured as follows. Sec-
tion 2 describes the autonomous sensor pose correction. Sec-
tion 3 presents the novel approach developed to enable the 
autonomous in-process data-driven path planning and all 
additional aspects related to the supporting data structure, 
the inspection time minimisation, collision avoidance and 
stopping criteria. An application example and performance 
aspects are discussed in Sect. 4. Finally, Sect. 5 draws the 
conclusions and a prospect for future work.

2 � Autonomous Sensor Pose Correction

As was said above, previous works have demonstrated the 
use of multiple sensors and/or machine vision cameras 
to address the problem of online part discovery and real-
time robot pose correction. In this work, it was thought 
of using the data originating from the same sensor, which 
is used for inspecting the part, for guiding the pose cor-
rection. There is a wide range of situations where reduc-
ing the number of components in an inspection system is 
highly advantageous, limiting its overall cost or minimis-
ing its weight and complexity. For example, the latter is 
for robotic inspection systems operating in nuclear plant 
decommissioning or used in space exploration. The sys-
tems with higher masses are more expensive to bring into 
operation, and failures of complex systems may be tough 
to recover. Herein, the proposed solution for pose correc-
tion is composed of two phases: orientation correction and 
standoff correction.

2.1 � Correction of Sensor Orientation

To operate a sensor with a robot manipulator, it is neces-
sary to mount the sensor onto the robot and instruct the 
robot with the coordinates of the point we want to con-
trol with respect to the robot end-effector flange. In other 
words, it is necessary to define a tool-central-point (TCP) 
for the robotically manipulated sensor. The TCP is usually 
defined conveniently to facilitate the programming of the 
robot trajectory. Thus, the TCP will coincide with the focal 
point for optical and acoustic sensors or with a character-
istic physical point for a sensor that has to contact the part 
to carry out the measurements.

Assuming a given sensor is brought to a target position 
by a robotic manipulator, with its TCP reaching the target 
part position but its orientation off from optimum, it is 
necessary to correct the sensor orientation. Regardless of 
the physical operating principles, the sensitivity of most 
transducers is maximised when they are positioned in a 
specific direction with respect to the normal of the part 
surface. For example, this is the case for laser profilers, 
ultrasonic sensors and eddy-current transducers. When a 
robotic tool-path is programmed offline, a great effort is 
made to ensure the robotised probe will follow the con-
tour of a part, keeping its sensing orientation normal to 
the part surface. However, despite the efforts, deviations 
from the ideal path are often inevitable due to the dif-
ferences between the virtual part model used for offline 
programming and the physical sample. In this work, the 
dependence of the sensor sensitivity on the orientation 
is exploited to guide the online correction of the sensing 

https://doi.org/10.5281/zenodo.5940201
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direction. The underpinning idea consists in commanding 
a rotation of the sensor around its TCP whilst observing 
the variation of the collected signal amplitude to discover 
the optimum sensing direction. Whereas this concept is 
quite simple, implementing an effective algorithm to con-
trol the sensor rotation requires looking at the problem 
closer. Assuming the ideal case, where there is no sensor 
signal noise and starting from the bidimensional space for 
clarity, Figs. 2a and d illustrate the amplitude exploration 
process for the generic case. The figures highlight all the 
positions visited by the sensor, consecutively numbered 
and with "0" being the initial sensor position. Figure 2a 
shows the probe in the initial position, with the TCP lying 
on the surface of a curved part and the sensing direction 
noticeably deviating from the optimum direction. The plot 
is overlaid onto a polar reference system, whose origin is 
placed at the TCP. Whereas the radial distance from the 
origin represents the signal amplitude, the angular position 
of the sensing direction with respect to the initial direc-
tion is indicated along the circumferential axis. For the 
sake of illustrating the concept, the signal amplitude (a) is 
assumed to depend on the angle ( � ) that the sensing direc-
tion forms with the ideal direction, as a(�) = cos2� . The 
mapping of amplitude versus orientation starts by rotating 
the probe according to the positive direction of rotation 
(Fig. 2b). The signal amplitude is registered at every angu-
lar increment indicated by �� . If such rotation direction 
produces amplitude lowering, the probe is brought to the 
opposite side of the initial sensor direction, at an angu-
lar offset equal to −�� , from where amplitude mapping 
resumes (Fig. 2c). The rotation direction that increases the 

amplitude is pursued until the maximum amplitude is reg-
istered and the amplitude starts decreasing again (Fig. 2d). 
It must be clear that, for the example illustrated in Fig. 2a-
d, the negative rotation direction would not have been 
explored if rotating in the positive direction had resulted 
in an increasing amplitude. Instead, if the initial sensor 
direction were close enough to the optimum direction, 
the step illustrated by Fig. 2c would have also produced 
a decrease in amplitude, and the exploration would have 
stopped there. In the ideal case, the minimum exploration 
effort consists of only one rotation step in the positive 
direction and one in the negative direction.

In reality, sensor data are always accompanied by uncer-
tainty due to the limited resolution of the sensors or the 
presence of measurement noise (e.g. electromagnetic noise) 
that superposes to the sensor signals. Therefore, a robust 
and exploitable solution for autonomous pose correction 
cannot neglect this fact. The subplots in Fig. 2e-h illustrate 
how dealing with this uncertainty is addressed in this work. 
These plots re-propose the same initial sensor position of 
the figures described previously, exemplifying what hap-
pens in the presence of noise in the sensor data. Assuming 
the sensor signal has an uncertainty of ±0.1 (range width 
equal to n = 0.2 ), Fig. 2e shows that the exploration pro-
cess can start only when the initial signal amplitude 

(
ã0
)
 

is higher than 1.5n . Here, the signal amplitude is simulated 
adding a random component that can assume any value in 
the range between ±n∕2 . The function used to generate 
a synthetic signal amplitude for every sensor position is: 
ã(𝜗) =

[
a(𝜗) + (nΨ∕2)

]
 , with Ψ being a random variable 

spanning between ±1.

Fig. 2   Conceptual illustration of data-driven signal amplitude maxi-
misation in the ideal case (a-d) and the case of lower signal-to-noise 
ratio (e–h). The initial amplitude is measured (a, e). The rotation 

direction that produces amplitude lowering is not pursued (b, f). The 
direction that gives amplitude increase is pursued (c, g). The rotation 
stops as the amplitude decreases (d, h)



	 Journal of Intelligent & Robotic Systems          (2022) 105:54 

1 3

   54   Page 6 of 19

In Fig. 2f, the sensor rotates in the positive rotation direc-
tion until the amplitude registered at the ith step exits the 
uncertainty range 

((
ãi <

(
ã0 − n

))
∨
(
ãi >

(
ã0 + n

)))
 . In 

this example, it results ã2 <
(
ã0 − n

)
 and the amplitude 

mapping resumes at the opposite side of the initial sensor 
direction (Fig. 2g). Again, the sensor rotates until the reg-
istered amplitude exits the uncertainty range. In this case, 
it results ã4 >

(
ã0 + n

)
 . The sensor rotation continues, 

until the amplitude lowers more than u , from the maximum 
observed amplitude (Fig. 2h). This ensures that the sensor 
travels across the optimum direction while mapping the sig-
nal amplitude. It must be noticed that, as it is expected, the 
presence of uncertainty in the data widens the total angular 
span that needs to be explored. Although amplitude mapping 
is more time-consuming, the developed strategy is effective 
and robust in practical applications.

