
Vol.:(0123456789)1 3

Journal of Intelligent & Robotic Systems (2022) 105:54
https://doi.org/10.1007/s10846-022-01673-6

REGULAR PAPER

Autonomous Robotic Sensing for Simultaneous Geometric
and Volumetric Inspection of Free‑Form Parts

Carmelo Mineo1  · Donatella Cerniglia2 · Alastair Poole3

Received: 2 February 2022 / Accepted: 5 June 2022
© Springer Nature B.V. 2022

Abstract
Robotic sensing is used in many sectors to improve the inspection of large and/or complex parts, enhancing data acquisition
speed, part coverage and inspection reliability. Several automated or semi-automated solutions have been proposed to enable
the automated deployment of specific types of sensors. The trajectory to be followed by a robotic manipulator is typically
obtained through the offline programmed tool paths for the inspection of a part. This method is acceptable for a part with
known geometry in a well-structured and controlled environment. The part undergoing assessment needs to be precisely
registered with respect to the robot reference system. It implies the need for a setup preparation phase for each new part,
which can be very laborious and reliant on the human experience. This work combines real-time robot control and live sensor
data to confer full autonomy to robotic sensing applications. It presents a novel framework that enables fully autonomous
single-pass geometric and volumetric inspection of complex parts using one single robotised sensor. A practical and robust
robot control sequence allows the autonomous correction of the sensor orientation and position to maximise the sensor
signal amplitude. It is accompanied by an autonomous in-process path planning method, capable of keeping the inspection
resolution uniform throughout the full extension of the free-form parts. Last but not least, a by-product of the framework
is the progressive construction of the digital model of the part surface throughout the inspection process. The introduced
framework is scalable and applicable to widely different fields.

Keywords  Autonomous inspection · Robotic sensing · Path-planning · Data-driven control · Surface mapping · Non-
destructive testing

1  Introduction

1.1 � Motivation

Robotic enabled sensing has become increasingly com-
mon in recent years. Besides being used for manufactur-
ing operations (e.g. welding, assembly, spray-painting),
industrial robotic arms are also used to perform adequate

inspections of safety-critical and/or high-value components.
Indeed, automated non-destructive systems have attracted
the interest of several industries (e.g. aerospace) to speed
up the assessment of large and complex parts, overcoming
the bottleneck associated with the quality assurance phases.
Non-destructive testing (NDT) is the process of inspecting,
testing, or evaluating parts and materials, without disrupting
their functionality. Many NDT methods rely upon differ-
ent physical transduction principles (e.g. sound/ultrasound,
magnetism, electric field and electromagnetic radiation).
The capabilities of most currently available NDT methods
have been combined with some degree of automation in
recent years to enhance data acquisition speed, part cover-
age and inspection reliability. Therefore, many automated
or semi-automated inspection systems have been engineered
to enable the robotic manipulation of specific types of NDT
sensors. These systems have been accompanied by bespoke
software applications that allow simultaneous sensor data
collection and robotic positional feedback reception, merged

This work was performed at the University of Palermo.

 *	 Carmelo Mineo
	 carmelo.mineo@icar.cnr.it

1	 Institute for High Performance Computing and Networking,
National Research Council (ICAR-CNR), Palermo, Italy

2	 Department of Engineering, University of Palermo, Palermo,
Italy

3	 Centre of Ultrasonic Engineering, University of Strathclyde,
Glasgow G1 1XW, UK

http://orcid.org/0000-0002-5086-366X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-022-01673-6&domain=pdf

	 Journal of Intelligent & Robotic Systems (2022) 105:54

1 3

 54   Page 2 of 19

to produce encoded sensor data maps. Automated inspec-
tion systems are usually operated by generating tool paths
by offline programming software (OLP). Using the virtual
model of a given part and a digital mock-up of the robotic
inspection environment, OLP software can generate the
required inspection tool path that follows the contour of the
part surface. Then, the tool path is transferred to the robot
controller and executed to control the robotic manipula-
tion of the sensor during a given inspection. Although this
approach works well when an accurate model of the part
is available, and the automated inspection takes place in a
well-structured environment, where the part position is pre-
cisely registered with respect to the robot reference system,
it makes setting up the assessment of new parts very time-
consuming and dependent on the skills and experience of
the robot programmer.

Moreover, the actual geometry of a part may signifi-
cantly deviate from its digital counterpart, resulting in
inaccurate tool paths. For these reasons, robotic platforms
should become able to flexibly scan parts through online
path planning with as much autonomy as possible. Semi-
autonomous or fully-autonomous inspection systems should
provide the same guarantee of completeness in surface cov-
erage achieved by a human operator manually inspecting
the part or by a robot whose tool path is programmed by
an expert OLP software engineer. This work introduces a
new approach capable of conferring full autonomy to robotic
sensing applications, providing a breakthrough in the state-
of-the-art, which can be exploited in areas beyond automated
NDT systems.

1.2 � Related Work

Minimising the deviation between the tool paths generated
through offline programming software and the contour of
the actual parts is a ubiquitous problem in robotic inspec-
tions. Whereas tool paths for parts for which an accurate
digital-twin model is available can be generated through
commercial software with a sufficient level of accuracy, the
tool paths for legacy parts or deformed components are not
straightforward to generate. Some works demonstrated the
possibility of obtaining good results through offline correc-
tion of the tool path deviations [1]. However, offline correc-
tion imposes a preliminary additional scanning step of the
real part geometry before the automatic target operation can
be carried out through the corrected path. Automated meth-
ods for free-form surface mapping have developed signifi-
cantly in recent years. Photogrammetric solutions involving
3D or 2D cameras have evolved from heavily user-guided
[2] to fully automated 3D model reconstruction techniques
[3, 4]. Although using automated geometry reconstruction
is a viable approach for some applications, it weakens the
speed advantage given by robotised NDT. It is the case

when running one-off inspections of custom parts or scan-
ning composite parts, which suffer from elastic spring-back
when extracted from the mould during manufacturing [5].

Moreover, geometry reconstruction requires dedicated
hardware and bespoke tool paths to visit a set of target data-
collection locations around the part when the 3D surface
mapping instrumentation is automated through a robotic
manipulator. In the manufacturing field, part geometry tol-
erances are usually measured using Coordinate Measuring
Machines (CMMs) [6]. Their usage also relies on the user
to define the sampling locations and/or a sampling spacing
along a specified planar raster path [7].

The need to perform a preliminary geometry recon-
struction step to inform the accurate path-planning task is
removed by establishing real-time control feedback loops
and enabling online corrections to the original paths. There-
fore, different kinds of sensors, such as force-torque sensors
[8], proximity sensors [9], laser trackers [10] and/or cam-
eras [11, 12], have been employed to correct predefined tool
paths during their execution. The usefulness to correct pre-
defined tool paths is evident in robotic sensing applications
and some specific automated manufacturing operations. An
approach based on RGB-D cameras, acoustic and tactile
transducers has been proposed to monitor loss of ablation
and missed coverage due to misalignment in robotic grit-
blasting [13]. To make automated welding more reliable
and improve weld quality, the scientific literature reports
methods for tool path correction based on eye-in-hand con-
figurations through cameras [12] and laser profilers [10] for
the weld seam detection.

Since automated inspection systems can be considered
commonplace, the research efforts are moving towards ena-
bling more autonomous and adaptable robotic inspections,
removing the reliance on operator inputted information to
guide the data-acquisition phase. Some works have inves-
tigated Bayesian optimisation and robust outlier analysis
to introduce a degree of autonomy through machine learn-
ing [14, 15]. These works cast the autonomous inspection
problem as an optimisation problem. After an observation is
taken, a probabilistic algorithm decides where the following
observation should be taken to maximise a given objective.
These decisions are thus carried out sequentially as informa-
tion is being gathered. If damage is detected and a sample is
deemed faulty at a given step, the inspection can stop there
to avoid further efforts. If no damage is present, such kind of
autonomous inspection can continue focusing on minimis-
ing risk by means of exploring the space until a given target
sampling density (number of samples per square surface
unit) is reached. However, this probabilistic approach was
only tested on small flat samples, using rectangular user-
specified domains of interest. Indeed, the system autonomy
is limited to within the domain of interest and assumes the
presence of a signal at any visited point. Autonomy is mainly

Journal of Intelligent & Robotic Systems (2022) 105:54 	

1 3

Page 3 of 19  54

enabled in the context of real-time signal processing, leaving
the field of real-time path-planning unexplored for large and/
or complex parts.

Moreover, since this approach allows any two consec-
utive sampling positions to be quite far from each other,
with respect to the specified domain of interest, it causes an
increase in robot travel time and scanning duration compared
with a pre-planned inspection path covering the same area.
An application field that shows some commonality with the
problem at stake is the autonomous path-planning for mod-
ern vacuum cleaner robots—however, the solutions deployed
in this arena work only for relatively flat parts [16]. Further-
more, although they aim to achieve entire surface covering,
they do not necessarily provide consistent cleaning effort
over large surfaces (the time spent on the surface unit can
vary enormously).

