
Acta Astronautica 199 (2022) 374–385

A
0
(

Contents lists available at ScienceDirect

Acta Astronautica

journal homepage: www.elsevier.com/locate/actaastro

Enabling intelligent onboard guidance, navigation, and control using
reinforcement learning on near-term flight hardware
Callum Wilson ∗, Annalisa Riccardi
Department of Mechanical and Aerospace Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, United Kingdom

A R T I C L E I N F O

Keywords:
Intelligent control
Reinforcement learning
Edge artificial intelligence

A B S T R A C T

Future space missions require technological advances to meet more stringent requirements. Next generation
guidance, navigation, and control systems must safely operate autonomously in hazardous and uncertain
environments. While these developments often focus on flight software, spacecraft hardware also creates
computational limitations for onboard algorithms. Intelligent control methods combine theories from automatic
control, artificial intelligence, and operations research to derive control systems capable of handling large
uncertainties. While this can be beneficial for spacecraft control, such control systems often require substantial
computational power. Recent improvements in single board computers have created physically lighter and
less power-intensive processors that are suitable for spaceflight and purpose built for machine learning. In
this study, we implement a reinforcement learning based controller on NVIDIA Jetson Nano hardware and
apply this controller to a simulated Mars powered descent problem. The proposed approach uses optimal
trajectories and guidance laws under nominal environment conditions to initialise a reinforcement learning
agent. This agent learns a control policy to cope with environmental uncertainties and updates its control
policy online using a novel update mechanism called Extreme Q-Learning Machine. We show that this control
system performs well on flight suitable hardware, which demonstrates the potential for intelligent control
onboard spacecraft.
1. Introduction

Designing effective spacecraft Guidance Navigation and Control
(GNC) systems poses several challenges. These control systems must
deal with substantial uncertainties inherent to space missions which
is difficult for many conventional methods to handle. One class of
methods which can be used for controlling uncertain environments is
intelligent control. These methods use theories and architectures from
the field of Artificial Intelligence (AI), combined with automatic control
and operations research, to devise autonomous control systems that
handle uncertainties in a system’s environment, goals, or even in the
control system itself [1]. This has clear benefits for spacecraft GNC,
however, one factor which limits the use of intelligent control onboard
spacecraft is its computational cost. Computing systems onboard space-
craft face stringent power budgets, while many AI architectures are
computationally intensive.

New advances in edge hardware for AI have increased the possi-
bility for spacecraft onboard intelligence. Several manufacturers now
produce high performance Graphics Processing Units (GPUs) that are
optimised for running AI algorithms while remaining computationally
and physically lightweight. For example, companies such as NVIDIA [2]

∗ Corresponding author.
E-mail address: callum.j.wilson@strath.ac.uk (C. Wilson).

and Intel [3] are investing substantial resources in developing edge
AI capabilities. Due to the availability of this hardware, applications
of onboard intelligence are now growing, with most being related to
image processing. One recent example uses flight tested hardware to
create segmentation maps of floods with the goal of spacecraft being
able to downlink these maps in real time to enable quicker disaster
response [4]. Applications of onboard intelligence to GNC are more
limited and so here we aim to use onboard intelligence to directly train
a controller.

Reinforcement Learning (RL) is a class of AI methods that has gained
interest for many different applications. These methods learn how to
control a system through interaction and optimise their behaviour with
respect to a reward function specified by the designer [5]. Recent
breakthroughs in AI applied to games have used RL methods, which
demonstrates their capabilities on a variety of difficult problems. Most
notably, work by DeepMind produced AlphaGo and AlphaZero which
overcame the task – previously thought impossible – of beating the
world’s best humans at the game of Go [6]. More recently, DeepMind
have now demonstrated the application of RL for solving the highly
complex problem of controlling a nuclear fusion reaction using a real
vailable online 15 July 2022
094-5765/© 2022 The Authors. Published by Elsevier Ltd on behalf
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.actaastro.2022.07.013
Received 31 March 2022; Received in revised form 4 June 2022; Accepted 7 July 2
of IAA. This is an open access article under the CC BY license

022

http://www.elsevier.com/locate/actaastro
http://www.elsevier.com/locate/actaastro
mailto:callum.j.wilson@strath.ac.uk
https://doi.org/10.1016/j.actaastro.2022.07.013
https://doi.org/10.1016/j.actaastro.2022.07.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2022.07.013&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Acta Astronautica 199 (2022) 374–385C. Wilson and A. Riccardi
reactor [7]. In most cases, including those listed previously, a RL agent
learns how to control a system through repeated, simulated interactions
and then does not update its control policy in operation. While this
approach is still effective, it does not fully exploit the adaptive or
learning capabilities of intelligent control methods [8]. Our work aims
to demonstrate the possibility for including online updates with a RL
agent.

Spacecraft landing on extra-terrestrial bodies is an important area
of research as further missions to the Moon and Mars are planned [9].
These will have stricter performance requirements than previous mis-
sions which motivates the use of novel technologies such as intelligent
control. Existing approaches to powered descent guidance use a variety
of methods spanning conventional control theories, optimal control,
and Machine Learning (ML) [10]. These can broadly be categorised
as ‘offline’, where the control system is designed or trained offline
and does not update, and ‘online’, where the controller updates its
control policy online in real time. The earliest examples of auto-
mated powered descent guidance algorithms come from the Apollo
missions [11]. They used polynomial guidance algorithms that find
analytical expressions for the spacecraft’s acceleration in time that
are used to control its thrusters. Another class of algorithms referred
to as Zero Effort Miss (ZEM) and Zero Effort Velocity (ZEV) uses a
similar set of assumptions to apollo guidance and calculates analytical
expressions for thrust commands. Such methods have been applied to
Mars powered descent [12] and other more general spacecraft control
problems including asteroid intercept [13]. These conventional control
approaches can be considered offline as their guidance laws do not
update online.