The employed value of the angular sampling step ( �� ) 
has an important impact on the performance of the ampli-
tude mapping process and the final correction of the sen-
sor orientation. The value of this input parameter must be 
chosen consistently by the user. It is fair to say that practical 
values of �� depend on three things: (i) the variability of 
the signal amplitude as a function of the angular deviation 
from the optimum orientation, (ii) the level of noise in the 
signals and (iii) the signal acquisition rate. The variation of 
the amplitude (versus the angular deviation) and the level 
of noise ( n ) should be considered together. The value of �� 
should be chosen in such a way that, in the surrounding of 
the optimum sensing direction, the modulus of the difference 
between two successive amplitudes is larger than one-tenth 
of the noise level ( ||ai − ai−1

|| > n∕10 ). From this, it results 
that, when n ≈ 0 , �� could also be very small. However, 
smaller values of angular step lead to the acquisition of more 
signals within a given angular span. A suitable value of �� 

should be chosen according to how much time it is accept-
able to spend for amplitude mapping. Ultimately, the higher 
the acquisition rate provided by the available data collec-
tion instrumentation, the smaller �� can be. Smaller val-
ues of angular step allow higher resolution mapping of the 
amplitude, increasing the probability of detecting the high-
est amplitude value in the surrounding of the optimum (but 
unknown) sensor direction. However, selecting the visited 
direction where the maximum amplitude is registered as the 
target direction may lead to significant errors due to noise 
in the signals. This is illustrated in Fig. 3, where the ampli-
tude values from Fig. 2h are plotted in Cartesian axes. The 
direction corresponding to the maximum amplitude devi-
ates 20 degrees from the actual optimum direction. To solve 
this issue, the proposed algorithm terminates with fitting a 
second-order polynomial curve to the sampled amplitudes. 
The direction corresponding to the maximum of the fitting 
curve is adopted as the target direction to operate the final 
correction of the sensor orientation. This refinement lowers 
the deviation to only 0.56 degrees for the example case.

In the bidimensional case, the algorithm described so 
far solves the autonomous sensor orientation correction. In 
order words, Fig. 2 illustrates the sensor moving on a sin-
gle plane whilst performing amplitude mapping. Assuming 
such plane is perpendicular to a given unitary vector ( ⃗r ), the 
optimum sensor direction found through this planar ampli-
tude mapping is generally only a local optimum and not the 
global one. Therefore, amplitude mapping must be carried 
out sequentially on multiple planes until no further signifi-
cative amplitude enhancement is registered. Figure 4 shows 
the extended concept for autonomously reaching the global 
optimum sensor direction.

The area encapsulated by the dashed line is the core of 
the algorithm, where r⃗ is chosen according to the direction 

Fig. 3   Refinement of optimum 
sensor orientation, though 
polynomial fitting of registered 
amplitudes
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of the current sensing direction ( ��⃗ws
=
[
ws
x
ws
y
ws
z

]
 ). If the 

component of ��⃗ws with the higher absolute value is the z-axis 
component 

((|||ws
z

||| > ||ws
x
||
)
∧ (

|||ws
z

||| >
|||ws

y

|||)
)
 , r⃗ should either 

be the x-axis versor ( �⃗u =
[
1 0 0

]
 ) or the y-axis versor 

( �⃗v =
[
0 1 0

]
 ). Choosing the former or the latter depends on 

the comparison of the other two component absolute values 
and on the rotation axis used at the previous iteration, which 
prevents rotating around the same axis twice consecutively. 
Likewise, if the most significant component of ��⃗ws is the 
y-axis component, r⃗ is chosen to either be the z-axis versor 
( ��⃗w =

[
0 0 1

]
 ) or the x-axis versor ( �⃗u ). Finally, if the most 

significant component of ��⃗ws is the x-axis component, r⃗ is 
chosen either as the y-axis versor ( �⃗v ) or the z-axis versor 
( ��⃗w ). Besides checking if the updated maximum signal 
amplitude exceeds the previous value by more than the noise 
level 

(
ã − ãp > n

)
 , an iteration counter ( k ) is used to make 

sure amplitude mapping is performed twice at the very least 
on two distinct planes.

2.2 � Correction of Sensor Standoff

The previous section assumed the probe TCP lay on 
the part's surface at all times. Whereas this assumption 
was reasonable to focus on explaining probe orientation 

correction, it is not generally valid. Therefore, there is 
a need to correct the sensor standoff to keep the TCP 
on the part surfaces during the autonomous inspection. 
It is crucial for complex parts, whose surface curvature 
can cause large deviations to sensor standoff. In this 
work, the correction of the sensor standoff is performed 
after the correction of the sensor orientation. Given ��⃗ws 
being the sensing direction at the end of the orienta-
tion correction, the standoff is corrected by moving the 
sensor TCP along such direction. The way the amount 
of this correction is computed depends on the type of 
sensor in use. For a sensor capable of measuring the 
distance of the part surface (e.g. a laser distance meter, 
typically used for surface geometry mapping), the devia-
tion of the TCP from the part surface comes directly 
from the sensor reading. Other sensors can provide an 
indirect measure of the deviation. It is the case when 
distances can be inferred from the measure of an elapsed 
time (e.g. from time-of-flight of a wave in ultrasonic 
pulse-echo testing), if the wave propagation speed in 
the separation medium is known at a sufficient level of 
accuracy. Therefore, in this work, the sensor standoff is 
corrected through a single intervention by sending the 
TCP corrected target coordinates to the robotic sensor 
manipulator.

Fig. 4   Overall algorithm workflow (pseudo-code equivalent) for autonomous sensor orientation correction. The amplitude mapping is repeated 
multiple times, rotating the sensor around the most convenient axis until no further significative amplitude enhancement is registered
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3 � Autonomous Full‑Coverage Part 
Exploration

To inspect the full extent of a given part, the sensor must 
be moved along the contour of the part surface, whilst sen-
sor data is collected at regular spatial intervals. Automated 
inspection systems deploy pre-programmed tool paths, which 
are typically raster paths. Although these paths work well 
for automated systems, ensuring full part coverage with the 
required sampling density, they do not appear suited to auton-
omous inspections. To minimise the travel time while explor-
ing an unknown part geometry, an autonomous inspection 
system should mimic what would be done by a blind human 
who is subjected to the same challenge. This work introduces 
an incremental data-driven inspection tool path that grows 
from a starting point. All aspects of the online path planning 
algorithm are described below.

3.1 � Algorithm Supporting Data

It is helpful to define the essential data that intervenes in 
the algorithm's execution before attempting a description 
of its details. Such data consists of the scalar variables and 
the matrices listed in Table 1. An effort has been made to 
minimise the machine memory required to run this novel 
autonomous path planning model. The double-precision 
floating-point format, occupying 64 bits in computer mem-
ory, is only used to store the Cartesian and the Eulerian 
coordinates of the robot poses. All other data items use the 
32-bit unsigned integer format when storing indices and 
an 8-bit Boolean variable to store logical values ("TRUE" 
or "FALSE"). One typical issue when running autonomous 
robot navigation/manipulation is that the number of loca-
tions to visit is unknown at the start, meaning that the total 
amount of memory space required to complete the task 
cannot be allocated beforehand.

Nevertheless, since memory allocation is vital to allow 
fast algorithm execution, all data arrays are initialised by 
allocating sufficient memory to store up to 100 elements, 
whose initial values are given in Table 1. It implies that the 
allocated memory needs to be enlarged whenever the pre-
allocated amount is filled. Any unused allocated memory 
has to be released at the end.

It must also be noted that Table 1 reports only the data 
required for the progression of the online path planning. 
To keep the attention focused on the novel elements of 
this work, the logging of the sensor data is intentionally 
not discussed here. Indeed, such logging depends on the 
sensor data that one wants to retain and store (e.g. raw 
signals and/or condensed information) for real-time and/
or future processing.