Recently, a completely autonomous surface-profiling and
part inspection process has been proposed [17]. That ena-
bles in-process surface mapping by acquiring the readings
of three laser distance sensors conveniently arranged at the
end-effector of a robotic arm, which is also equipped with
an NDT probe for the volumetric inspection of the sample.
The three distance readings are used to infer the local sur-
face normal and the position of the surface with respect to
the robot reference system. The robot position is corrected,
bringing the NDT probe to a constant standoff and aligning
its sampling direction to the surface normal, thus allowing a
good NDT signal collection. Autonomous surface explora-
tion is enabled through a generalised Flood Fill Algorithm
(FFA) [18], therein named as Complete-Surface Finding
Algorithm (CSFA) [17]. Although this system is a signifi-
cant advancement in autonomous robotic sensing, it has lim-
itations. First of all, additional sensors are required, besides
the NDT inspection probe, to support the in-process surface
mapping. Secondly, CSFA does not guarantee that the sam-
pling density is kept constant over the extension of complex
part surfaces and may lead to a lack of inspection coverage.
Lastly, collision avoidance has not been considered.

1.3 � Contribution

This work introduces a robust approach to performing a
fully autonomous inspection of complex parts. It is suit-
able for all those situations where the target inspection is
carried out through a sensor whose sensitivity depends on
the probe's position with respect to the part surface. For
example, this is the case for pulse-echo ultrasonic or eddy-
current testing. The maximum signal amplitude is obtained
when the probe is perpendicular to the test surface and at
a well-controlled standoff. As a result of this work, a fully
autonomous single-pass simultaneous geometric and volu-
metric inspection of complex parts, using only one robotised
sensor, becomes possible. It has been achieved by solving

three main problems. The contribution of this work flowed
into the areas highlighted by the blocks with a double-line
border in Fig. 1.

The first sub-problem consisted in developing an effec-
tive and robust algorithm and robot control sequence to
enable the autonomous correction of the sensor orientation
and position to maximise the signal amplitude at a given
place and maintain a constant probe standoff. The second
sub-problem relates to autonomous in-process data-driven
path planning. This work presents a novel solution based
on computing the next best point to be sampled. At the core
of this is a mathematical, analytical approach that keeps
the distance between the new inspection point and already
visited neighbour points as close as possible to the target
resolution. As a result, the inspection resolution is kept uni-
form throughout the full extension of the curved surface of
interest. It is an important point which can lead this proposed
autonomous robotic inspection system to penetrate the most

Fig. 1   High-level workflow of the system introduced by this work.
The inspection autonomy is obtained through the elements within the
dashed line box. The contribution of this work flowed into the areas
highlighted by the blocks with a double-line border

	 Journal of Intelligent & Robotic Systems (2022) 105:54

1 3

 54   Page 4 of 19

demanding industrial applications in the future. Indeed, local
degradation of sampling resolution may cause some faults
to remain undetected, which is unacceptable. The third sub-
problem concerns the tracking of the scanned areas of a part
to detect the part boundaries and the autonomous sequencing
of the inspected regions, minimising travel time and avoid-
ing any risk of collisions. The proposed approach does not
need a user-defined spatial domain of interest. It incremen-
tally creates a virtual representation of the sample geometry
and the surface boundary, tracking down all regions of the
target surface until full coverage is reached.

Since a connectivity map of the sampled points is initiated
at the beginning of the autonomous inspection and updated at
each new sampled position, a virtual model of the top surface
of the inspected sample volume is generated as a by-prod-
uct. It can be stored in stereolithography file format (STL),
which can be used for geometrically assessing the part devia-
tions from a given digital reference. The only requirement is
that the user accurately defines the starting position of the
robotic inspection, allowing the surface position to be inferred
through the collected sensor signal at that first position. The
method enables following free-form surface geometries that
cannot be globally represented analytically. Notably, it is scal-
able to different problem sizes, spanning from inspection of
relatively small parts (e.g. through industrial robotic arms) to
land surface mapping (e.g. through drones). The limitation is
that the target inspection resolution cannot be smaller than
the minimum curvature radius of the part surface. Therefore,
in the case of significant surface discontinuities (e.g. sharp
edges), the autonomous inspection system will not always
be able to cross the discontinuities and continue the surface
discovery on the other side of it. In practical deployments,
besides being a function of the minimum defect size that
one wants to detect through the inspection system, the tar-
get inspection resolution (the scanning step) must be chosen
small enough to allow complete autonomous discovery of the
whole surface of interest. The MATLAB-based implementa-
tion of all investigated methods is made publicly available at
https://​doi.​org/​10.​5281/​zenodo.​59402​01 and can be used by
the research community for future developments.

1.4 � Article Structure

The remainder of the article is structured as follows. Sec-
tion 2 describes the autonomous sensor pose correction. Sec-
tion 3 presents the novel approach developed to enable the
autonomous in-process data-driven path planning and all
additional aspects related to the supporting data structure,
the inspection time minimisation, collision avoidance and
stopping criteria. An application example and performance
aspects are discussed in Sect. 4. Finally, Sect. 5 draws the
conclusions and a prospect for future work.

2 � Autonomous Sensor Pose Correction

As was said above, previous works have demonstrated the
use of multiple sensors and/or machine vision cameras
to address the problem of online part discovery and real-
time robot pose correction. In this work, it was thought
of using the data originating from the same sensor, which
is used for inspecting the part, for guiding the pose cor-
rection. There is a wide range of situations where reduc-
ing the number of components in an inspection system is
highly advantageous, limiting its overall cost or minimis-
ing its weight and complexity. For example, the latter is
for robotic inspection systems operating in nuclear plant
decommissioning or used in space exploration. The sys-
tems with higher masses are more expensive to bring into
operation, and failures of complex systems may be tough
to recover. Herein, the proposed solution for pose correc-
tion is composed of two phases: orientation correction and
standoff correction.

2.1 � Correction of Sensor Orientation

To operate a sensor with a robot manipulator, it is neces-
sary to mount the sensor onto the robot and instruct the
robot with the coordinates of the point we want to con-
trol with respect to the robot end-effector flange. In other
words, it is necessary to define a tool-central-point (TCP)
for the robotically manipulated sensor. The TCP is usually
defined conveniently to facilitate the programming of the
robot trajectory. Thus, the TCP will coincide with the focal
point for optical and acoustic sensors or with a character-
istic physical point for a sensor that has to contact the part
to carry out the measurements.

Assuming a given sensor is brought to a target position
by a robotic manipulator, with its TCP reaching the target
part position but its orientation off from optimum, it is
necessary to correct the sensor orientation. Regardless of
the physical operating principles, the sensitivity of most
transducers is maximised when they are positioned in a
specific direction with respect to the normal of the part
surface. For example, this is the case for laser profilers,
ultrasonic sensors and eddy-current transducers. When a
robotic tool-path is programmed offline, a great effort is
made to ensure the robotised probe will follow the con-
tour of a part, keeping its sensing orientation normal to
the part surface. However, despite the efforts, deviations
from the ideal path are often inevitable due to the dif-
ferences between the virtual part model used for offline
programming and the physical sample. In this work, the
dependence of the sensor sensitivity on the orientation
is exploited to guide the online correction of the sensing

https://doi.org/10.5281/zenodo.5940201

Journal of Intelligent & Robotic Systems (2022) 105:54 	

1 3

Page 5 of 19  54

direction. The underpinning idea consists in commanding
a rotation of the sensor around its TCP whilst observing
the variation of the collected signal amplitude to discover
the optimum sensing direction. Whereas this concept is
quite simple, implementing an effective algorithm to con-
trol the sensor rotation requires looking at the problem
closer. Assuming the ideal case, where there is no sensor
signal noise and starting from the bidimensional space for
clarity, Figs. 2a and d illustrate the amplitude exploration
process for the generic case. The figures highlight all the
positions visited by the sensor, consecutively numbered
and with "0" being the initial sensor position. Figure 2a
shows the probe in the initial position, with the TCP lying
on the surface of a curved part and the sensing direction
noticeably deviating from the optimum direction. The plot
is overlaid onto a polar reference system, whose origin is
placed at the TCP. Whereas the radial distance from the
origin represents the signal amplitude, the angular position
of the sensing direction with respect to the initial direc-
tion is indicated along the circumferential axis. For the
sake of illustrating the concept, the signal amplitude (a) is
assumed to depend on the angle ( � ) that the sensing direc-
tion forms with the ideal direction, as a(�) = cos2� . The
mapping of amplitude versus orientation starts by rotating
the probe according to the positive direction of rotation
(Fig. 2b). The signal amplitude is registered at every angu-
lar increment indicated by �� . If such rotation direction
produces amplitude lowering, the probe is brought to the
opposite side of the initial sensor direction, at an angu-
lar offset equal to −�� , from where amplitude mapping
resumes (Fig. 2c). The rotation direction that increases the

amplitude is pursued until the maximum amplitude is reg-
istered and the amplitude starts decreasing again (Fig. 2d).
It must be clear that, for the example illustrated in Fig. 2a-
d, the negative rotation direction would not have been
explored if rotating in the positive direction had resulted
in an increasing amplitude. Instead, if the initial sensor
direction were close enough to the optimum direction,
the step illustrated by Fig. 2c would have also produced
a decrease in amplitude, and the exploration would have
stopped there. In the ideal case, the minimum exploration
effort consists of only one rotation step in the positive
direction and one in the negative direction.