In cases requiring better performance than that provided by conven-
tional control methods, theories from optimal control are used. This is
where a controller aims to maximise or minimise a certain characteris-
tic of a system. In the case of powered descent, the optimality criterion
is often to minimise fuel consumption. There are various optimisation
methods that can solve the minimum fuel powered descent problem of-
fline for specific initial conditions. When designing control systems that
are to be optimised online, there are additional challenges. As with in-
telligent control methods, computational resources onboard spacecraft
are a significant limitation. In addition, some optimisation methods,
such as Non-Linear Programming (NLP) approaches, are not guaranteed
to converge on a solution, which is necessary for mission critical
operations [10]. One class of approaches for optimal powered descent
guidance uses convex programming methods [14]. These approaches
solve the optimal control problem online by convexifying any noncon-
vex constraints, such as thrust and glideslope requirements [15,16]. To
account for more general nonconvex problems, such as the non-linear
relationships between aerodynamic disturbances and the spacecraft
state, methods of successive convexification are also used. In this case,
the optimisation algorithm iteratively generates solutions to convex
approximations of the nonconvex problem using linearisation [17,18].

ML methods can also be used in conjunction with the theoretical
guarantees of optimal control to provide faster solutions that are more
robust to uncertainties. For example, in [19] the authors train a Neural
Network (NN) to approximate optimal control actions for planetary
landing without the need to run online optimisations. Similarly, in [20]
they reduce the optimal control problem to defining a small set of
parameters that vary based on the initial conditions. Again, NNs are
trained to learn the mapping from initial conditions to optimal control
policy. As well as providing the mapping from states to optimal actions,
in [21] NNs are also used to model the gravity dynamics of an asteroid
for generating optimal trajectories. Since the performance of many
optimisation algorithms is sensitive to the initial guess, NNs can also
learn to generate suitable initial guesses. This is the approach employed
in [22] for generating optimal asteroid landing trajectories.

Due to its performance in other domains, RL has also gained a
lot of interest as an approach to spacecraft GNC problems. The most
375
commonly used RL method for these applications is Proximal Pol-
icy Optimisation (PPO) [23]. This algorithm performs well in high-
dimensional tasks with continuous actions but requires longer training
times than similar discrete-action methods. RL has been used to solve
a variety of trajectory optimisation problems, including interplanetary
trajectories and orbit transfers. These often use RL as a means for
providing greater robustness to uncertainties, such as in [24] where
the authors include noise in various aspects of a low-thrust Earth–Mars
trajectory problem. Other works also investigate using RL for low-
thrust manoeuvres applied to transfers between Earth–Moon Lyapunov
orbits [25,26]. In all these applications PPO is used to train the NN
control policy. This is also the case in [27] where PPO is compared
to a direct behavioural cloning approach for a rendezvous problem.
In a behavioural cloning framework, the agent learns to take actions
based on expert demonstrations; similar to the ML and optimal control
approaches detailed above. This approach can also be used to create
an initial policy for training. The authors in [28] use solutions to a
deterministic optimal control problem to initialise a RL agent in a
supervised manner prior to training. Here we employ a similar method
for using optimal control solutions as demonstrations.

RL has also been successfully applied to planetary powered descent
guidance in other previous works. The OpenAI Gym set of benchmark
environments even has a highly simplified 2D lunar lander environment
that only starts from a small range of initial conditions and incorpo-
rates limited uncertainties [29]. For more realistic powered descent
problems, previous works also used optimal control demonstrations
for initialising an agent [30] as well as during training [21]. When
considering a larger problem space, training agents from scratch be-
comes more challenging as they might never reach the desired final
state. This makes careful tuning of the reward function necessary as
demonstrated in [31] where the authors train an agent on a 6-DOF
problem using PPO. Other approaches to training agents for powered
descent also combine RL with previously described analytical methods
such as ZEM/ZEV guidance. In this framework, RL has been used to
adapt parameter values [32] and also to guide the spacecraft between
determined waypoints [33].

The applications of RL described thus far involved entirely offline
training of the control policy. In an intelligent control framework, the
controller can also update online, as is the goal of our work. Online
adaptive methods of RL for powered descent are less common, however
there are some examples that employ meta-learning methods. In this
paradigm, the agent’s policy is paramaterised as a recurrent NN that
learns how to perform well on new tasks with limited training exam-
ples [34]. Recent works used such an approach, combined with PPO, for
near asteroid GNC applications [35,36] and lunar landing [37]. Here
we employ a different approach to online updating by adapting the
NN output weights using conventional RL update rules. Online updates
can be desirable for highly uncertain environments, but have certain
limitations. Updating a control scheme online creates an additional
computational burden for the spacecraft compared to ML methods that
only perform inference online. In addition, it can be difficult to ensure
the stability of ML based control methods such that a spacecraft will
not enter a dangerous state. This is more challenging for methods
that adapt online. Other works have addressed the problem of ‘safe’
RL using Lyapunov-based updates [38]. Furthermore, Lyapunov-based
control laws derived using RL have been applied to spacecraft transfer
problems [39].