3.2 � Initialisation from a Given Starting Pose

Given a part to inspect and the required inspection reso-
lution ( r ), defined as the ideal distance that any sampling 
point should have from the neighbour inspection points, 
it is necessary to explain how the autonomous inspection 
commences before looking at the regime situation of the 
process. Figure 5 illustrates the critical steps of the start of 
the inspection of a generic part. It has already been antici-
pated that the proposed approach needs the user to specify 
an initial pose for the sensor to detect the part under inspec-
tion. Although that is the main requirement, some other 
input parameters that allow full customisation of the process 
commencement will be introduced and explained below. In 
Fig. 5a, P1 represents the updated version of the initial user-
provided pose, following the autonomous pose correction 
described in Sect. 2. The coordinates of this pose are stored 
in the first row of pts, and the sensor signal is acquired. If 
the signal amplitude is higher than 1.5n (with n still indicat-
ing the noise level), the first element of isDataPt is turned 
to TRUE. From the Eulerian angular coordinates of P1 , it 
is possible to compute the matrix R1 =

[
�⃗u
s

1 �⃗v
s

1 ��⃗w
s

1

]
 , whose 

column vectors represent the sensor orientation in P1.
The second sensor pose must be computed somehow 

for the inspection process to progress from the initial sen-
sor pose autonomously. This pose is to be indicated with 
P′
2
 , to remember that it is a target pose to move the sensor 

and it can differ from the final pose ( P2 , after autonomous 
pose correction). Since P′

2
 should be at distance r from the 

first pose, it follows that it can be selected among the points 
belonging to the circumference of radius r , drawn on the 
plane �1 determined by �⃗us1 and vs

1
 (see Fig. 5b). Indeed, using 

only the information acquired from the first inspection pose, 
such a plane is the best available approximation of the plane 
tangent to the part surface at P1 . It derives that the second 
sensor pose could be selected among the infinite points 
belonging to the circumference in Fig. 5b. However, to give 
the user a level of control over this selection, the algorithm 
enables the user to specify an angular parameter ( ∅ ). This 
parameter indicates the user-preferred angle that the seg-
ment P1P

′
2
 must form with the direction originating from 

the projection of the x-axis versor ( �⃗u ) onto �1 . For the sake 
of illustrating an example, adopting ∅ = 0 , Fig. 5c shows 
the resultant new pose ( P′

2
 ) and its corrected version ( P2 ). 

It must be noted that the autonomous pose correction plays 
a fundamental role in following the curvature of the part 
under inspection. Indeed, whereas P′

2
 inherits its Eulerian 

coordinates from P1 , the sensor orientation in P2 is described 
by a corrected triad of versors. As soon as the robot manipu-
lator brings the sensor to P2 , the point counters (nPts and 
nViaPts) are both incremented by one unit, the coordinates 
of P2 are stored in the second row of pts, and the sensor 
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signal is acquired. Thus, the second element of the trajectory 
index vector (iViaPts) is set to 2, and the second logic ele-
ment of isAcquPt is set to TRUE. Finally, the sensor signal is 
acquired and, if the amplitude is higher than 1.5n , the second 
element of isDataPt is turned to TRUE.

Once two sensor poses are visited, the third pose must be 
computed to allow inspection progression. Since it should be 
at a distance r from both the first and second pose, it follows 
that it should be selected among the intersections between two 

circumferences of radius r , respectively, centred at P1 and P2 
and lying on the planes �1 and �2 . However, since two cir-
cumferences drawn on different planes are not guaranteed to 
intersect, a more robust alternative consists in considering the 
intersections between the infinite cylinder ( �1 ) of radius r and 
axis defined by ��⃗ws

1 and the circumferences of radius r centred 
at P2 (Fig. 5d). The problem of finding these intersections is 
not difficult to model using analytic geometry. First of all, both 
the cylinder and the circumference are translated, rotated and 

Table 1   Key data that intervene in the execution of the online path planning algorithm

Data name Minimum 
size (rows x 
columns)

Format Initial value Description

nPts 1 × 1 Unsigned integer 1 Number of distinct visited points
pts nPts × 6 Double-precision numbers 1

2

⋯

100

⎡⎢⎢⎢⎣

x
1
y
1
⋯

0 0 ⋯

⋯ ⋯ ⋯

0 0 ⋯

⎤⎥⎥⎥⎦

A matrix. Each row contains the Cartesian coordinates of one 
robot pose (X, Y, Z) and its Eulerian angular coordinates 
(A, B, C). Each distinct pose is listed only once to minimise 
memory consumption

isDataPt nPts × 1 Boolean 1

2

⋯

100

⎡⎢⎢⎢⎣

0

0

⋯

0

⎤⎥⎥⎥⎦

A Boolean value for each point
TRUE (1) = sensor data has been collected at the point (the part 

has been detected)

isOverlapPt nPts × 1 Boolean 1

2

⋯

100

⎡⎢⎢⎢⎣

0

0

⋯

0

⎤⎥⎥⎥⎦

A Boolean value for each point
TRUE (1) = the point overlaps with a previously inspected 

region

nViaPts 1 × 1 Unsigned integer 1 The number of points constituting the robotic trajectory
iViaPts nViaPts × 1 Unsigned integers 1

2

⋯

100

⎡⎢⎢⎢⎣

1

0

⋯

0

⎤⎥⎥⎥⎦

Indices of the trajectory points (the indices refer to the points 
in pts)

isAcquPt nViaPts × 1 Boolean 1

2

⋯

100

⎡⎢⎢⎢⎣

1

0

⋯

0

⎤⎥⎥⎥⎦

A Boolean value for each trajectory point
TRUE (1) = sensor data acquisition attempted at the relative 

trajectory point

nTri 1 × 1 Unsigned integer 0 The number of triangles in the geometry reconstruction tessel-
lated surface

iTri nTri × 3 Unsigned integers 1

2

⋯

100

⎡⎢⎢⎢⎣

0 0 0

0 0 0

⋯ ⋯ ⋯

0 0 0

⎤⎥⎥⎥⎦

Each row contains the indices of the vertices of one triangle. 
The indices refer to the points in pts (with no repetitions)

nEdges 1 × 1 Unsigned integer 0 The number of distinct triangle edges in the whole triangulated 
surface (with no repetitions)

iTriEdges nEdges × 2 Unsigned integers 1

2

⋯

100

⎡⎢⎢⎢⎣

0 0

0 0

⋯ ⋯

0 0

⎤⎥⎥⎥⎦

Each row contains the indices of the extremities of one edge. 
The indices refer to the points in pts

isOutEdge nEdges × 1 Boolean 1

2

⋯

100

⎡⎢⎢⎢⎣

0

0

⋯

0

⎤⎥⎥⎥⎦

A Boolean value for each edge of the triangulation
TRUE (1) = the relative edge is on the perimeter of the triangu-

lation

rDir 1 × 1 Boolean TRUE or FALSE 
(specified by 
user)

A Boolean value to store the preferred rotation direction for the 
inspection trajectory

TRUE (1) = clockwise; FALSE (0) = anticlockwise
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scaled to transform the �1 into a unitary radius cylinder centred 
at the z-axis. Thus, the Cartesian equation of the transformed 
cylinder is:

Instead, the parametric equation of the transformed circum-
ference can be written as:

where t is the parameter, P̃ is the transformed centre point 
of the circumference and Ũ and Ṽ  are the transformed 
orthogonal vectors in the circumference plane (originally 
of length r ). It is possible to rationalise Eq. 2 by substitut-
ing cos(t) =