In reality, sensor data are always accompanied by uncer-
tainty due to the limited resolution of the sensors or the
presence of measurement noise (e.g. electromagnetic noise)
that superposes to the sensor signals. Therefore, a robust
and exploitable solution for autonomous pose correction
cannot neglect this fact. The subplots in Fig. 2e-h illustrate
how dealing with this uncertainty is addressed in this work.
These plots re-propose the same initial sensor position of
the figures described previously, exemplifying what hap-
pens in the presence of noise in the sensor data. Assuming
the sensor signal has an uncertainty of ±0.1 (range width
equal to n = 0.2 ), Fig. 2e shows that the exploration pro-
cess can start only when the initial signal amplitude

(
ã0
)

is higher than 1.5n . Here, the signal amplitude is simulated
adding a random component that can assume any value in
the range between ±n∕2 . The function used to generate
a synthetic signal amplitude for every sensor position is:
ã(𝜗) =

[
a(𝜗) + (nΨ∕2)

]
 , with Ψ being a random variable

spanning between ±1.

Fig. 2   Conceptual illustration of data-driven signal amplitude maxi-
misation in the ideal case (a-d) and the case of lower signal-to-noise
ratio (e–h). The initial amplitude is measured (a, e). The rotation

direction that produces amplitude lowering is not pursued (b, f). The
direction that gives amplitude increase is pursued (c, g). The rotation
stops as the amplitude decreases (d, h)

	 Journal of Intelligent & Robotic Systems (2022) 105:54

1 3

 54   Page 6 of 19

In Fig. 2f, the sensor rotates in the positive rotation direc-
tion until the amplitude registered at the ith step exits the
uncertainty range

((
ãi <

(
ã0 − n

))
∨
(
ãi >

(
ã0 + n

)))
 . In

this example, it results ã2 <
(
ã0 − n

)
 and the amplitude

mapping resumes at the opposite side of the initial sensor
direction (Fig. 2g). Again, the sensor rotates until the reg-
istered amplitude exits the uncertainty range. In this case,
it results ã4 >

(
ã0 + n

)
 . The sensor rotation continues,

until the amplitude lowers more than u , from the maximum
observed amplitude (Fig. 2h). This ensures that the sensor
travels across the optimum direction while mapping the sig-
nal amplitude. It must be noticed that, as it is expected, the
presence of uncertainty in the data widens the total angular
span that needs to be explored. Although amplitude mapping
is more time-consuming, the developed strategy is effective
and robust in practical applications.

The employed value of the angular sampling step ( �� )
has an important impact on the performance of the ampli-
tude mapping process and the final correction of the sen-
sor orientation. The value of this input parameter must be
chosen consistently by the user. It is fair to say that practical
values of �� depend on three things: (i) the variability of
the signal amplitude as a function of the angular deviation
from the optimum orientation, (ii) the level of noise in the
signals and (iii) the signal acquisition rate. The variation of
the amplitude (versus the angular deviation) and the level
of noise ( n ) should be considered together. The value of ��
should be chosen in such a way that, in the surrounding of
the optimum sensing direction, the modulus of the difference
between two successive amplitudes is larger than one-tenth
of the noise level ( ||ai − ai−1

|| > n∕10 ). From this, it results
that, when n ≈ 0 , �� could also be very small. However,
smaller values of angular step lead to the acquisition of more
signals within a given angular span. A suitable value of ��

should be chosen according to how much time it is accept-
able to spend for amplitude mapping. Ultimately, the higher
the acquisition rate provided by the available data collec-
tion instrumentation, the smaller �� can be. Smaller val-
ues of angular step allow higher resolution mapping of the
amplitude, increasing the probability of detecting the high-
est amplitude value in the surrounding of the optimum (but
unknown) sensor direction. However, selecting the visited
direction where the maximum amplitude is registered as the
target direction may lead to significant errors due to noise
in the signals. This is illustrated in Fig. 3, where the ampli-
tude values from Fig. 2h are plotted in Cartesian axes. The
direction corresponding to the maximum amplitude devi-
ates 20 degrees from the actual optimum direction. To solve
this issue, the proposed algorithm terminates with fitting a
second-order polynomial curve to the sampled amplitudes.
The direction corresponding to the maximum of the fitting
curve is adopted as the target direction to operate the final
correction of the sensor orientation. This refinement lowers
the deviation to only 0.56 degrees for the example case.

In the bidimensional case, the algorithm described so
far solves the autonomous sensor orientation correction. In
order words, Fig. 2 illustrates the sensor moving on a sin-
gle plane whilst performing amplitude mapping. Assuming
such plane is perpendicular to a given unitary vector ( ⃗r ), the
optimum sensor direction found through this planar ampli-
tude mapping is generally only a local optimum and not the
global one. Therefore, amplitude mapping must be carried
out sequentially on multiple planes until no further signifi-
cative amplitude enhancement is registered. Figure 4 shows
the extended concept for autonomously reaching the global
optimum sensor direction.

The area encapsulated by the dashed line is the core of
the algorithm, where r⃗ is chosen according to the direction

Fig. 3   Refinement of optimum
sensor orientation, though
polynomial fitting of registered
amplitudes

Journal of Intelligent & Robotic Systems (2022) 105:54 	

1 3

Page 7 of 19  54

of the current sensing direction ( ��⃗ws
=
[
ws
x
ws
y
ws
z

]
 ). If the

component of ��⃗ws with the higher absolute value is the z-axis
component

((|||ws
z

||| > ||ws
x
||
)
∧ (

|||ws
z

||| >
|||ws

y

|||)
)
 , r⃗ should either

be the x-axis versor ( �⃗u =
[
1 0 0

]
 ) or the y-axis versor

( �⃗v =
[
0 1 0

]
 ). Choosing the former or the latter depends on

the comparison of the other two component absolute values
and on the rotation axis used at the previous iteration, which
prevents rotating around the same axis twice consecutively.
Likewise, if the most significant component of ��⃗ws is the
y-axis component, r⃗ is chosen to either be the z-axis versor
( ��⃗w =

[
0 0 1

]
 ) or the x-axis versor ( �⃗u ). Finally, if the most

significant component of ��⃗ws is the x-axis component, r⃗ is
chosen either as the y-axis versor ( �⃗v ) or the z-axis versor
( ��⃗w ). Besides checking if the updated maximum signal
amplitude exceeds the previous value by more than the noise
level

(
ã − ãp > n

)
 , an iteration counter ( k ) is used to make

sure amplitude mapping is performed twice at the very least
on two distinct planes.

2.2 � Correction of Sensor Standoff

The previous section assumed the probe TCP lay on
the part's surface at all times. Whereas this assumption
was reasonable to focus on explaining probe orientation

correction, it is not generally valid. Therefore, there is
a need to correct the sensor standoff to keep the TCP
on the part surfaces during the autonomous inspection.
It is crucial for complex parts, whose surface curvature
can cause large deviations to sensor standoff. In this
work, the correction of the sensor standoff is performed
after the correction of the sensor orientation. Given ��⃗ws
being the sensing direction at the end of the orienta-
tion correction, the standoff is corrected by moving the
sensor TCP along such direction. The way the amount
of this correction is computed depends on the type of
sensor in use. For a sensor capable of measuring the
distance of the part surface (e.g. a laser distance meter,
typically used for surface geometry mapping), the devia-
tion of the TCP from the part surface comes directly
from the sensor reading. Other sensors can provide an
indirect measure of the deviation. It is the case when
distances can be inferred from the measure of an elapsed
time (e.g. from time-of-flight of a wave in ultrasonic
pulse-echo testing), if the wave propagation speed in
the separation medium is known at a sufficient level of
accuracy. Therefore, in this work, the sensor standoff is
corrected through a single intervention by sending the
TCP corrected target coordinates to the robotic sensor
manipulator.

Fig. 4   Overall algorithm workflow (pseudo-code equivalent) for autonomous sensor orientation correction. The amplitude mapping is repeated
multiple times, rotating the sensor around the most convenient axis until no further significative amplitude enhancement is registered

	 Journal of Intelligent & Robotic Systems (2022) 105:54

1 3

 54   Page 8 of 19

3 � Autonomous Full‑Coverage Part
Exploration

To inspect the full extent of a given part, the sensor must
be moved along the contour of the part surface, whilst sen-
sor data is collected at regular spatial intervals. Automated
inspection systems deploy pre-programmed tool paths, which
are typically raster paths. Although these paths work well
for automated systems, ensuring full part coverage with the
required sampling density, they do not appear suited to auton-
omous inspections. To minimise the travel time while explor-
ing an unknown part geometry, an autonomous inspection
system should mimic what would be done by a blind human
who is subjected to the same challenge. This work introduces
an incremental data-driven inspection tool path that grows
from a starting point. All aspects of the online path planning
algorithm are described below.