We apply RL to a three degree-of-freedom Martian spacecraft pow-
ered descent problem with environmental uncertainties. This builds
on previous work that improved the training time for this problem
using discrete action spaces [40] and by incorporating optimal con-
trol demonstrations [41]. As shown above, there are many traditional
control approaches used for spacecraft powered descent. However,
these often rely on assumptions on the system. For example, assuming
uncertainties are bounded or that the model of the system is sufficiently

accurate. The aim of intelligent control is to control systems where



Acta Astronautica 199 (2022) 374–385C. Wilson and A. Riccardi

A
i
a
R
w
f

2

t
m
p

2

d
c
o
o

w
d

S
l

a
t
b

i
t
e
a
m
t
a
u

𝑟

these assumptions are no longer valid. In extra-terrestrial powered
descent problems, there are very few examples of successful landings
which leaves a great deal of uncertainty in future missions. In this work,
we did not investigate all possible uncertainties in this application, but
aim to make progress towards more intelligent controllers that can be
implemented onboard spacecraft.

The primary contribution of this work is the demonstration of online
updates of a pretrained RL agent performed on near-term flight hard-
ware. Online updates use a novel update mechanism called Extreme
Q-Learning Machine (EQLM) [42]. This uses theories from Extreme
Learning Machines (ELMs) [43] to update NN parameters without using
conventional gradient-based methods. EQLM is capable of training a
NN without iterative tuning making it suitable for an online learning
environment. To demonstrate the feasibility of using this approach
onboard spacecraft, we ran our agent on the NVIDIA Jetson Nano 2 GB
developer kit [44]. This small, single board computer incorporates a
NVIDIA Maxwell GPU that is designed for edge AI applications. The
NVIDIA Jetson system has existing flight heritage onboard a recent
Lockheed mission that demonstrated various onboard AI applications.1

t the problem scale considered here, the use of a GPU is not necessar-
ly beneficial for computation time. Nevertheless, use of this hardware
llows the agent to scale to larger networks as required, for example, in
L performing end-to-end training with image inputs. With this work,
e aim to show that intelligent control is feasible onboard near-term

light hardware for spacecraft GNC.

. Problem statement

This section details the spacecraft lander powered descent problem
o which we apply the RL agent. Here we introduce the mathematical
odels and parameters describing the environment and present the
roblem statements for optimal control and RL.

.1. Environment

The environment we consider is a three degree-of-freedom powered
escent for Mars. For this case with no rotations, the spacecraft is
onsidered to have thrusters aligned with its body-frame axes in an
rthogonal configuration as opposed to thrust vectoring. The equations
f motion of the spacecraft are shown in Eqs. (1) to (3):
𝑑
𝑑𝑡

(𝐱) = 𝐱̇ (1)

𝑑
𝑑𝑡

(𝐱̇) =
𝐅𝑡ℎ𝑟𝑢𝑠𝑡 + 𝐅𝑒𝑛𝑣

𝑚
+ 𝐠 (2)

𝑑
𝑑𝑡

(𝑚) = −
𝛴𝑚=𝑖,𝑗,𝑘|𝐹𝑚|

𝐼𝑠𝑝 ⋅ 𝑔0
(3)

here 𝐱 =
{

𝑥𝑖, 𝑥𝑗 , 𝑥𝑘
}

𝑚 is the spacecraft’s position with respect to the
esired landing location, 𝐅𝑡ℎ𝑟𝑢𝑠𝑡 =

{

𝐹𝑖, 𝐹𝑗 , 𝐹𝑘
}

𝑁 is the force exerted by
the thrusters on the spacecraft, 𝐅𝑒𝑛𝑣 is the disturbance forces from the
environment, 𝑚 is the spacecraft total mass, 𝐠 = {0, 0,−3.72} N/kg is
the acceleration due to gravity for Mars, 𝐼𝑠𝑝 = 210 s is the specific thrust
of each thruster, and 𝑔0 = 9.81 N/kg is the reference acceleration due
to gravity. Within the defined coordinate system, the desired landing
position is at 𝐱 = {0, 0, 0} and the unit vectors 𝑖⃗, 𝑗, and 𝑘⃗ are positioned
in the downrange, crossrange, and altitude directions respectively.

Possible thrusts are discretised within the ranges −𝐹𝑚𝑎𝑥
𝑖 ≤ 𝐹𝑖 ≤

𝐹𝑚𝑎𝑥
𝑖 , −𝐹𝑚𝑎𝑥

𝑗 ≤ 𝐹𝑗 ≤ 𝐹𝑚𝑎𝑥
𝑗 , and 0 ≤ 𝐹𝑘 ≤ 𝐹𝑚𝑎𝑥

𝑘 . Maximum thrust
magnitudes are 𝐹𝑚𝑎𝑥

𝑖 = 𝐹𝑚𝑎𝑥
𝑗 = 10 kN and 𝐹𝑚𝑎𝑥

𝑘 = 13 kN. The number
of discrete actions in each direction is 7 in both the 𝑖- and 𝑗-directions
and 3 in the 𝑘-direction, giving an action space size of 147 discrete

1 Lockheed Martin and University of Southern California Build Smart Cube-
ats, La Jument, Media - Lockheed Martin (Aug. 2020). URL https://news.
ockheedmartin.com/news-releases?item=128962 (accessed 29/9/2021).
376
actions. Values for maximum thrusts and number of discrete actions are
selected based on results of previous studies [41]. Environmental forces
are randomly sampled every 5 timesteps from a normal distribution
with mean 0 N and standard deviation 100 N and linearly interpolated
between samples. The control system’s sampling time is 0.2 s.