(
1 − p2

)
∕
(
1 + p2

)
 and sin(t) = 2p∕

(
1 + p2

)
 , 

with p being a substitute parameter. Thus, combining these 
equations:

(1)x
2
+ y

2
= 1

(2)

⎧⎪⎨⎪⎩

x =
∼

Px +
� ∼

Ux ∙ cos(t)
�
+
�∼

Vx ∙ sin(t)
�

y =
∼

Py +
� ∼

Uy ∙ cos(t)
�
+
�∼

Vy ∙ sin(t)
�

Equation 3 is a quartic polynomial equation. There is 
no simplification of the coefficients, but the equation can 
be solved numerically or by closed-form formulas [19, 
20]. The equation allows up to four solutions. Given the 
distance between the centre of the circumference and the 
cylinder axis being approximately equal to their common 
radius ( ≈ r ) and the cylinder axis not parallel to the cir-
cumference plane, Eq. 3 yields only two real solutions for 
p . These zeros of the equation propagate into the primary 
parameter t  and, at last, into the Cartesian coordinates of 
the sought intersections. The Eulerian coordinates of the 
two intersections are obtained from the mean of the rota-
tion matrices of P1 and P2 . The mean rotation matrix is 
computed according to the formulation proposed in [21]. 
Therefore, either of these two intersection points (namely: 
P′
3
 and P′′

3
 ) could be arbitrarily selected as the third inspec-

tion pose. However, in this case, to give the user control 

(3)

[∼
Px

(
1 + p

2
)
+

∼

Uv

(
1 − p

2
)
+ 2p

∼

Vx

]2
+
[∼
Py

(
1 + p

2
)
+

∼

Uy

(
1 − p

2
)
+ 2p

∼

Vy

]2
=
(
1 + p

2
)2

Fig. 5   Start of the autonomous 
inspection of a part. Example 
of part geometry with an initial 
inspection pose (a), computa-
tion of the second pose (b), 
correction of second pose (c), 
calculation of possible third 
poses (d), selection of the third 
pose according to rotation direc-
tion (e) and correction of third 
pose (f)
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over this selection, the algorithm enables the user to 
specify the initial value of the Boolean variable (rDir), 
which is used to store the preferred rotation direction of 
the inspection trajectory. This logic parameter supports the 
selection of the next sensor pose, indicating the favourite 
travelling direction with respect to the last travelled seg-
ment (rDir = TRUE for clockwise and rDir = FALSE for 
anticlockwise). Adopting rDir = FALSE for an anticlock-
wise travelling direction, Fig. 5f shows the new pose ( P3 ), 
originating from the uncorrected pose P′

3
 . As soon as the 

robot manipulator brings the sensor to P3 , besides incre-
menting the point counters (nPts and nViaPts), storing 
the coordinates of P3 in the third row of pts and updat-
ing isDataPt, iViaPts and isAcquPt, it is possible to start 
constructing information about the nascent surface trian-
gulation. Indeed, since the first three visited sensor points 
define the first triangle ( T1 ), the triangle counter (nTri) is 
set equal to 1, the triangle edge counter (nEdges) is set 
to 3, and the first three elements of isOutEdge are set to 
TRUE. The order with which the indices of the vertices 
of the first triangle and of the extremities of the first three 
edges are stored in iTri and in iTriEdges, respectively, 
depends on rDir:

It must be noted that Eq. 4 lists the triangle vertices in 
anticlockwise order (for a viewer positioned outside of the 
part), regardless of the inspection travelling direction. It 
makes storing the triangle normal unnecessary since any 
software capable of importing, processing and editing 3D 
triangular meshes can retrieve the triangle normal from the 
triangle vertices. The normals will always point outward 
from the part triangulated surface (obeying the right-hand 
rule) [22].

3.3 � Next‑Pose Computation and Progressive Mesh 
Growth

The completion of the initialisation phase, through which 
the first three inspection poses are visited, and the first mesh 
triangle is created, marks the start of the main stage of the 
autonomous process. This phase consists of the computa-
tion of the next pose and consequent growth of the mesh 
through a repeating data-driven algorithm. Assuming i is 

(4)

if rDir = TRUE →

⎧⎪⎨⎪⎩

iTri(1, ∶) =
�
2 1 3

�

iTriEdges(1 ∶ 3, ∶) =

⎡⎢⎢⎣

2 1

1 3

3 2

⎤⎥⎥⎦

if rDir = FALSE →

⎧⎪⎨⎪⎩

iTri(1, ∶) =
�
2 3 1

�

iTriEdges(1 ∶ 3, ∶) =

⎡⎢⎢⎣

1 2

2 3

3 1

⎤⎥⎥⎦

the index of the current pose ( Pi ), j = nTri and k = nEdges 
at a given generic progress state, with Tj being the last tri-
angle added to the mesh, the application of this algorithm 
allows stepping to a new pose ( Pi+1 ) and the simultaneous 
progressive extension of the mesh. Figure 6 helps explain 
the algorithm, starting from three example progress states. 
To accompany the reading of this work, Fig. 6a-c shows the 
deployment of the algorithm for the case immediately fol-
lowing the completion of the initialisation phase described 
in Fig. 5. Instead, Fig. 6d-f and Fig. 6g-i relate to the other 
two progress states, representative of later points in time. 
The value of rDir remains set to FALSE, indicating that the 
current travelling direction is still anticlockwise. Indicating 
with A and B , respectively, the first and the second sensor 
pose that we come across when travelling from the current 
pose ( Pi ) along the external boundary of the constructed 
mesh, a circumference of radius r centred at Pi and lying on 
the plane �i and two infinite cylinders ( �A and �B ) of radius r 
and axes ��⃗ws

A
 and ��⃗ws

B
 are constructed. A computation based on 

Eq. 3 is used to find the extremities of the circumference arc 
that remains outside both cylinders, namely: P�

i+1
 and P��

i+1
 . 

Thus, the extremity that produces a travel direction in agree-
ment with the current value of rDir is selected as the next 
sensor pose. Figure 6c, f and i illustrate the updated progress 
state with the corrected new posture ( Pi+1 ), originating from 
either P�

i+1
 or P��

i+1
 . This new pose allows constructing either 

one new mesh triangle ( Tj+1 ) or two new triangles ( Tj+1 and 
Tj+2 ). Extending the mesh with either one or two new trian-
gles depends on the position of the new pose with respect to 
A and B . In particular, only one new triangle is added, if the 
angle ( � ) formed by the vectors ����⃗APi+1 and ����⃗AB is larger than 
�∕2 radians (e.g. in Fig. 6c and f). Otherwise, if � ≤ �∕2 
radians, two new triangles are added (e.g. in Fig. 6g). If the 
former is the case, the triangle counter (nTri) is incremented 
by one unit, and the triangle edge counter (nEdges) is incre-
mented by two units. Whereas the elements of isOutEdge 
corresponding to the two new edges are set to TRUE, the 
element of isOutEdge corresponding to the edge linking A 
and Pi is turned to FALSE, since APi ceases to be a boundary 
edge of the mesh. On the other hand, if two new triangles 
are created, nTri is incremented by two units, and nEdges 
is incremented by three units. The elements of isOutEdge 
related to the edge linking Pi and Pi+1 and to the edge link-
ing Pi+1 and B are set to TRUE. The elements of isOutEdge 
related to the edge that links B and A and to the edge that 
links A and Pi are turned to FALSE, since both BA and APi 
become internal edges of the mesh.