3.1 � Algorithm Supporting Data

It is helpful to define the essential data that intervenes in
the algorithm's execution before attempting a description
of its details. Such data consists of the scalar variables and
the matrices listed in Table 1. An effort has been made to
minimise the machine memory required to run this novel
autonomous path planning model. The double-precision
floating-point format, occupying 64 bits in computer mem-
ory, is only used to store the Cartesian and the Eulerian
coordinates of the robot poses. All other data items use the
32-bit unsigned integer format when storing indices and
an 8-bit Boolean variable to store logical values ("TRUE"
or "FALSE"). One typical issue when running autonomous
robot navigation/manipulation is that the number of loca-
tions to visit is unknown at the start, meaning that the total
amount of memory space required to complete the task
cannot be allocated beforehand.

Nevertheless, since memory allocation is vital to allow
fast algorithm execution, all data arrays are initialised by
allocating sufficient memory to store up to 100 elements,
whose initial values are given in Table 1. It implies that the
allocated memory needs to be enlarged whenever the pre-
allocated amount is filled. Any unused allocated memory
has to be released at the end.

It must also be noted that Table 1 reports only the data
required for the progression of the online path planning.
To keep the attention focused on the novel elements of
this work, the logging of the sensor data is intentionally
not discussed here. Indeed, such logging depends on the
sensor data that one wants to retain and store (e.g. raw
signals and/or condensed information) for real-time and/
or future processing.

3.2 � Initialisation from a Given Starting Pose

Given a part to inspect and the required inspection reso-
lution ( r ), defined as the ideal distance that any sampling
point should have from the neighbour inspection points,
it is necessary to explain how the autonomous inspection
commences before looking at the regime situation of the
process. Figure 5 illustrates the critical steps of the start of
the inspection of a generic part. It has already been antici-
pated that the proposed approach needs the user to specify
an initial pose for the sensor to detect the part under inspec-
tion. Although that is the main requirement, some other
input parameters that allow full customisation of the process
commencement will be introduced and explained below. In
Fig. 5a, P1 represents the updated version of the initial user-
provided pose, following the autonomous pose correction
described in Sect. 2. The coordinates of this pose are stored
in the first row of pts, and the sensor signal is acquired. If
the signal amplitude is higher than 1.5n (with n still indicat-
ing the noise level), the first element of isDataPt is turned
to TRUE. From the Eulerian angular coordinates of P1 , it
is possible to compute the matrix R1 =

[
�⃗u
s

1 �⃗v
s

1 ��⃗w
s

1

]
 , whose

column vectors represent the sensor orientation in P1.
The second sensor pose must be computed somehow

for the inspection process to progress from the initial sen-
sor pose autonomously. This pose is to be indicated with
P′
2
 , to remember that it is a target pose to move the sensor

and it can differ from the final pose ( P2 , after autonomous
pose correction). Since P′

2
 should be at distance r from the

first pose, it follows that it can be selected among the points
belonging to the circumference of radius r , drawn on the
plane �1 determined by �⃗us1 and vs

1
 (see Fig. 5b). Indeed, using

only the information acquired from the first inspection pose,
such a plane is the best available approximation of the plane
tangent to the part surface at P1 . It derives that the second
sensor pose could be selected among the infinite points
belonging to the circumference in Fig. 5b. However, to give
the user a level of control over this selection, the algorithm
enables the user to specify an angular parameter ( ∅ ). This
parameter indicates the user-preferred angle that the seg-
ment P1P

′
2
 must form with the direction originating from

the projection of the x-axis versor ( �⃗u ) onto �1 . For the sake
of illustrating an example, adopting ∅ = 0 , Fig. 5c shows
the resultant new pose ( P′

2
 ) and its corrected version ( P2 ).

It must be noted that the autonomous pose correction plays
a fundamental role in following the curvature of the part
under inspection. Indeed, whereas P′

2
 inherits its Eulerian

coordinates from P1 , the sensor orientation in P2 is described
by a corrected triad of versors. As soon as the robot manipu-
lator brings the sensor to P2 , the point counters (nPts and
nViaPts) are both incremented by one unit, the coordinates
of P2 are stored in the second row of pts, and the sensor

Journal of Intelligent & Robotic Systems (2022) 105:54 	

1 3

Page 9 of 19  54

signal is acquired. Thus, the second element of the trajectory
index vector (iViaPts) is set to 2, and the second logic ele-
ment of isAcquPt is set to TRUE. Finally, the sensor signal is
acquired and, if the amplitude is higher than 1.5n , the second
element of isDataPt is turned to TRUE.

Once two sensor poses are visited, the third pose must be
computed to allow inspection progression. Since it should be
at a distance r from both the first and second pose, it follows
that it should be selected among the intersections between two

circumferences of radius r , respectively, centred at P1 and P2
and lying on the planes �1 and �2 . However, since two cir-
cumferences drawn on different planes are not guaranteed to
intersect, a more robust alternative consists in considering the
intersections between the infinite cylinder ( �1 ) of radius r and
axis defined by ��⃗ws

1 and the circumferences of radius r centred
at P2 (Fig. 5d). The problem of finding these intersections is
not difficult to model using analytic geometry. First of all, both
the cylinder and the circumference are translated, rotated and

Table 1   Key data that intervene in the execution of the online path planning algorithm

Data name Minimum
size (rows x
columns)

Format Initial value Description

nPts 1 × 1 Unsigned integer 1 Number of distinct visited points
pts nPts × 6 Double-precision numbers 1

2

⋯

100

⎡⎢⎢⎢⎣

x
1
y
1
⋯

0 0 ⋯

⋯ ⋯ ⋯

0 0 ⋯

⎤⎥⎥⎥⎦

A matrix. Each row contains the Cartesian coordinates of one
robot pose (X, Y, Z) and its Eulerian angular coordinates
(A, B, C). Each distinct pose is listed only once to minimise
memory consumption

isDataPt nPts × 1 Boolean 1

2

⋯

100

⎡⎢⎢⎢⎣

0

0

⋯

0

⎤⎥⎥⎥⎦

A Boolean value for each point
TRUE (1) = sensor data has been collected at the point (the part

has been detected)

isOverlapPt nPts × 1 Boolean 1

2

⋯

100

⎡⎢⎢⎢⎣

0

0

⋯

0

⎤⎥⎥⎥⎦

A Boolean value for each point
TRUE (1) = the point overlaps with a previously inspected

region

nViaPts 1 × 1 Unsigned integer 1 The number of points constituting the robotic trajectory
iViaPts nViaPts × 1 Unsigned integers 1

2

⋯

100

⎡⎢⎢⎢⎣

1

0

⋯

0

⎤⎥⎥⎥⎦

Indices of the trajectory points (the indices refer to the points
in pts)

isAcquPt nViaPts × 1 Boolean 1

2

⋯

100

⎡⎢⎢⎢⎣

1

0

⋯

0

⎤⎥⎥⎥⎦

A Boolean value for each trajectory point
TRUE (1) = sensor data acquisition attempted at the relative

trajectory point

nTri 1 × 1 Unsigned integer 0 The number of triangles in the geometry reconstruction tessel-
lated surface

iTri nTri × 3 Unsigned integers 1

2

⋯

100

⎡⎢⎢⎢⎣

0 0 0

0 0 0

⋯ ⋯ ⋯

0 0 0

⎤⎥⎥⎥⎦

Each row contains the indices of the vertices of one triangle.
The indices refer to the points in pts (with no repetitions)

nEdges 1 × 1 Unsigned integer 0 The number of distinct triangle edges in the whole triangulated
surface (with no repetitions)

iTriEdges nEdges × 2 Unsigned integers 1

2

⋯

100

⎡⎢⎢⎢⎣

0 0

0 0

⋯ ⋯

0 0

⎤⎥⎥⎥⎦

Each row contains the indices of the extremities of one edge.
The indices refer to the points in pts

isOutEdge nEdges × 1 Boolean 1

2

⋯

100

⎡⎢⎢⎢⎣

0

0

⋯

0

⎤⎥⎥⎥⎦

A Boolean value for each edge of the triangulation
TRUE (1) = the relative edge is on the perimeter of the triangu-

lation

rDir 1 × 1 Boolean TRUE or FALSE
(specified by
user)

A Boolean value to store the preferred rotation direction for the
inspection trajectory

TRUE (1) = clockwise; FALSE (0) = anticlockwise

	 Journal of Intelligent & Robotic Systems (2022) 105:54

1 3

 54   Page 10 of 19

scaled to transform the �1 into a unitary radius cylinder centred
at the z-axis. Thus, the Cartesian equation of the transformed
cylinder is:

Instead, the parametric equation of the transformed circum-
ference can be written as:

where t is the parameter, P̃ is the transformed centre point
of the circumference and Ũ and Ṽ are the transformed
orthogonal vectors in the circumference plane (originally
of length r ). It is possible to rationalise Eq. 2 by substitut-
ing cos(t) =

(
1 − p2

)
∕
(
1 + p2

)
 and sin(t) = 2p∕

(
1 + p2

)
 ,

with p being a substitute parameter. Thus, combining these
equations:

(1)x
2
+ y

2
= 1

(2)