2.2. Optimal control problem

When generating optimal trajectories, we only consider ‘nominal’
conditions where the environmental disturbances, 𝐅𝑒𝑛𝑣 are zero. These
disturbance forces are then included when training and testing the RL
agent. Eq. (4) states the optimisation problem and relevant constraints:

minimise
𝑡𝑓
∑

𝑡=0

(

∑

𝑚=𝑖,𝑗,𝑘
𝐹 2
𝑚

)

subject to 𝐱|𝑡=𝑡𝑓 = 0, 𝐱̇|𝑡=𝑡𝑓 = 0,

𝐱|𝑡=0 = 𝐱0, 𝐱̇|𝑡=0 = 𝐱̇0, 𝑚|𝑡=0 = 𝑚0,

𝐅𝑚𝑖𝑛
𝑡ℎ𝑟𝑢𝑠𝑡 ≤ 𝐅𝑡ℎ𝑟𝑢𝑠𝑡 ≤ 𝐅𝑚𝑎𝑥

𝑡ℎ𝑟𝑢𝑠𝑡.

(4)

where 𝑡𝑓 is the time of flight. This parameter and the thrusts, 𝐅𝑡ℎ𝑟𝑢𝑠𝑡
at each control point are the control variables to be optimised. In
the spacecraft mass model used here (Eq. (3)), the minimum energy
formulation given in Eq. (4) is equivalent to the minimum fuel problem.

2.3. Reinforcement learning problem

In a general RL problem, an agent seeks to maximise its cumulative
discounted reward 𝐺𝑡, which is also referred to as return. The return
following timestep 𝑡 is defined by Eq. (5).

𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 +⋯

=
∞
∑

𝑘=0
𝛾𝑘𝑟𝑡+𝑘+1

(5)

The parameter 𝛾 is the discount factor which takes a value in the range
0 ≤ 𝛾 ≤ 1. This value controls the extent to which long term rewards
ffect the return. For 𝛾 = 0, only the reward received at the next
imestep is considered and as 𝛾 → 1 more rewards at future timesteps
ecome significant.

The reward function defining the reward 𝑟 given at each timestep
s chosen by the control system designer to reflect the objective of
he system. Appropriate definition of the reward function is crucial to
nsure the agent learns a desirable policy. This problem benefits from
shaped reward function which effectively guides the agent towards
ore optimal actions since it is otherwise difficult for the agent to learn

o find the landing site. The reward function we use here is the same
s from previous work [41] which is adapted from the reward function
sed by Gaudet et al. [31]. This function is shown in Eq. (6):

=𝛼 ‖‖
‖

𝐱̇ − 𝐱̇𝑡𝑎𝑟𝑔
‖

‖

‖

+ 𝛽
‖

‖

‖

‖

‖

𝐅𝑡ℎ𝑟𝑢𝑠𝑡
𝐅𝑚𝑎𝑥
𝑡ℎ𝑟𝑢𝑠𝑡

‖

‖

‖

‖

‖

+ 𝜂

+ 𝜅
(

𝑟𝑧 < 0.01 and ‖𝐱‖ < 𝑥𝑙𝑖𝑚 and ‖𝐱̇‖ < 𝑥̇𝑙𝑖𝑚
)

(6)

𝐱̇𝑡𝑎𝑟𝑔 is a target velocity that the agent is rewarded for following. The
shape of this target velocity is defined by Eqs. (7) to (12):

𝐱̇𝑡𝑎𝑟𝑔 = −𝑣0

(

𝐫̂
‖𝐫̂‖

)(

1 − 𝑒𝑥𝑝
(

−
𝑡𝑔𝑜
𝜏

))

(7)

𝑣0 = 70 (8)

𝑡𝑔𝑜 =
‖𝐫̂‖
‖𝐯̂‖

(9)

𝐫̂ =

{

𝐱 − [0 0 15] , if 𝑥3 > 15
[

0 0 𝑥3
]

, otherwise
(10)

𝐯̂ =

{

𝐱̇ − [0 0 − 2] , if 𝑥3 > 15
(11)
𝐱̇ − [0 0 − 1] , otherwise

https://news.lockheedmartin.com/news-releases?item=128962
https://news.lockheedmartin.com/news-releases?item=128962


Acta Astronautica 199 (2022) 374–385C. Wilson and A. Riccardi

T
a
p
n
𝜅
t
s
n
m
k
s
v
𝛽

m
p
t
a
a
i
h

b
m
e
E

𝐬

w

𝐬

3

d
i
i
i
b
m
w
m
w

Fig. 1. Schematic illustration of the three main phases in our proposed method.
3

N
d
a
s
Q
b
T
d
d
a

p
(
s
c
a
d
f

o
a
n
n
i
E
𝑘
n
t

𝐭

t
v

𝐞

v
t
v
r
g
o
p
F

𝜏 =

{

20, if 𝑥3 > 15
100, otherwise

(12)

his motivates the agent to follow a velocity pointing towards 15 m
bove the desired landing zone which decreases as it approaches this
oint. Then over the final 15 m of descent the target velocity is entirely
ormal to the surface in the k-direction. The constants 𝛼, 𝛽, 𝜂, and

in Eq. (6) weight different parts of the reward function. The 𝛼
erm is a negative reward that increases as the difference between the
pacecraft’s velocity and target velocity increases. The 𝛽 term is also a
egative reward for the control effort normalised with respect to the
aximum thrust. 𝜂 is a positive constant that motivates the agent to

eep advancing in the environment. Finally, 𝜅 is the reward gained for a
uccessful landing within the limits of 𝑥𝑙𝑖𝑚 = 5 m and 𝑥̇𝑙𝑖𝑚 = 2 m∕s. The
alues of the constant coefficients in the reward function are 𝛼 = −0.01,
= −0.05, 𝜂 = 0.01, and 𝜅 = 10.