The order with which the indices of the vertices of the 
new triangle(s) and of the extremities of the new edges 
are appended to the respective lists, in iTri and iTriEdges, 
depends on rDir and � , according to the following generali-
sation of Eq. 4:
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(5)

if 𝛽 > 𝜋∕2 →

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

if rDir = TRUE →

⎧⎪⎪⎨⎪⎪⎩

iTri(j + 1, ∶) =
�
i a i + 1

�

iTriEdges(k + 1 ∶ k + 2, ∶) =

⎡⎢⎢⎣
a i + 1

i + 1 i

⎤⎥⎥⎦

if rDir = FALSE →

⎧⎪⎪⎨⎪⎪⎩

iTri(j + 1, ∶) =
�
i i + 1 a

�

iTriEdges(k + 1 ∶ k + 2, ∶) =

⎡⎢⎢⎣
i i + 1

i + 1 a

⎤⎥⎥⎦

if 𝛽 ≤ 𝜋∕2 →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if rDir = TRUE →

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

iTri(j + 1 ∶ j + 2, ∶) =

⎡⎢⎢⎣
i a i + 1

i + 1 a b

⎤⎥⎥⎦

iTriEdges(k + 1 ∶ k + 3, ∶) =

⎡⎢⎢⎢⎢⎣

a i + 1

i + 1 i

b i + 1

⎤⎥⎥⎥⎥⎦

if rDir = FALSE →

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

iTri(j + 1 ∶ j + 2, ∶) =

⎡⎢⎢⎣
i i + 1 a

i + 1 b a

⎤⎥⎥⎦

iTriEdges(k + 1 ∶ k + 3, ∶) =

⎡⎢⎢⎢⎢⎣

i + 1 a

i i + 1

i + 1 b

⎤⎥⎥⎥⎥⎦

where a and b are the indices of point A and B , respec-
tively. It must be noted that thanks to the attention dedicated 
to the way the edges are listed in iTriEdges, the point A , 
required for the application of the above-described algo-
rithm, is immediately available at any progress state. Indeed, 
the edge linking the last visited pose ( Pi ) to A is the last edge 
of the list. Moreover, since such an edge is always at the 
boundary of the mesh, there is only one other boundary edge 
linked to A , whose other extremity is point B . The method of 
indexing the robot poses, which is used in this work, mini-
mises the consumption of computational resources to find 
these key points.

3.4 � Inspection Confinement

There must be a way to confine the inspection into the 
region of interest autonomously to enable full autonomy. 
That is the region where the part under examination can be 
detected. In this work, both inspection coverage and inspec-
tion confinement are ensured by stopping the inspection 

Fig. 6   Examples of next-pose computation and triangular mesh pro-
gressive growth: following the completion of the initialisation phase 
(a-c), at a later point in time (d-f) and at a point where two new trian-
gles are created (g-i). From left to right: illustration of progress state 

after the visitation of the ith pose ( Pi ) (a, d, g), computation of inter-
sections ( P�

i+1
 and P��

i+1
 ) (b, e, h) and illustration of progress state and 

mesh growth after selection and visitation and correction of the new 
pose ( Pi+1 ) (c, f, i)
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path from extending outside the part boundary by more 
than the inspection resolution ( r ). It is achieved by ena-
bling changes in travelling direction in the inspection path. 
This concept is illustrated through the example given in 
Fig. 7. For clarity, the figure shows the inspection progress 
by looking at the process steps through a top view. The 
figure indicates with A1 and B1 the first and the second pose 
that we come across when travelling from the current pos-
ture ( Pi ) along the external boundary of the constructed 
mesh in the direction indicated by the current value of 
rDir . Instead, A2 and B2 indicate respectively the first and 

the second pose contiguous to Pi in the opposite direction. 
Given this notation, the direction of travel is changed if 
both Pi and A1 are sensor poses where the part could not 
be detected, whereas the part could be seen in A2 (e.g. in 
Fig. 7a-c). It descends that the poses A and B , used for the 
computation of the next pose, as described in Sect. 3.3, are 
taken equal to A1 and B1 , when no change of direction is 
required, or equal to A2 and B2 otherwise. If the latter is 
the case, the value of the Boolean variable that indicates 
the current travelling direction is flipped ( rDir =∼ rDir ). 
Therefore, rDir becomes TRUE if it was FALSE and FALSE 
if it was TRUE, recording a change of the preferred trav-
elling direction from anticlockwise (ACW) to clockwise 
(CW) or vice-versa, respectively. In Fig. 7d, the direction 
of travel flips from ACW to CW due to the poses Pi and 
A1 being both outside the part and pose A2 being within 
the part boundary. Figure 7d shows the new pose ( Pi+1 ), 
resulting from the inverted travelling direction. Obviously, 
the process continues by considering the new pose as the 
current pose ( Pi = Pi+1 ) and evaluating whether the part 
could be detected in Pi and A1 , or in A2 . It must be noted 
that A1 , B1 , A2 and B2 are always identified with respect to 
the current pose and the current value of rDir.

3.5 � Collision Avoidance and Travel Time 
Minimisation

In more general situations, the autonomous evolution of the 
inspection from a given starting pose may bring to a particu-
lar progress state, where both the current pose and the two 
directly connected poses, which are on the external bound-
ary of the mesh, are outside the part (e.g. in Fig. 7e and f). 
In this case, even though some regions of the part are still 
unexplored, there is no change of travelling direction that 
can immediately help the continuation of the inspection. It 
is clear that the part assessment should resume from a pose 
on the external boundary of the current mesh and outside the 
part. That pose should also be directly connected to another 
mesh boundary pose that falls within the part surface. Such 
posture would allow resuming the inspection through either 
the ACW or the CW travelling direction. Considering a 
generic case, multiple poses may meet these requirements.

Nevertheless, thanks to the indexed representation of 
the connectivity employed in this work, finding all suitable 
poses that meet the above criteria is easy and fast. Once all 
appropriate poses are identified, a twofold problem must be 
solved before the inspection can continue. First of all, it is 
necessary to have a criterion to guide the selection of the 
best pose to use. Secondly, since that pose may be quite far 
from the current posture, it is necessary to plan a path to 
move the sensor without causing any collision between the 
sensor itself and the explored/unexplored regions of the part 
under inspection.

Fig. 7   Progression of inspection. The subplots show the critical steps 
of the process, from start to end—inspection confinement through 
the change of travelling direction (a-d), the pursuit of unexplored 
regions, minimising travel time and avoiding collisions (e-j) and the 
fulfilment of the stop criteria (k)
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In this work, both subproblems are simultaneously 
solved by employing the conceptualisation of the short-
est path problem (SPP) used in graph theory [23, 24]. SPP 
is the problem of finding a path between two vertices (or 
nodes) in a graph such that the sum of the weights of its 
constituent edges is minimised. The current mesh is used 
as the graph, allowing each mesh edge to be travelled 
bi-directionally. The index of the current pose is given 
as the source, and the indexes of the identified suitable 
poses are provided as targets. Since all edges of the mesh 
have a length circa equal to the inspection resolution ( r ), 
the weight of each edge is set to be unitary, reducing the 
problem to an unweighted search. The A* search algo-
rithm [25] is used to find the single-pair shortest path 
on the graph/mesh, linking the source to each one of the 
targets. The cost of each path is defined as the number 
of edges that need to be travelled to move from the start 
to the target. Thus, the target pose that can be reached 
through the least expensive path is selected. The rela-
tive path, originating from the solution of SPP, is used to 
move the sensor effectively. It is clear that, since this opti-
mum path brings the sensor through previously visited 
and safe poses, it removes any possibility of collision. It 
must be noted that this previous statement is not necessar-
ily true for robotic systems that can undergo mechanical 
singularity conditions. Travelling between two connected 
poses near a singularity can cause a change of robot con-
figuration (e.g. from "shoulder up" to "shoulder down" for 
a six-degrees-of-freedom (6-DoF) robotic arm). However, 
this issue can be solved in practical implementations by 
storing the robot's collision-free configuration for each 
visited pose. Figure 7g and h illustrate the paths com-
puted through solving the SPP to pursue the inspection 
of the unexplored regions of a given example part. For 
the progress state in Fig. 7f, the path and the target pose 
relative to the minimum cost (equal to 1) are selected 
among four possible paths. Whenever all suitable poses 
produce paths of equal cost (e.g. Figure 7h), the target 
pose is randomly chosen among them.