⎧⎪⎨⎪⎩

x =
∼

Px +
� ∼

Ux ∙ cos(t)
�
+
�∼

Vx ∙ sin(t)
�

y =
∼

Py +
� ∼

Uy ∙ cos(t)
�
+
�∼

Vy ∙ sin(t)
�

Equation 3 is a quartic polynomial equation. There is
no simplification of the coefficients, but the equation can
be solved numerically or by closed-form formulas [19,
20]. The equation allows up to four solutions. Given the
distance between the centre of the circumference and the
cylinder axis being approximately equal to their common
radius ( ≈ r ) and the cylinder axis not parallel to the cir-
cumference plane, Eq. 3 yields only two real solutions for
p . These zeros of the equation propagate into the primary
parameter t and, at last, into the Cartesian coordinates of
the sought intersections. The Eulerian coordinates of the
two intersections are obtained from the mean of the rota-
tion matrices of P1 and P2 . The mean rotation matrix is
computed according to the formulation proposed in [21].
Therefore, either of these two intersection points (namely:
P′
3
 and P′′

3
 ) could be arbitrarily selected as the third inspec-

tion pose. However, in this case, to give the user control

(3)

[∼
Px

(
1 + p

2
)
+

∼

Uv

(
1 − p

2
)
+ 2p

∼

Vx

]2
+
[∼
Py

(
1 + p

2
)
+

∼

Uy

(
1 − p

2
)
+ 2p

∼

Vy

]2
=
(
1 + p

2
)2

Fig. 5   Start of the autonomous
inspection of a part. Example
of part geometry with an initial
inspection pose (a), computa-
tion of the second pose (b),
correction of second pose (c),
calculation of possible third
poses (d), selection of the third
pose according to rotation direc-
tion (e) and correction of third
pose (f)

Journal of Intelligent & Robotic Systems (2022) 105:54 	

1 3

Page 11 of 19  54

over this selection, the algorithm enables the user to
specify the initial value of the Boolean variable (rDir),
which is used to store the preferred rotation direction of
the inspection trajectory. This logic parameter supports the
selection of the next sensor pose, indicating the favourite
travelling direction with respect to the last travelled seg-
ment (rDir = TRUE for clockwise and rDir = FALSE for
anticlockwise). Adopting rDir = FALSE for an anticlock-
wise travelling direction, Fig. 5f shows the new pose ( P3 ),
originating from the uncorrected pose P′

3
 . As soon as the

robot manipulator brings the sensor to P3 , besides incre-
menting the point counters (nPts and nViaPts), storing
the coordinates of P3 in the third row of pts and updat-
ing isDataPt, iViaPts and isAcquPt, it is possible to start
constructing information about the nascent surface trian-
gulation. Indeed, since the first three visited sensor points
define the first triangle ( T1 ), the triangle counter (nTri) is
set equal to 1, the triangle edge counter (nEdges) is set
to 3, and the first three elements of isOutEdge are set to
TRUE. The order with which the indices of the vertices
of the first triangle and of the extremities of the first three
edges are stored in iTri and in iTriEdges, respectively,
depends on rDir:

It must be noted that Eq. 4 lists the triangle vertices in
anticlockwise order (for a viewer positioned outside of the
part), regardless of the inspection travelling direction. It
makes storing the triangle normal unnecessary since any
software capable of importing, processing and editing 3D
triangular meshes can retrieve the triangle normal from the
triangle vertices. The normals will always point outward
from the part triangulated surface (obeying the right-hand
rule) [22].

3.3 � Next‑Pose Computation and Progressive Mesh
Growth

The completion of the initialisation phase, through which
the first three inspection poses are visited, and the first mesh
triangle is created, marks the start of the main stage of the
autonomous process. This phase consists of the computa-
tion of the next pose and consequent growth of the mesh
through a repeating data-driven algorithm. Assuming i is

(4)

if rDir = TRUE →

⎧⎪⎨⎪⎩

iTri(1, ∶) =
�
2 1 3

�

iTriEdges(1 ∶ 3, ∶) =

⎡⎢⎢⎣

2 1

1 3

3 2

⎤⎥⎥⎦

if rDir = FALSE →

⎧⎪⎨⎪⎩

iTri(1, ∶) =
�
2 3 1

�

iTriEdges(1 ∶ 3, ∶) =

⎡⎢⎢⎣

1 2

2 3

3 1

⎤⎥⎥⎦

the index of the current pose ( Pi ), j = nTri and k = nEdges
at a given generic progress state, with Tj being the last tri-
angle added to the mesh, the application of this algorithm
allows stepping to a new pose ( Pi+1 ) and the simultaneous
progressive extension of the mesh. Figure 6 helps explain
the algorithm, starting from three example progress states.
To accompany the reading of this work, Fig. 6a-c shows the
deployment of the algorithm for the case immediately fol-
lowing the completion of the initialisation phase described
in Fig. 5. Instead, Fig. 6d-f and Fig. 6g-i relate to the other
two progress states, representative of later points in time.
The value of rDir remains set to FALSE, indicating that the
current travelling direction is still anticlockwise. Indicating
with A and B , respectively, the first and the second sensor
pose that we come across when travelling from the current
pose ( Pi ) along the external boundary of the constructed
mesh, a circumference of radius r centred at Pi and lying on
the plane �i and two infinite cylinders ( �A and �B ) of radius r
and axes ��⃗ws

A
 and ��⃗ws

B
 are constructed. A computation based on

Eq. 3 is used to find the extremities of the circumference arc
that remains outside both cylinders, namely: P�

i+1
 and P��

i+1
 .

Thus, the extremity that produces a travel direction in agree-
ment with the current value of rDir is selected as the next
sensor pose. Figure 6c, f and i illustrate the updated progress
state with the corrected new posture ( Pi+1 ), originating from
either P�

i+1
 or P��

i+1
 . This new pose allows constructing either

one new mesh triangle ( Tj+1 ) or two new triangles ( Tj+1 and
Tj+2 ). Extending the mesh with either one or two new trian-
gles depends on the position of the new pose with respect to
A and B . In particular, only one new triangle is added, if the
angle ( � ) formed by the vectors ����⃗APi+1 and ����⃗AB is larger than
�∕2 radians (e.g. in Fig. 6c and f). Otherwise, if � ≤ �∕2
radians, two new triangles are added (e.g. in Fig. 6g). If the
former is the case, the triangle counter (nTri) is incremented
by one unit, and the triangle edge counter (nEdges) is incre-
mented by two units. Whereas the elements of isOutEdge
corresponding to the two new edges are set to TRUE, the
element of isOutEdge corresponding to the edge linking A
and Pi is turned to FALSE, since APi ceases to be a boundary
edge of the mesh. On the other hand, if two new triangles
are created, nTri is incremented by two units, and nEdges
is incremented by three units. The elements of isOutEdge
related to the edge linking Pi and Pi+1 and to the edge link-
ing Pi+1 and B are set to TRUE. The elements of isOutEdge
related to the edge that links B and A and to the edge that
links A and Pi are turned to FALSE, since both BA and APi
become internal edges of the mesh.

The order with which the indices of the vertices of the
new triangle(s) and of the extremities of the new edges
are appended to the respective lists, in iTri and iTriEdges,
depends on rDir and � , according to the following generali-
sation of Eq. 4:

	 Journal of Intelligent & Robotic Systems (2022) 105:54

1 3

 54   Page 12 of 19

(5)

if 𝛽 > 𝜋∕2 →

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

if rDir = TRUE →

⎧⎪⎪⎨⎪⎪⎩

iTri(j + 1, ∶) =
�
i a i + 1

�

iTriEdges(k + 1 ∶ k + 2, ∶) =

⎡⎢⎢⎣
a i + 1

i + 1 i

⎤⎥⎥⎦

if rDir = FALSE →

⎧⎪⎪⎨⎪⎪⎩

iTri(j + 1, ∶) =
�
i i + 1 a

�

iTriEdges(k + 1 ∶ k + 2, ∶) =

⎡⎢⎢⎣
i i + 1

i + 1 a

⎤⎥⎥⎦

if 𝛽 ≤ 𝜋∕2 →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if rDir = TRUE →

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

iTri(j + 1 ∶ j + 2, ∶) =

⎡⎢⎢⎣
i a i + 1

i + 1 a b

⎤⎥⎥⎦

iTriEdges(k + 1 ∶ k + 3, ∶) =

⎡⎢⎢⎢⎢⎣

a i + 1

i + 1 i

b i + 1

⎤⎥⎥⎥⎥⎦

if rDir = FALSE →

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

iTri(j + 1 ∶ j + 2, ∶) =

⎡⎢⎢⎣
i i + 1 a

i + 1 b a

⎤⎥⎥⎦

iTriEdges(k + 1 ∶ k + 3, ∶) =

⎡⎢⎢⎢⎢⎣

i + 1 a

i i + 1

i + 1 b

⎤⎥⎥⎥⎥⎦

where a and b are the indices of point A and B , respec-
tively. It must be noted that thanks to the attention dedicated
to the way the edges are listed in iTriEdges, the point A ,
required for the application of the above-described algo-
rithm, is immediately available at any progress state. Indeed,
the edge linking the last visited pose ( Pi ) to A is the last edge
of the list. Moreover, since such an edge is always at the
boundary of the mesh, there is only one other boundary edge
linked to A , whose other extremity is point B . The method of
indexing the robot poses, which is used in this work, mini-
mises the consumption of computational resources to find
these key points.