Here we only considered constraints on the terminal state and thrust
agnitudes in both the optimal control and RL problems. In the RL
roblem, the constraint on the terminal state is only given implicitly
o the agent as a positive reward for a successful landing (the 𝜅 term
bove). Additional path and state constraints are typically incorporated
s negative rewards for a RL agent. This was the approached used
n [31]. Other methods for enforcing constraints on an agent’s policy
ave been proposed [45,46], but are not investigated in this work.

As well as defining the reward function, a state representation must
e chosen for the agent. We use the spacecraft’s position, velocity, and
ass. These values are scaled by a constant factor 𝐬𝑠𝑐𝑎𝑙𝑒 to avoid having

xcessive values input to the agent. The state, 𝐬 is then defined by
q. (13):

= {𝐱, 𝐱̇, 𝑚} ⋅ 𝐬𝑠𝑐𝑎𝑙𝑒 (13)

ith the values for scaling each variable defined as follows:

𝑠𝑐𝑎𝑙𝑒 = {0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.005} (14)

. Methods

Fig. 1 gives an overview of our proposed approach, which can be
ivided into three main parts. The first two parts occur offline for
nitialising the agent and the final part occurs online. First an agent
s trained using conventional gradient descent methods to determine
nitial weights for the Q-network. We use the conventional gradient-
ased updates for this part instead of EQLM since the Q-networks have
ultiple layers, but ELM updates only single layers. The Q-network
eights learned from this part are then used to initialise offline the
atrix used for EQLM updates. Finally, the agent updates its output
eights online.
377

f

.1. Offline pretraining

In this part of the method we train an agent using the Deep Q-
etworks (DQN) algorithm with optimal control demonstrations as
escribed in previous work [41]. One of the key features of the DQN
lgorithm is experience replay [47], where the agent stores its ob-
ervations in a replay memory and samples from this when updating
-network parameters. Since updates are independent of the policy
eing followed, this allows the use of demonstration data for updates.
hese demonstrations come from solving the optimal control problem
efined by Eq. (4) for different initial conditions. When performing up-
ates, the agent uses experiences from both this ‘demo’ replay memory
nd the agent’s own replay memory.

There are several suitable methods for solving the optimal control
roblem and here we use a Sequential Least Squares Programming
SLSQP) solver [48]. The optimal solutions give demonstrations of
uccessful landings without environmental disturbances, but they use a
ontinuous action space. The DQN algorithm requires discrete actions
nd so the optimal control demonstrations must be transformed into a
iscrete action space before they can be used for training. The process
or discretising the actions is described in [41].

Items in each of the replay memories consist of a state, action,
bserved reward, and observed state, denoted (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗+1, 𝑠𝑗+1). The
gent computes estimates of the action-value function 𝑄 using a neural
etwork with parameters 𝜃. In the DQN algorithm, an additional target
etwork with parameters 𝜃𝑇 computes action-value targets for updat-
ng. These target action-values, denoted 𝐭𝑗 , are calculated as shown in
q. (15). At each update step, targets are calculated for a minibatch of
experiences, where 𝑘 = 𝑘𝑟𝑒𝑝𝑙𝑎𝑦 + 𝑘𝑑𝑒𝑚𝑜 and 𝑘𝑟𝑒𝑝𝑙𝑎𝑦 and 𝑘𝑑𝑒𝑚𝑜 are the

umber of experiences sampled from the agent’s replay memory and
he demonstration memory, respectively.

𝑗 =

{

𝑟𝑗 , if 𝑠𝑗+1 is terminal
𝑟𝑗 + 𝛾 max𝑎 𝑄𝜃𝑇 (𝑠𝑗+1, 𝑎), otherwise

(15)

The temporal-difference error, 𝐞𝑗 can then simply be calculated as
he difference between the estimated action value and target action
alue:

𝑗 = 𝑄𝜃(𝑠𝑗 , 𝑎𝑗 ) − 𝐭𝑗 (16)

This error is then used to update the parameters of the Q-network
ia gradient descent. For the problem scale we consider here, a mul-
ilayer Q-Network is required to sufficiently approximate the action-
alue function. EQLM is used to update single layer Q-networks with
andom initial weights and biases. Training a Q-Network initially using
radient descent allows EQLM updates to be performed on just the
utput layer and instead of random initial weights, the other network
arameters are tuned to give a useful representation to the final layer.
ollowing pretraining, all the Q-Network parameters are fixed except

or the output weights which will be updated online.



Acta Astronautica 199 (2022) 374–385C. Wilson and A. Riccardi

i

𝐲

w
i
i
o
t

𝐇

w
r
(
M
t
u

𝐓

w
w
Q

𝐇

𝛽
n
i

𝛽

w
u

𝐴

l
t
m
u
t
o
r

3

a
o
I

3.2. Offline EQLM initialisation

Prior to applying EQLM online, it is first necessary to initialise
variables for performing updates. Here we describe the process for
calculating initial values for the matrix 𝐴† which is used for performing
online updates with EQLM. The input to the Q-network is the environ-
ment state, denoted 𝐬. The output of the 𝑖th hidden layer, denoted 𝐲𝑖,
s:

𝑖 =
(

𝑓𝑖◦𝑓𝑖−1◦⋯◦𝑓1
)