3.6 � Stop Criteria

The capability of safely moving between distant poses, 
through solving the SPP, enables the full autonomous 
inspection of very complex parts.

According to the algorithm logic described, the inspec-
tion process should end when the part is not detected along 
the constructed mesh's boundary. It corresponds to saying 
that the inspection should terminate when all the elements 
of isDataPt, relative to the boundary poses, are equal to 
FALSE. However, this stopping condition may not be 
sufficient in some situations. The part shape may cause 

the inspection path to loop around a hole or obstacle and 
approach a previously inspected region (e.g., Fig. 7j). In 
this case, the inspection progression may lead to re-visit-
ing already examined areas, resulting in unwanted prolon-
gation of the inspection, redundant data and/or an endless 
inspection. To avoid this undesirable behaviour, a bespoke 
function of the algorithm checks if each new pose over-
laps with any triangle of the constructed mesh, setting the 
relative element of isOverlapPt to either TRUE or FALSE. 
This function is based on the fast ray casting method pre-
sented in [26], which checks if the normal direction for the 
pose intersects any of the mesh triangles. Thus, all poses 
marked as "overlap poses" in isOverlapPt are considered 
"internal" boundary points and do not support the germi-
nation of new inspection poses. In conclusion, the autono-
mous inspection ends when the mesh boundary contains 
only poses where the part could not be detected or poses 

Fig. 8   Overall algorithm workflow (pseudo-code equivalent) for 
autonomous full-coverage part exploration
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overlapping with boundary triangles of the mesh itself 
(e.g., Fig. 7k). The whole process is schematically sum-
marised in the workflow given in Fig. 8, which illustrates 
the logic and uses the notation introduced above.

4 � Application Example

A simple application was carried out to compare the pre-
sented autonomous inspection framework with some 
examples of currently established automated approaches. 
Since ultrasonic testing (UT) is one of the most widespread 
inspection methods and may be of interest to most readers, 
an inspection setup based on a single-element piezoelectric 
ultrasonic probe, manipulated by a 6-DoF robotic arm, was 
used. Figure 9a shows the part that was put under inspection. 
It is a 50 mm wide and 118 mm long sample cut out from 
a steel pipe with a 500 mm outer diameter and thickness of 
19.2 mm. It can also be described as a 50 mm long longitu-
dinal portion of a hollow cylinder, subtended by a circum-
ferential angle of 27.3 deg (measured at the cylinder axis).

Three flat bottom holes (FBHs) with diameters of 6 mm, 
10 mm and 20 mm were machined into the part from the 
concave surface to introduce artificial thickness reduction 
areas. The smaller diameter hole has a depth of 12 mm, the 
10 mm diameter hole has a depth of 6 mm, and the largest 

hole has a depth of 3 mm. The UT probe used in this work 
(Fig. 9b) is a 5 MHz centre frequency transducer with a 
diameter of 6.35 mm (0.25 inches). It was mounted onto 
the extremity of a KUKA KR10-1100 robot manipulator 
through 3D-printed plastic support (Fig. 9c). The probe 
was used in send/receive mode (ultrasonic pulse-echo). The 
piezoelectric probe was excited through a pulser. The return 
analogue signals were digitalised with an oscilloscope at a 
100 MHz sampling rate. The oscilloscope was connected to 
a data-collection computer during the inspection. A bespoke 
MATLAB-based software module retrieved the signals from 
the oscilloscope and encoded them with the robot's posi-
tional feedback. The computer was connected to the robot 
controller using the Interfacing Toolbox for Robotic Arms 
(ITRA) [27] to synchronise the robotic sensor manipulation 
with data collection. All inspections were performed through 
the immersion technique. Both the part and the active tip 
of the transducer were immersed, taking advantage of the 
water as a low-attenuation and stable coupling medium. 
The part was inspected from the convex surface, where the 
FBHs are not visible. Four robotic inspections were carried 
out to obtain full-coverage ultrasonic scans of the part. The 
first robotic scan was performed with a predefined Off-Line 
Planned (OLP) path, with the probe moving on a horizontal 
plane in a raster fashion and always pointing straight down 
into the water tank. The raster path of this first scan was 

Fig. 9   Picture of top and bottom 
part surfaces (a), 5 MHz UT 
probe (b), inspection setup (c) 
and side view of part through 
the transparent wall of the water 
tank during inspection (d)
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defined to cover a 120 mm long and 52 mm wide rectangular 
area centred on the part, extending 1 mm outside the part 
footprint at all sides. The second scan was also instructed 
with a predefined OLP raster path extending 1 mm outside 
the boundary of the part surface but following the cylindrical 
contour of the part. This path was generated through OLP 
software using the part's digital model. The normal direc-
tions to the model's surface were used to define the probe 
orientation at each sampling pose. The third type of scan 
used the planar OLP path of the first scan, but the probe 
orientation and standoff were corrected at each pose during 
the inspection process through the pose correction algorithm 
presented in Sect. 2. This scan is herein referred to as a semi-
autonomous scan. Finally, the fourth scan type employed the 

full extent of the presented framework to obtain completely 
autonomous UT inspections. This fourth type was performed 
twice, using two different starting poses. All scans were car-
ried out using the same inspection resolution ( r = 2mm ). 
The raster step was set at 2 mm, and the signal was acquired 
at equally spaced intervals of 2 mm for the scans using 
OLP paths. These fully autonomous inspections employed 
r = 2mm as target sampling resolution. Figure 10 gives a 
condensed illustration of the results for all scans. From top 
to bottom, the figure shows the employed inspection paths 
with respect to the part geometry, the maps of the front-
wall UT wave amplitude, the maps of the probe standoff, 
the amplitude of the back-wall UT wave and the map of the 
part thickness. The probe standoff and the part thickness 

Fig. 10   Comparison of results obtained through the four different 
inspection types. From top to bottom: illustration of inspection paths 
with respect to the part geometry (a-e), the amplitude of front-wall 

UT wave (f-j), probe standoff (k–o), the amplitude of back-wall UT 
wave (p–t) and measured part thickness (u-y)
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derive from the time-of-flight of the ultrasonic echo waves, 
taking the ultrasound propagation speed in water and steel 
into account. It is evident that the scan maps relative to the 
autonomous inspections were readily produced, applying a 
coloured texture to the meshes produced by the execution 
of the autonomous framework. For a given colour pallet, 
the colour given to each node of the mesh comes directly 
from the signal acquired at that pose, using 100% transpar-
ency for the poses where the part could not be detected. The 
node colours are interpolated across the surface of the mesh 
triangles. Mesh-based data visualisation maps were also 
generated for the other inspection types, using the method 
described in [28] to display all results in the same form and 
facilitate direct comparisons. Despite the gentle curvature 
of the part, the planar OLP raster scan was penalised by the 
inaccurate probe orientation. The part could only be detected 
for a limited portion of the scan. The probe was sufficiently 
perpendicular to the part surface, denoting a strong signal 
amplitude dependence on the alignment between the sen-
sor sampling direction and the part surface normal. The 
contour-following OLP raster scan achieved full inspection 
coverage. However, due to the deviations between the vir-
tual model and the real part or to the inaccurate registration 
of the part position, the amplitude and the probe standoff 
present a noticeable degree of variability with respect to 
the results obtained through the semi-autonomous and fully 
autonomous inspections enabled by this work. The deviation 
of the probe position from the optimum pose has a negative 
impact on the signal-to-noise ratio, which is evident in the 
map of the back-wall wave amplitude (Fig. 10q) and can 
reduce the capability to detect defects. It is clear that the 
full autonomous inspections, regardless of the starting pose 
used, were able to complete the scan of the part fully and 
produced better and more repeatable results than the human-
programmed inspections.