3.4 � Inspection Confinement

There must be a way to confine the inspection into the
region of interest autonomously to enable full autonomy.
That is the region where the part under examination can be
detected. In this work, both inspection coverage and inspec-
tion confinement are ensured by stopping the inspection

Fig. 6   Examples of next-pose computation and triangular mesh pro-
gressive growth: following the completion of the initialisation phase
(a-c), at a later point in time (d-f) and at a point where two new trian-
gles are created (g-i). From left to right: illustration of progress state

after the visitation of the ith pose ( Pi ) (a, d, g), computation of inter-
sections ( P�

i+1
 and P��

i+1
 ) (b, e, h) and illustration of progress state and

mesh growth after selection and visitation and correction of the new
pose ( Pi+1 ) (c, f, i)

Journal of Intelligent & Robotic Systems (2022) 105:54 	

1 3

Page 13 of 19  54

path from extending outside the part boundary by more
than the inspection resolution ( r ). It is achieved by ena-
bling changes in travelling direction in the inspection path.
This concept is illustrated through the example given in
Fig. 7. For clarity, the figure shows the inspection progress
by looking at the process steps through a top view. The
figure indicates with A1 and B1 the first and the second pose
that we come across when travelling from the current pos-
ture ( Pi ) along the external boundary of the constructed
mesh in the direction indicated by the current value of
rDir . Instead, A2 and B2 indicate respectively the first and

the second pose contiguous to Pi in the opposite direction.
Given this notation, the direction of travel is changed if
both Pi and A1 are sensor poses where the part could not
be detected, whereas the part could be seen in A2 (e.g. in
Fig. 7a-c). It descends that the poses A and B , used for the
computation of the next pose, as described in Sect. 3.3, are
taken equal to A1 and B1 , when no change of direction is
required, or equal to A2 and B2 otherwise. If the latter is
the case, the value of the Boolean variable that indicates
the current travelling direction is flipped ( rDir =∼ rDir ).
Therefore, rDir becomes TRUE if it was FALSE and FALSE
if it was TRUE, recording a change of the preferred trav-
elling direction from anticlockwise (ACW) to clockwise
(CW) or vice-versa, respectively. In Fig. 7d, the direction
of travel flips from ACW to CW due to the poses Pi and
A1 being both outside the part and pose A2 being within
the part boundary. Figure 7d shows the new pose ( Pi+1 ),
resulting from the inverted travelling direction. Obviously,
the process continues by considering the new pose as the
current pose ( Pi = Pi+1 ) and evaluating whether the part
could be detected in Pi and A1 , or in A2 . It must be noted
that A1 , B1 , A2 and B2 are always identified with respect to
the current pose and the current value of rDir.

3.5 � Collision Avoidance and Travel Time
Minimisation

In more general situations, the autonomous evolution of the
inspection from a given starting pose may bring to a particu-
lar progress state, where both the current pose and the two
directly connected poses, which are on the external bound-
ary of the mesh, are outside the part (e.g. in Fig. 7e and f).
In this case, even though some regions of the part are still
unexplored, there is no change of travelling direction that
can immediately help the continuation of the inspection. It
is clear that the part assessment should resume from a pose
on the external boundary of the current mesh and outside the
part. That pose should also be directly connected to another
mesh boundary pose that falls within the part surface. Such
posture would allow resuming the inspection through either
the ACW or the CW travelling direction. Considering a
generic case, multiple poses may meet these requirements.

Nevertheless, thanks to the indexed representation of
the connectivity employed in this work, finding all suitable
poses that meet the above criteria is easy and fast. Once all
appropriate poses are identified, a twofold problem must be
solved before the inspection can continue. First of all, it is
necessary to have a criterion to guide the selection of the
best pose to use. Secondly, since that pose may be quite far
from the current posture, it is necessary to plan a path to
move the sensor without causing any collision between the
sensor itself and the explored/unexplored regions of the part
under inspection.

Fig. 7   Progression of inspection. The subplots show the critical steps
of the process, from start to end—inspection confinement through
the change of travelling direction (a-d), the pursuit of unexplored
regions, minimising travel time and avoiding collisions (e-j) and the
fulfilment of the stop criteria (k)

	 Journal of Intelligent & Robotic Systems (2022) 105:54

1 3

 54   Page 14 of 19

In this work, both subproblems are simultaneously
solved by employing the conceptualisation of the short-
est path problem (SPP) used in graph theory [23, 24]. SPP
is the problem of finding a path between two vertices (or
nodes) in a graph such that the sum of the weights of its
constituent edges is minimised. The current mesh is used
as the graph, allowing each mesh edge to be travelled
bi-directionally. The index of the current pose is given
as the source, and the indexes of the identified suitable
poses are provided as targets. Since all edges of the mesh
have a length circa equal to the inspection resolution ( r ),
the weight of each edge is set to be unitary, reducing the
problem to an unweighted search. The A* search algo-
rithm [25] is used to find the single-pair shortest path
on the graph/mesh, linking the source to each one of the
targets. The cost of each path is defined as the number
of edges that need to be travelled to move from the start
to the target. Thus, the target pose that can be reached
through the least expensive path is selected. The rela-
tive path, originating from the solution of SPP, is used to
move the sensor effectively. It is clear that, since this opti-
mum path brings the sensor through previously visited
and safe poses, it removes any possibility of collision. It
must be noted that this previous statement is not necessar-
ily true for robotic systems that can undergo mechanical
singularity conditions. Travelling between two connected
poses near a singularity can cause a change of robot con-
figuration (e.g. from "shoulder up" to "shoulder down" for
a six-degrees-of-freedom (6-DoF) robotic arm). However,
this issue can be solved in practical implementations by
storing the robot's collision-free configuration for each
visited pose. Figure 7g and h illustrate the paths com-
puted through solving the SPP to pursue the inspection
of the unexplored regions of a given example part. For
the progress state in Fig. 7f, the path and the target pose
relative to the minimum cost (equal to 1) are selected
among four possible paths. Whenever all suitable poses
produce paths of equal cost (e.g. Figure 7h), the target
pose is randomly chosen among them.

3.6 � Stop Criteria

The capability of safely moving between distant poses,
through solving the SPP, enables the full autonomous
inspection of very complex parts.

According to the algorithm logic described, the inspec-
tion process should end when the part is not detected along
the constructed mesh's boundary. It corresponds to saying
that the inspection should terminate when all the elements
of isDataPt, relative to the boundary poses, are equal to
FALSE. However, this stopping condition may not be
sufficient in some situations. The part shape may cause

the inspection path to loop around a hole or obstacle and
approach a previously inspected region (e.g., Fig. 7j). In
this case, the inspection progression may lead to re-visit-
ing already examined areas, resulting in unwanted prolon-
gation of the inspection, redundant data and/or an endless
inspection. To avoid this undesirable behaviour, a bespoke
function of the algorithm checks if each new pose over-
laps with any triangle of the constructed mesh, setting the
relative element of isOverlapPt to either TRUE or FALSE.
This function is based on the fast ray casting method pre-
sented in [26], which checks if the normal direction for the
pose intersects any of the mesh triangles. Thus, all poses
marked as "overlap poses" in isOverlapPt are considered
"internal" boundary points and do not support the germi-
nation of new inspection poses. In conclusion, the autono-
mous inspection ends when the mesh boundary contains
only poses where the part could not be detected or poses

Fig. 8   Overall algorithm workflow (pseudo-code equivalent) for
autonomous full-coverage part exploration

Journal of Intelligent & Robotic Systems (2022) 105:54 	

1 3

Page 15 of 19  54

overlapping with boundary triangles of the mesh itself
(e.g., Fig. 7k). The whole process is schematically sum-
marised in the workflow given in Fig. 8, which illustrates
the logic and uses the notation introduced above.

4 � Application Example

A simple application was carried out to compare the pre-
sented autonomous inspection framework with some
examples of currently established automated approaches.
Since ultrasonic testing (UT) is one of the most widespread
inspection methods and may be of interest to most readers,
an inspection setup based on a single-element piezoelectric
ultrasonic probe, manipulated by a 6-DoF robotic arm, was
used. Figure 9a shows the part that was put under inspection.
It is a 50 mm wide and 118 mm long sample cut out from
a steel pipe with a 500 mm outer diameter and thickness of
19.2 mm. It can also be described as a 50 mm long longitu-
dinal portion of a hollow cylinder, subtended by a circum-
ferential angle of 27.3 deg (measured at the cylinder axis).