(𝐬) (17)

here 𝑓𝑖 is a nonlinear function of the previous layer’s output resulting
n each output being a composite function of all previous layers. For an
nitial minibatch of 𝑘 inputs (𝐬1,… , 𝐬𝑘), we define the matrix 𝐇 as the
utput of the final hidden layer (denoted 𝐲 for simplicity) for each of
he inputs as shown:

=
⎡

⎢

⎢

⎣

𝐲⊤|𝐬=𝐬1
⋮

𝐲⊤|𝐬=𝐬𝑘

⎤

⎥

⎥

⎦𝑘×𝑁̃

(18)

here 𝑁̃ denotes the number of nodes in the final hidden layer. Each
ow of 𝐇 contains the final hidden layer output 𝐲 for each of the inputs
𝐬1,… , 𝐬𝑘). The output weights of the network are denoted with 𝛽.
atrix 𝐓 is then defined as the corresponding target action-values for

he inputs (𝐬1,… , 𝐬𝑘) as shown in Eq. (19). These targets are calculated
sing Eq. (15).

=
⎡

⎢

⎢

⎣

𝐭⊤|𝐬=𝐬1
⋮

𝐭⊤|𝐬=𝐬𝑘

⎤

⎥

⎥

⎦𝑘×𝑚

(19)

here 𝑚 denotes the number of discrete actions. For a set of output
eights which perfectly represents the targets 𝐓 for a given 𝐇, the
-network model can be written as shown in Eq. (20):

𝛽 = 𝐓 (20)

As stated previously, following pretraining only the output weights
are updated. In the case where EQLM is used without pretraining,

etwork parameters are randomly assigned and the output weights are
nitialised as shown in Eq. (21):

𝑡=0 = 𝐴†
𝑡=0𝐇

⊤𝐓 (21)

here the matrix 𝐴† that is used for online updates can be initialised
sing Eq. (22):

†
𝑡=0 =

[

𝐼
𝛾̄
+𝐇⊤𝐇

]†
(22)

However, following pretraining we can instead use the optimised
set of output weights to initialise 𝐴† by rearranging Eq. (21) as shown:

𝐴†
𝑡=0 = 𝛽𝑡=0

[

𝐇⊤𝐓
]† (23)

where 𝛽𝑡=0 are the optimised output weights. 𝐇 and 𝐓 are both calcu-
ated for a large batch of experiences to perform this step. Similarly
o the pretraining, these experiences are sampled from two replay
emories: one obtained using the pretrained agent’s policy and one
sing a random policy. The total minibatch size for initialisation is
hen 𝑘 = 𝑘𝑎𝑔𝑒𝑛𝑡 + 𝑘𝑟𝑎𝑛𝑑𝑜𝑚 where 𝑘𝑎𝑔𝑒𝑛𝑡 and 𝑘𝑟𝑎𝑛𝑑𝑜𝑚 are the number
f experiences sampled from the agent’s replay memory and random
eplay memory, respectively.

.3. Online updating

With the weights and matrix for updating weights initialised, the
gent can update its weights online. As with the initialisation part, the
nline updates use data from agent demonstrations and random actions.
n addition to these replay memories, the experiences observed online
378
by the agent also make up the data used to update. These experiences
are all fed to the agent in minibatches, whose size is again denoted 𝑘. If
the agent has already updated from 𝑁 experiences and samples a new
batch of 𝑘 experiences (𝐬𝑁 ,… , 𝐬𝑁+𝑘) for updating, the new incremental
matrices 𝐇𝐼𝐶 and 𝐓𝐼𝐶 can be defined as follows:

𝐇𝐼𝐶 =
⎡

⎢

⎢

⎣

𝐲⊤|𝐬=𝐬𝑁
⋮

𝐲⊤|𝐬=𝐬𝑁+𝑘

⎤

⎥

⎥

⎦𝑘×𝑁̃

(24)

𝐓𝐼𝐶 =
⎡

⎢

⎢

⎣

𝐭⊤|𝐬=𝐬𝑁
⋮

𝐭⊤|𝐬=𝐬𝑁+𝑘

⎤

⎥

⎥

⎦𝑘×𝑚

(25)

Using these matrices, the online EQLM updates are performed with
the following equations:

𝐾𝑡 = 𝐼 − 𝐴†
𝑡𝐇

⊤
𝐼𝐶

(

𝐇𝐼𝐶𝐴
†
𝑡𝐇

⊤
𝐼𝐶 + 𝐼𝑘×𝑘

)†
𝐇𝐼𝐶 (26)

𝛽𝑡+1 = 𝐾𝑡𝛽𝑡 +𝐾𝑡𝐴
†
𝑡𝐇

⊤
𝐼𝐶𝐓𝐼𝐶 (27)

𝐴†
𝑡+1 = 𝐾𝑡𝐴

†
𝑡 (28)

where 𝐾𝑡 is another matrix used to calculate weight updates. These
updates occur after a certain number of timesteps, 𝑛𝑠𝑡𝑒𝑝 in the envi-
ronment. At each update, the agent’s previous 𝑛𝑠𝑡𝑒𝑝 experiences are all
used to update. This gives a total minibatch size for online updates
of 𝑘 = 𝑛𝑠𝑡𝑒𝑝 + 𝑘𝑎𝑔𝑒𝑛𝑡 + 𝑘𝑟𝑎𝑛𝑑𝑜𝑚. In practice, these online updates would
occur onboard the spacecraft. As an additional step prior to deployment
of the agent and following initialisation, the agent carries out further
training episodes with online updates. These update the output weights
𝛽 and matrix 𝐴† before they are used on the hardware with the goal of
improving the online agent’s performance.