Table 2 reports quantitative performance results. The 
extent of the surface area inspected through the OLP-based 
scans is very close to that examined by the autonomous 
scans. All scanned areas exceed the actual extension of the 
part's cylindrical surface (5956 mm2) due to the inspection 
paths extending outside the part's boundary.

Interestingly, despite the similarity of all scanned areas, the 
fully autonomous inspections produced more sensor poses and 
longer inspection paths. At first sight, this may conclude that 
the autonomous inspections are generally slower than OLP 
raster paths. However, it must be observed that, in OLP raster 
paths, the sensor poses are arranged according to a square 
grid over the inspected surface. For such inspections, the 
user-indicated sampling resolution is only respected along the 
travelling direction and the stepping direction of the raster. 
All diagonal distances between the poses in the grid tend to 
exceed the target inspection resolution by a factor equal to 

√
2 . 

Conversely, each sensor pose is surrounded by up to six other 
poses with a distance similar to the target resolution ( r ) in 
fully autonomous inspections. Thanks to this reason, the sam-
pling resolution is more uniform regardless of the directions, 
as denoted by the mean and the standard deviation (STD) of 
the distances.

5 � Conclusions and Future Work

Several automated or semi-automated solutions have been 
proposed over the years to enable automatic deployment 
of specific types of sensors, speed up the inspection of 
large and/or complex parts and enhance inspection reli-
ability and repeatability. Offline path-planning is typically 
used to instruct a robotic manipulator on the trajectory to 
follow for the inspection of a part. This method is only 
acceptable for parts with known geometry, positioned in 
a well-structured and controlled environment. This work 
presented a novel framework that enables fully autonomous 
single-pass geometric and volumetric inspection of com-
plex parts using one single robotised sensor. Notably, it is 
scalable to different problem sizes, spanning from inspec-
tion of relatively small parts (e.g. through industrial robotic 
arms) to land surface mapping (e.g. through drones). An 
algorithm for autonomous correction of the sensor ori-
entation and position is accompanied by an autonomous 
in-process path planning method. It allows keeping the 
inspection resolution uniform throughout the full exten-
sion of the free-form parts.

Table 2   Quantitative performance parameters for all scan types

Scanned 
area [mm2]

Path 
length 
[mm]

Num. of 
sensor 
poses

Percentage of 
poses where the 
part is detected

Mean point 
distance 
[mm]

STD of point 
distance [mm]

STD of front-wall 
wave amplitude [V]

STD of probe 
standoff [mm]

Planar OLP 6240 3292 1647 9.22% 2.271 0.389 0.197 0.156
Contour OLP 6353 3138 1566 88.70% 2.326 0.396 0.140 0.173
Semi-auto 6124 3290 1647 87.42% 2.253 0.374 0.131 0.015
Fully auto (#1) 6297 3939 1910 90.05% 2.002 0.003 0.120 0.018
Fully auto (#2) 6269 3965 1897 90.62% 2.001 0.001 0.117 0.015
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Moreover, a by-product of the framework is the progres-
sive construction of the digital model of the part surface 
throughout the inspection process. The attention dedicated 
to the way the sensor poses are indexed in the algorithms' 
implementation minimises the consumption of computa-
tional resources and makes the proposed approach scalable. 
The framework autonomously confines the inspection into 
the region of interest, where the part under inspection is 
detectable. Full inspection coverage, collision avoidance and 
travel time minimisation are simultaneously solved. That is 
achieved by employing the conceptualisation of the shortest 
path problem used in graph theory. The application example 
highlighted that the framework works as expected, providing 
uniform sampling resolutions over curved part surfaces. The 
usage of the presented framework is not limited to a specific 
type of sensor and can go beyond NDT applications. Allow-
ing autonomous and simultaneous geometric and volumet-
ric inspection using a single robotic-manipulated sensor can 
play a crucial role in all those situations where reducing the 
number of components in the inspection system is highly 
advantageous. Therefore, future work should focus on test-
ing, customising and extending the presented solutions to 
various scenarios.

Acknowledgements  The authors thank Mr Antonino Traina and Mr 
Giuseppe Lo Bue, who supported the preparation of the experimen-
tal setups of this work during their university laboratory internship 
periods.

Author Contribution  Carmelo Mineo conceived the novel elements 
of this work, developed and implemented the algorithms, performed 
data acquisition and led the writing of the article manuscript. Donatella 
Cerniglia supervised the findings of this work. Alastair Poole contrib-
uted to the review of the manuscript. All authors read and approved 
the final manuscript.

Funding  This work has received funding from the European Union's 
Horizon 2020 research and innovation programme under the Marie 
Sklodowska-Curie grant agreement No 835846.

Availability of Data and Material  The MATLAB-based source code 
of the algorithms described in this work is available to download at: 
https://​doi.​org/​10.​5281/​zenodo.​59402​01, providing all the developed 
components explained in the paper.

Declarations 

Ethics Approval  This work did not involve human subjects and/or ani-
mals. Thus, no ethical approval was required.

Consent to Participate  This work did not involve the collection of 
information from human subjects.

Consent to Publish  This work did not involve the collection of informa-
tion from human subjects.

Competing Interests  The authors have no relevant financial or non-
financial interests to disclose.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as 
long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate if 
changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4​0/.

References
	 1.	 Zhang, H., Xu, C., Xiao, D.: Offline correction of tool path 

deviations for robot-assisted ultrasonic nondestructive testing. 
Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233(8), 2879–2893 
(2019)

	 2.	 Callieri, M. et al.: RoboScan: an automatic system for accurate 
and unattended 3D scanning. In Proceedings. 2nd International 
Symposium on 3D Data Processing, Visualization and Trans-
mission, 2004. 3DPVT 2004, pp. 805–812. IEEE (2004)

	 3.	 Almadhoun, R., Abduldayem, A., Taha, T., Seneviratne, L., 
Zweiri, Y.: Guided next best view for 3D reconstruction of large 
complex structures. Remote Sens. 11(20), 2440 (2019)

	 4.	 Mineo, C., Cerniglia, D., Ricotta, V., Reitinger, B.: Autonomous 
3D geometry reconstruction through robot-manipulated optical 
sensors. Int. J. Adv. Manuf. Technol. 116(5), 1895–1911 (2021)

	 5.	 Mineo, C., Pierce, S.G., Nicholson, P.I., Cooper, I.: Robotic 
path planning for non-destructive testing–A custom MATLAB 
toolbox approach. Robotics Comput. Integr. Manufact. 37, 1–12 
(2016)