Three flat bottom holes (FBHs) with diameters of 6 mm,
10 mm and 20 mm were machined into the part from the
concave surface to introduce artificial thickness reduction
areas. The smaller diameter hole has a depth of 12 mm, the
10 mm diameter hole has a depth of 6 mm, and the largest

hole has a depth of 3 mm. The UT probe used in this work
(Fig. 9b) is a 5 MHz centre frequency transducer with a
diameter of 6.35 mm (0.25 inches). It was mounted onto
the extremity of a KUKA KR10-1100 robot manipulator
through 3D-printed plastic support (Fig. 9c). The probe
was used in send/receive mode (ultrasonic pulse-echo). The
piezoelectric probe was excited through a pulser. The return
analogue signals were digitalised with an oscilloscope at a
100 MHz sampling rate. The oscilloscope was connected to
a data-collection computer during the inspection. A bespoke
MATLAB-based software module retrieved the signals from
the oscilloscope and encoded them with the robot's posi-
tional feedback. The computer was connected to the robot
controller using the Interfacing Toolbox for Robotic Arms
(ITRA) [27] to synchronise the robotic sensor manipulation
with data collection. All inspections were performed through
the immersion technique. Both the part and the active tip
of the transducer were immersed, taking advantage of the
water as a low-attenuation and stable coupling medium.
The part was inspected from the convex surface, where the
FBHs are not visible. Four robotic inspections were carried
out to obtain full-coverage ultrasonic scans of the part. The
first robotic scan was performed with a predefined Off-Line
Planned (OLP) path, with the probe moving on a horizontal
plane in a raster fashion and always pointing straight down
into the water tank. The raster path of this first scan was

Fig. 9   Picture of top and bottom
part surfaces (a), 5 MHz UT
probe (b), inspection setup (c)
and side view of part through
the transparent wall of the water
tank during inspection (d)

	 Journal of Intelligent & Robotic Systems (2022) 105:54

1 3

 54   Page 16 of 19

defined to cover a 120 mm long and 52 mm wide rectangular
area centred on the part, extending 1 mm outside the part
footprint at all sides. The second scan was also instructed
with a predefined OLP raster path extending 1 mm outside
the boundary of the part surface but following the cylindrical
contour of the part. This path was generated through OLP
software using the part's digital model. The normal direc-
tions to the model's surface were used to define the probe
orientation at each sampling pose. The third type of scan
used the planar OLP path of the first scan, but the probe
orientation and standoff were corrected at each pose during
the inspection process through the pose correction algorithm
presented in Sect. 2. This scan is herein referred to as a semi-
autonomous scan. Finally, the fourth scan type employed the

full extent of the presented framework to obtain completely
autonomous UT inspections. This fourth type was performed
twice, using two different starting poses. All scans were car-
ried out using the same inspection resolution ( r = 2mm ).
The raster step was set at 2 mm, and the signal was acquired
at equally spaced intervals of 2 mm for the scans using
OLP paths. These fully autonomous inspections employed
r = 2mm as target sampling resolution. Figure 10 gives a
condensed illustration of the results for all scans. From top
to bottom, the figure shows the employed inspection paths
with respect to the part geometry, the maps of the front-
wall UT wave amplitude, the maps of the probe standoff,
the amplitude of the back-wall UT wave and the map of the
part thickness. The probe standoff and the part thickness

Fig. 10   Comparison of results obtained through the four different
inspection types. From top to bottom: illustration of inspection paths
with respect to the part geometry (a-e), the amplitude of front-wall

UT wave (f-j), probe standoff (k–o), the amplitude of back-wall UT
wave (p–t) and measured part thickness (u-y)

Journal of Intelligent & Robotic Systems (2022) 105:54 	

1 3

Page 17 of 19  54

derive from the time-of-flight of the ultrasonic echo waves,
taking the ultrasound propagation speed in water and steel
into account. It is evident that the scan maps relative to the
autonomous inspections were readily produced, applying a
coloured texture to the meshes produced by the execution
of the autonomous framework. For a given colour pallet,
the colour given to each node of the mesh comes directly
from the signal acquired at that pose, using 100% transpar-
ency for the poses where the part could not be detected. The
node colours are interpolated across the surface of the mesh
triangles. Mesh-based data visualisation maps were also
generated for the other inspection types, using the method
described in [28] to display all results in the same form and
facilitate direct comparisons. Despite the gentle curvature
of the part, the planar OLP raster scan was penalised by the
inaccurate probe orientation. The part could only be detected
for a limited portion of the scan. The probe was sufficiently
perpendicular to the part surface, denoting a strong signal
amplitude dependence on the alignment between the sen-
sor sampling direction and the part surface normal. The
contour-following OLP raster scan achieved full inspection
coverage. However, due to the deviations between the vir-
tual model and the real part or to the inaccurate registration
of the part position, the amplitude and the probe standoff
present a noticeable degree of variability with respect to
the results obtained through the semi-autonomous and fully
autonomous inspections enabled by this work. The deviation
of the probe position from the optimum pose has a negative
impact on the signal-to-noise ratio, which is evident in the
map of the back-wall wave amplitude (Fig. 10q) and can
reduce the capability to detect defects. It is clear that the
full autonomous inspections, regardless of the starting pose
used, were able to complete the scan of the part fully and
produced better and more repeatable results than the human-
programmed inspections.

Table 2 reports quantitative performance results. The
extent of the surface area inspected through the OLP-based
scans is very close to that examined by the autonomous
scans. All scanned areas exceed the actual extension of the
part's cylindrical surface (5956 mm2) due to the inspection
paths extending outside the part's boundary.

Interestingly, despite the similarity of all scanned areas, the
fully autonomous inspections produced more sensor poses and
longer inspection paths. At first sight, this may conclude that
the autonomous inspections are generally slower than OLP
raster paths. However, it must be observed that, in OLP raster
paths, the sensor poses are arranged according to a square
grid over the inspected surface. For such inspections, the
user-indicated sampling resolution is only respected along the
travelling direction and the stepping direction of the raster.
All diagonal distances between the poses in the grid tend to
exceed the target inspection resolution by a factor equal to

√
2 .

Conversely, each sensor pose is surrounded by up to six other
poses with a distance similar to the target resolution ( r ) in
fully autonomous inspections. Thanks to this reason, the sam-
pling resolution is more uniform regardless of the directions,
as denoted by the mean and the standard deviation (STD) of
the distances.

5 � Conclusions and Future Work

Several automated or semi-automated solutions have been
proposed over the years to enable automatic deployment
of specific types of sensors, speed up the inspection of
large and/or complex parts and enhance inspection reli-
ability and repeatability. Offline path-planning is typically
used to instruct a robotic manipulator on the trajectory to
follow for the inspection of a part. This method is only
acceptable for parts with known geometry, positioned in
a well-structured and controlled environment. This work
presented a novel framework that enables fully autonomous
single-pass geometric and volumetric inspection of com-
plex parts using one single robotised sensor. Notably, it is
scalable to different problem sizes, spanning from inspec-
tion of relatively small parts (e.g. through industrial robotic
arms) to land surface mapping (e.g. through drones). An
algorithm for autonomous correction of the sensor ori-
entation and position is accompanied by an autonomous
in-process path planning method. It allows keeping the
inspection resolution uniform throughout the full exten-
sion of the free-form parts.

Table 2   Quantitative performance parameters for all scan types

Scanned
area [mm2]

Path
length
[mm]

Num. of
sensor
poses

Percentage of
poses where the
part is detected

Mean point
distance
[mm]

STD of point
distance [mm]

STD of front-wall
wave amplitude [V]

STD of probe
standoff [mm]

Planar OLP 6240 3292 1647 9.22% 2.271 0.389 0.197 0.156
Contour OLP 6353 3138 1566 88.70% 2.326 0.396 0.140 0.173
Semi-auto 6124 3290 1647 87.42% 2.253 0.374 0.131 0.015
Fully auto (#1) 6297 3939 1910 90.05% 2.002 0.003 0.120 0.018
Fully auto (#2) 6269 3965 1897 90.62% 2.001 0.001 0.117 0.015

	 Journal of Intelligent & Robotic Systems (2022) 105:54

1 3

 54   Page 18 of 19

Moreover, a by-product of the framework is the progres-
sive construction of the digital model of the part surface
throughout the inspection process. The attention dedicated
to the way the sensor poses are indexed in the algorithms'
implementation minimises the consumption of computa-
tional resources and makes the proposed approach scalable.
The framework autonomously confines the inspection into
the region of interest, where the part under inspection is
detectable. Full inspection coverage, collision avoidance and
travel time minimisation are simultaneously solved. That is
achieved by employing the conceptualisation of the shortest
path problem used in graph theory. The application example
highlighted that the framework works as expected, providing
uniform sampling resolutions over curved part surfaces. The
usage of the presented framework is not limited to a specific
type of sensor and can go beyond NDT applications. Allow-
ing autonomous and simultaneous geometric and volumet-
ric inspection using a single robotic-manipulated sensor can
play a crucial role in all those situations where reducing the
number of components in the inspection system is highly
advantageous. Therefore, future work should focus on test-
ing, customising and extending the presented solutions to
various scenarios.

Acknowledgements  The authors thank Mr Antonino Traina and Mr
Giuseppe Lo Bue, who supported the preparation of the experimen-
tal setups of this work during their university laboratory internship
periods.

Author Contribution  Carmelo Mineo conceived the novel elements
of this work, developed and implemented the algorithms, performed
data acquisition and led the writing of the article manuscript. Donatella
Cerniglia supervised the findings of this work. Alastair Poole contrib-
uted to the review of the manuscript. All authors read and approved
the final manuscript.

Funding  This work has received funding from the European Union's
Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No 835846.

Availability of Data and Material  The MATLAB-based source code
of the algorithms described in this work is available to download at:
https://​doi.​org/​10.​5281/​zenodo.​59402​01, providing all the developed
components explained in the paper.