4. Simulation and results

Here we describe the simulation setups for training and testing
agents and present results from offline experiments and online testing.
The offline results consist of a hyperparameter study and offline testing
of various random seeds to obtain the best agent. The hardware used
for testing online updates is the NVIDIA Jetson Nano 2 GB developer
kit. It is equipped with a 64-bit Quad-core ARM A57 CPU at 1.43 GHz
and a 128-core NVIDIA Maxwell GPU. The onboard memory for the
developer kit is 2 GB 64-bit LPDDR4. The methods detailed previously
were implemented in the Tensorflow Python library which makes it
possible to use GPU acceleration.

4.1. Simulation setup

Table 1 shows the range of initial conditions used in simulations,
where each state variable is uniformly sampled from the range shown
at the start of every episode. The initial phase of agent pretraining
using gradient descent methods and optimal demonstrations ran for
10,000 episodes. Table 2 shows the hyperparameters that were fixed
for all pretraining runs. The network has three hidden layers with
𝑡𝑎𝑛ℎ activation functions and initial weight updates used the RMSProp
algorithm. The parameter 𝑛𝜖 defines the number of episodes over which
the rate of exploration 𝜖 decreases. This value of exploration probability
is in the range 0 ≤ 𝜖 ≤ 1 and defines the probability of the agent
selecting a random action at each timestep. 𝛾 is the discount factor
(shown in Eq. (15)), which has a different value for offline pretraining
and online updates. 𝑛𝑇 is the number of timesteps between target
network updates.

Following pretraining, the next phase initialised the agent for online
EQLM updates. The initial minibatch size 𝑘 used to initialise 𝐴†

𝑡=0 was
fixed at 2000 for all experiments with 𝑘𝑎𝑔𝑒𝑛𝑡 = 1000 experiences sampled
from the agent demonstrations and 𝑘𝑟𝑎𝑛𝑑𝑜𝑚 = 1000 from random actions.

In addition to the fixed hyperparameters in Table 2, the value of 𝛾 for



Acta Astronautica 199 (2022) 374–385C. Wilson and A. Riccardi

f
s
𝑘

W
r
r
l
h
t
b
s
r
s
p
o

d
t
p

Table 1
Range of initial conditions for training and testing agents.

State variable Min. Max.

𝑖-position 0.4 km 1.1 km
𝑗-position −1.1 km 1.1 km
𝑘-position 2.4 km 2.6 km
𝑖-velocity −75 ms−1 −5 ms−1
𝑗-velocity −35 ms−1 35 ms−1
𝑘-velocity −95 ms−1 −65 ms−1
Mass 2000 kg 2000 kg

Table 2
Fixed hyperparameters for agent pretraining (from [41]).

Parameter Value

Hidden units (300,200,300)
Learning rate 1 × 10−5

𝑛𝜖 4000
𝛾 (offline) 0.926
𝑛𝑇 65

Table 3
Values of hyperparameters evaluated in the hyperparameter study.

Parameter Values

𝜖0 0.4, 0.6, 0.8
𝑘 (offline) 100, 120, 150
𝑛𝑠𝑡𝑒𝑝 4, 8, 16
𝑘 (online) 40, 80, 120

EQLM updates was fixed at 𝛾 = 0.9. The range of initial conditions
used for both offline and online EQLM training were the same as in
pretraining, which are shown in Table 1. Offline EQLM updates ran for
500 episodes prior to testing the online updating agent.

4.2. Hyperparameter study

Since the performance of the learned policy is sensitive to the
hyperparameters used in training, we initially ran a study on a subset
of the hyperparameters to find those that gave the best performance.
Values of the fixed hyperparameters shown in Table 2 were selected
based on previous hyperparameter studies [40,41]. In this study we
tested the values of 4 different hyperparameters: initial exploration
probability 𝜖0, minibatch size 𝑘 for offline updates, number of steps
between online updates 𝑛𝑠𝑡𝑒𝑝, and minibatch size 𝑘 for online updates.
The offline minibatch size comprises experiences from optimal control
demonstrations and the agent’s replay memory with the same number
of experiences sampled from each, i.e. 𝑘𝑟𝑒𝑝𝑙𝑎𝑦 = 𝑘𝑑𝑒𝑚𝑜 = 1

2𝑘. Similarly,
or the online minibatch size the same number of experiences were
ampled from agent demonstrations and random memory such that
𝑎𝑔𝑒𝑛𝑡 = 𝑘𝑟𝑎𝑛𝑑𝑜𝑚 = 1

2 (𝑘 − 𝑛𝑠𝑡𝑒𝑝).
Table 3 shows the values of hyperparameters tested in this study.

e performed a grid search over the 3 different values of each hyperpa-
ameter giving a total of 81 different configurations. Each configuration
an 8 times with different random seeds. Fig. 2 shows the pretraining
earning curves for all values of 𝜖0 and offline 𝑘. All the pairs of
yperparameters converged to a similar mean cumulative reward by
he end of the training period, but the most notable differences can
e seen in the earliest episodes of training. While lower values of 𝜖0
howed a steeper initial increase in rewards, these also had lower mean
ewards over the first few episodes than for higher values of 𝜖0. This
uggests that taking more greedy actions was harmful to the agent’s
erformance at the start of training. Varying the offline minibatch size
ver the range shown here gave little difference in the learning curves.

Each configuration of hyperparameters performed 500 offline up-
ating episodes and 500 test episodes with online updates. We assessed
he performance of each agent based on their maximum terminal

‖ ‖ ‖ ̇ ‖
379

osition, ‖
‖

𝐱|𝑡=𝑡𝑓 ‖
‖

and maximum terminal velocity, ‖
‖

𝐱|𝑡=𝑡𝑓 ‖
‖

across the
Table 4
Pareto-optimal hyperparameter configurations. Config. numbers are arbitrary to refer
to each configuration.