	 6.	 Kopáčik, A., Erdélyi, J., Kyrinovič, P.: Coordinate Measuring 
Systems and Machines. In: Engineering Surveys for Industry: 
Springer, pp. 121–141. (2020)

	 7.	 Zhang, Y., Zhou, Z., Tang, K.: Sweep scan path planning for 
five-axis inspection of free-form surfaces. Robotics Comput. 
Integr. Manuf. 49, 335–348 (2018)

	 8.	 Mineo, C. et al.: Robotic geometric and volumetric inspection 
of high value and large scale aircraft wings. In: 2019 IEEE 
5th International Workshop on Metrology for AeroSpace 
(MetroAeroSpace), pp. 82–86. IEEE. (2019)

	 9.	 Kamf, T., Leijon, M.: Automated mounting of pole-shoe wedges 
in linear wave power generators—using industrial robotics and 
proximity sensors. Machines 5(1), 10 (2017)

	10.	 Vasilev, M., et al.: Sensor-enabled multi-robot system for auto-
mated welding and in-process ultrasonic nde. Sensors 21(15), 
5077 (2021)

	11.	 Khan, A., Mineo, C., Dobie, G., Macleod, C., Pierce, G.: Vision 
guided robotic inspection for parts in manufacturing and reman-
ufacturing industry. J. Remanuf. 11(1), 49–70 (2021)

	12.	 Micallef, K., Fang, G., Dinham, M.: Automatic seam detection 
and path planning in robotic welding. In: Robotic welding, intel-
ligence and automation, pp. 23–32. Springer (2011)

	13.	 To, A.W.K., Paul, G., Liu, D.: A comprehensive approach to 
real-time fault diagnosis during automatic grit-blasting opera-
tion by autonomous industrial robots. Robotics Comput. Integr. 
Manuf. 49, 13–23 (2018)

	14.	 Gardner, P., et al.: Machine learning at the interface of structural 
health monitoring and non-destructive evaluation. Philos. Trans. 
R. Soc. A 378(2182), 20190581 (2020)

https://doi.org/10.5281/zenodo.5940201
http://creativecommons.org/licenses/by/4.0/


Journal of Intelligent & Robotic Systems          (2022) 105:54 	

1 3

Page 19 of 19     54 

	15.	 Fuentes, R., et al.: Autonomous ultrasonic inspection using 
Bayesian optimisation and robust outlier analysis. Mech. Syst. 
Signal Process. 145, 106897 (2020)

	16.	 Hasan, K.M., Reza, K.J.: Path planning algorithm development 
for autonomous vacuum cleaner robots. In: 2014 International 
Conference on Informatics, Electronics & Vision (ICIEV), pp. 
1–6. IEEE (2014)

	17.	 Poole, A., Sutcliffe, M., Pierce, G., Gachagan, A.: A novel com-
plete-surface-finding algorithm for online surface scanning with 
limited view sensors. Sensors 21(22), 7692 (2021)

	18.	 He, Y., Hu, T., Zeng, D.: Scan-flood fill (SCAFF): An efficient 
automatic precise region filling algorithm for complicated 
regions. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops (2019)

	19.	 Shmakov, S.L.: A universal method of solving quartic equations. 
Int. J. Pure Appl. Math. 71(2), 251–259 (2011)

	20.	 Neumark, S.: Solution of cubic and quartic equations. Elsevier 
(2014)

	21.	 Pariterre. "averageRT." MATLAB Central File Exchange. 
https://​www.​mathw​orks.​com/​matla​bcent​ral/​filee​xchan​ge/​72272-​
avera​gert (accessed February 2, 2022)

	22.	 Roscoe, L.: Stereolithography interface specification. America-
3D Systems Inc. 27(2020), 10 (1988)

	23.	 Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest paths 
algorithms: Theory and experimental evaluation. Math. Pro-
gram. 73(2), 129–174 (1996)

	24.	 Cormen, T.H.: Single-source shortest paths. Introduction to 
algorithms (2001)

	25.	 Demyen, D., Buro, M.: Efficient triangulation-based pathfind-
ing. Aaai 6, 942–947 (2006)

	26.	 Möller, T., Trumbore, B.: Fast, minimum storage ray-triangle 
intersection. J. Graphics Tools 2(1), 21–28 (1997)

	27.	 Mineo, C. et al.: Interfacing toolbox for robotic arms with real-
time adaptive behavior capabilities (2019)

	28.	 Mineo, C., Riise, J., Summan, R., MacLeod, C.N., Pierce, 
S.G.: Index-based triangulation method for efficient generation 
of large three-dimensional ultrasonic C-scans. Insight-Non-
Destructive Test. Condition Monit. 60(4), 183–189 (2018)

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Carmelo Mineo  received the Master’s degree in Mechanical Engineer-
ing from the University of Palermo (Italy) in 2011. In 2012, he joined 
the Centre for Ultrasonic Engineering of the University of Strathclyde 
(Glasgow, UK) to undertake his doctoral studies on automated non-
destructive inspection of large and complex geometries of composite 
materials. He became a Research Associate of the University of Strath-
clyde in 2015 and a Research Fellow in 2018. Carmelo was awarded 
a prestigious H2020 Marie-Curie Fellowship in 2020, funded by the 
European Commission, to lead research on Robotic Adaptive Behav-
iors for NDT Inspections in Dynamic Contexts at the University of 
Palermo. He has been a Researcher at the Institute of High-Perfor-
mance Computing and Networking of the National Research Council 
of Italy since 2020. His current research interests comprise intelligent 
and autonomous robotics, advanced robot control for real-time adap-
tive path-planning, instrument and sensor interfacing, data collection 
and processing.

Donatella Cerniglia  is Associate Professor in Mechanical Design and 
Machine Construction, at the Department of Engineering, University 
of Palermo, since 2015. She obtained the Ph.D. degree in Machine 
Construction, at the University of Palermo, and she was Visiting 
Scholar and Assistant Research Scientist at the Center for Nondestruc-
tive Evaluation of The Johns Hopkins University, Baltimore (USA). 
Her research activities, in Italy and abroad, are focused on control 
techniques for monitoring the integrity of structural components and 
robotic adaptive behaviors for NDT inspections.

Alastair Poole  is currently completing an industrial PhD in TWI Tech-
nology Centre (Port Talbot, UK) in partnership with Strathclyde Uni-
versity. Alastair’s research interests include the scanning of unknown 
geometries for NDT. Applying geometric knowledge from his masters 
in Mathematics at Durham University, his previous publications have 
looked at applying robotic arms to autonomous profiling, autonomous 
path planning and deployment over complex shapes, and force and 
velocity controlled scanning methodologies. His research is looking 
at the application of mobile robotic platforms to autonomous scanning 
and accurate reconstructions of complex composite structures in the 
context of on-site inspections.

https://www.mathworks.com/matlabcentral/fileexchange/72272-averagert
https://www.mathworks.com/matlabcentral/fileexchange/72272-averagert

	Autonomous Robotic Sensing for Simultaneous Geometric and Volumetric Inspection of Free-Form Parts
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Contribution
	1.4 Article Structure

	2 Autonomous Sensor Pose Correction
	2.1 Correction of Sensor Orientation
	2.2 Correction of Sensor Standoff

	3 Autonomous Full-Coverage Part Exploration
	3.1 Algorithm Supporting Data
	3.2 Initialisation from a Given Starting Pose
	3.3 Next-Pose Computation and Progressive Mesh Growth
	3.4 Inspection Confinement
	3.5 Collision Avoidance and Travel Time Minimisation
	3.6 Stop Criteria

	4 Application Example
	5 Conclusions and Future Work
	Acknowledgements 
	References