Declarations 

Ethics Approval  This work did not involve human subjects and/or ani-
mals. Thus, no ethical approval was required.

Consent to Participate  This work did not involve the collection of
information from human subjects.

Consent to Publish  This work did not involve the collection of informa-
tion from human subjects.

Competing Interests  The authors have no relevant financial or non-
financial interests to disclose.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4​0/.

References
	 1.	 Zhang, H., Xu, C., Xiao, D.: Offline correction of tool path

deviations for robot-assisted ultrasonic nondestructive testing.
Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233(8), 2879–2893
(2019)

	 2.	 Callieri, M. et al.: RoboScan: an automatic system for accurate
and unattended 3D scanning. In Proceedings. 2nd International
Symposium on 3D Data Processing, Visualization and Trans-
mission, 2004. 3DPVT 2004, pp. 805–812. IEEE (2004)

	 3.	 Almadhoun, R., Abduldayem, A., Taha, T., Seneviratne, L.,
Zweiri, Y.: Guided next best view for 3D reconstruction of large
complex structures. Remote Sens. 11(20), 2440 (2019)

	 4.	 Mineo, C., Cerniglia, D., Ricotta, V., Reitinger, B.: Autonomous
3D geometry reconstruction through robot-manipulated optical
sensors. Int. J. Adv. Manuf. Technol. 116(5), 1895–1911 (2021)

	 5.	 Mineo, C., Pierce, S.G., Nicholson, P.I., Cooper, I.: Robotic
path planning for non-destructive testing–A custom MATLAB
toolbox approach. Robotics Comput. Integr. Manufact. 37, 1–12
(2016)

	 6.	 Kopáčik, A., Erdélyi, J., Kyrinovič, P.: Coordinate Measuring
Systems and Machines. In: Engineering Surveys for Industry:
Springer, pp. 121–141. (2020)

	 7.	 Zhang, Y., Zhou, Z., Tang, K.: Sweep scan path planning for
five-axis inspection of free-form surfaces. Robotics Comput.
Integr. Manuf. 49, 335–348 (2018)

	 8.	 Mineo, C. et al.: Robotic geometric and volumetric inspection
of high value and large scale aircraft wings. In: 2019 IEEE
5th International Workshop on Metrology for AeroSpace
(MetroAeroSpace), pp. 82–86. IEEE. (2019)

	 9.	 Kamf, T., Leijon, M.: Automated mounting of pole-shoe wedges
in linear wave power generators—using industrial robotics and
proximity sensors. Machines 5(1), 10 (2017)

	10.	 Vasilev, M., et al.: Sensor-enabled multi-robot system for auto-
mated welding and in-process ultrasonic nde. Sensors 21(15),
5077 (2021)

	11.	 Khan, A., Mineo, C., Dobie, G., Macleod, C., Pierce, G.: Vision
guided robotic inspection for parts in manufacturing and reman-
ufacturing industry. J. Remanuf. 11(1), 49–70 (2021)

	12.	 Micallef, K., Fang, G., Dinham, M.: Automatic seam detection
and path planning in robotic welding. In: Robotic welding, intel-
ligence and automation, pp. 23–32. Springer (2011)

	13.	 To, A.W.K., Paul, G., Liu, D.: A comprehensive approach to
real-time fault diagnosis during automatic grit-blasting opera-
tion by autonomous industrial robots. Robotics Comput. Integr.
Manuf. 49, 13–23 (2018)

	14.	 Gardner, P., et al.: Machine learning at the interface of structural
health monitoring and non-destructive evaluation. Philos. Trans.
R. Soc. A 378(2182), 20190581 (2020)

https://doi.org/10.5281/zenodo.5940201
http://creativecommons.org/licenses/by/4.0/

Journal of Intelligent & Robotic Systems (2022) 105:54 	

1 3

Page 19 of 19  54

	15.	 Fuentes, R., et al.: Autonomous ultrasonic inspection using
Bayesian optimisation and robust outlier analysis. Mech. Syst.
Signal Process. 145, 106897 (2020)

	16.	 Hasan, K.M., Reza, K.J.: Path planning algorithm development
for autonomous vacuum cleaner robots. In: 2014 International
Conference on Informatics, Electronics & Vision (ICIEV), pp.
1–6. IEEE (2014)

	17.	 Poole, A., Sutcliffe, M., Pierce, G., Gachagan, A.: A novel com-
plete-surface-finding algorithm for online surface scanning with
limited view sensors. Sensors 21(22), 7692 (2021)

	18.	 He, Y., Hu, T., Zeng, D.: Scan-flood fill (SCAFF): An efficient
automatic precise region filling algorithm for complicated
regions. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops (2019)

	19.	 Shmakov, S.L.: A universal method of solving quartic equations.
Int. J. Pure Appl. Math. 71(2), 251–259 (2011)

	20.	 Neumark, S.: Solution of cubic and quartic equations. Elsevier
(2014)

	21.	 Pariterre. "averageRT." MATLAB Central File Exchange.
https://​www.​mathw​orks.​com/​matla​bcent​ral/​filee​xchan​ge/​72272-​
avera​gert (accessed February 2, 2022)

	22.	 Roscoe, L.: Stereolithography interface specification. America-
3D Systems Inc. 27(2020), 10 (1988)

	23.	 Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest paths
algorithms: Theory and experimental evaluation. Math. Pro-
gram. 73(2), 129–174 (1996)

	24.	 Cormen, T.H.: Single-source shortest paths. Introduction to
algorithms (2001)

	25.	 Demyen, D., Buro, M.: Efficient triangulation-based pathfind-
ing. Aaai 6, 942–947 (2006)

	26.	 Möller, T., Trumbore, B.: Fast, minimum storage ray-triangle
intersection. J. Graphics Tools 2(1), 21–28 (1997)

	27.	 Mineo, C. et al.: Interfacing toolbox for robotic arms with real-
time adaptive behavior capabilities (2019)

	28.	 Mineo, C., Riise, J., Summan, R., MacLeod, C.N., Pierce,
S.G.: Index-based triangulation method for efficient generation
of large three-dimensional ultrasonic C-scans. Insight-Non-
Destructive Test. Condition Monit. 60(4), 183–189 (2018)

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Carmelo Mineo  received the Master’s degree in Mechanical Engineer-
ing from the University of Palermo (Italy) in 2011. In 2012, he joined
the Centre for Ultrasonic Engineering of the University of Strathclyde
(Glasgow, UK) to undertake his doctoral studies on automated non-
destructive inspection of large and complex geometries of composite
materials. He became a Research Associate of the University of Strath-
clyde in 2015 and a Research Fellow in 2018. Carmelo was awarded
a prestigious H2020 Marie-Curie Fellowship in 2020, funded by the
European Commission, to lead research on Robotic Adaptive Behav-
iors for NDT Inspections in Dynamic Contexts at the University of
Palermo. He has been a Researcher at the Institute of High-Perfor-
mance Computing and Networking of the National Research Council
of Italy since 2020. His current research interests comprise intelligent
and autonomous robotics, advanced robot control for real-time adap-
tive path-planning, instrument and sensor interfacing, data collection
and processing.

Donatella Cerniglia  is Associate Professor in Mechanical Design and
Machine Construction, at the Department of Engineering, University
of Palermo, since 2015. She obtained the Ph.D. degree in Machine
Construction, at the University of Palermo, and she was Visiting
Scholar and Assistant Research Scientist at the Center for Nondestruc-
tive Evaluation of The Johns Hopkins University, Baltimore (USA).
Her research activities, in Italy and abroad, are focused on control
techniques for monitoring the integrity of structural components and
robotic adaptive behaviors for NDT inspections.

Alastair Poole  is currently completing an industrial PhD in TWI Tech-
nology Centre (Port Talbot, UK) in partnership with Strathclyde Uni-
versity. Alastair’s research interests include the scanning of unknown
geometries for NDT. Applying geometric knowledge from his masters
in Mathematics at Durham University, his previous publications have
looked at applying robotic arms to autonomous profiling, autonomous
path planning and deployment over complex shapes, and force and
velocity controlled scanning methodologies. His research is looking
at the application of mobile robotic platforms to autonomous scanning
and accurate reconstructions of complex composite structures in the
context of on-site inspections.

https://www.mathworks.com/matlabcentral/fileexchange/72272-averagert
https://www.mathworks.com/matlabcentral/fileexchange/72272-averagert

	Autonomous Robotic Sensing for Simultaneous Geometric and Volumetric Inspection of Free-Form Parts
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Contribution
	1.4 Article Structure

	2 Autonomous Sensor Pose Correction
	2.1 Correction of Sensor Orientation
	2.2 Correction of Sensor Standoff

	3 Autonomous Full-Coverage Part Exploration
	3.1 Algorithm Supporting Data
	3.2 Initialisation from a Given Starting Pose
	3.3 Next-Pose Computation and Progressive Mesh Growth
	3.4 Inspection Confinement
	3.5 Collision Avoidance and Travel Time Minimisation
	3.6 Stop Criteria

	4 Application Example
	5 Conclusions and Future Work
	Acknowledgements
	References