Config. 𝜖0 𝑘 (offline) 𝑛𝑠𝑡𝑒𝑝 𝑘 (online)

1 0.6 120 8 40
2 0.8 100 4 40
3 0.8 150 8 80

Table 5
Summary statistics of maximum terminal position and velocity across 8 runs for the
three pareto-optimal hyperparameter configurations. Config. numbers refer to the set
of hyperparameters from Table 4.

Config. Position (m) Velocity (m/s)

mean s.t.d. min. max. mean s.t.d. min. max.

1 371.17 627.72 22.48 1933.12 32.46 26.87 13.55 89.41
2 700.17 1580.57 23.20 4871.42 28.52 26.08 5.75 92.46
3 213.12 246.30 43.25 742.18 34.01 23.75 7.09 78.19

Table 6
Summary statistics of terminal position and velocity over 500 episodes for the three
pareto-optimal pretraining runs with the best selected hyperparameter configuration.
Run numbers are arbitrary to refer to each of the pareto-optimal points.

Run Position (m) Velocity (m/s)

mean s.t.d. min. max. mean s.t.d. min. max.

1 11.77 3.18 4.80 23.20 5.45 4.87 0.25 15.07
2 10.59 5.73 0.97 29.44 3.54 1.23 0.75 9.00
3 19.66 4.67 7.28 33.30 2.06 0.99 0.31 5.75

500 test episodes. These values were averaged across the 8 random
seeds to obtain the measures of performance for each configuration of
hyperparameters. Using two cost functions to assess agent performance
results in a set of pareto-optimal points with associated optimal hyper-
parameters. In this case, 3 points were non-dominated with respect to
the costs described above. The hyperparameters associated with these
points are listed in Table 4.

Table 5 describes the performance of each of these points. The statis-
tics shown describe the distribution of maximum position and velocity
across the 8 different runs for each configuration, where the mean
values are the relevant costs. The larger values of maximum terminal
position and velocity come from agents that fail to learn a successful
landing and terminate the episode after the maximum number of steps.
Configuration 2 has a particularly large variation in terminal position
across random seeds, however, it also has the lowest minimum and
mean values for terminal velocity. For this reason, we selected this
configuration of hyperparameters, which are the following: 𝜖0 = 0.8,
𝑘(offline) = 100, 𝑛𝑠𝑡𝑒𝑝 = 4, 𝑘(online) = 40. All further experiments use
these hyperparameters and those specified in Table 2.

4.3. Pretraining and initialisation

After performing the hyperparameter study, we selected the best
performing set of pretrained weights. We assessed the performance
similarly to the hyperparameter study using the worst-case position
and velocity across the 500 test episodes for each random seed. Ta-
ble 6 summarises the performance of the 3 pareto-optimal pretrained
weights. These clearly show the trade-off between the position and
velocity costs, where an agent with lower mean terminal velocities
has higher mean terminal positions and vice versa. While testing agent
initialisations, we used all three of the pareto-optimal sets of pretrained
weights to consider this trade-off further.

In addition to the set of pretrained weights, both the initialisation
of the matrix 𝐴†

𝑡=0 and the offline EQLM updates involve a stochastic
process that affects the final performance of the agent. Therefore, to
obtain the best performing online updating agent, we tested a number

of agents using the same set of pretrained weights but with different



Acta Astronautica 199 (2022) 374–385C. Wilson and A. Riccardi
Fig. 2. Mean learning curves across 8 random seeds for each configuration of pretraining hyperparameters. Shaded region indicates ±1 standard deviation.
Table 7
Summary statistics of terminal position and velocity for the pareto optimal initialisation
seeds with the best selected hyperparameter configuration and pretrained weights. Pre.
run numbers refer to pretraining runs from Table 6 and init. run numbers are arbitrary
to refer to each of the pareto-optimal points.

Pre. Init. Position (m) Velocity (m/s)

run run mean s.t.d. min. max. mean s.t.d. min. max.

1 1 10.71 3.88 1.43 24.52 4.84 3.89 0.02 14.16
1 2 10.72 4.12 0.95 19.42 10.07 5.15 0.44 19.41
1 3 11.51 4.16 1.26 20.17 6.71 5.47 0.19 18.61
3 1 18.79 5.35 10.69 40.49 1.72 0.71 0.18 4.44
3 2 17.98 4.08 9.06 30.79 1.75 0.84 0.34 5.56
3 3 18.43 3.58 6.85 32.33 2.02 0.87 0.22 4.97

random seeds for initialisation and offline updates. We ran 32 different
random seeds for each set of pretrained weights. As previously, we
assessed the performance based on worst-case terminal position and
velocity. Table 7 summarises the performance at the pareto-optimal
points.

Only pretraining runs 1 and 3 had pareto optimal points. Here
we will refer to each run by the tuple of its pretraining run and
initialisation run, e.g. (3,1) refers to the fourth row in Table 7. Similarly
to the results in Table 6, we see that pretraining run 1 performs better
in terms of position and run 3 performs better in terms of velocity.
This difference in performance is clearest in the maximum terminal
velocity, with a lowest value of 4.44 m∕s for run (3,1) and highest value
of 19.41 m∕s for run (1,2). When choosing which seed to use for online
380
testing, we deemed the terminal velocity to be the most important
cost to minimise. Given the initialisation runs from pretraining run 1
performed poorly with respect to this cost, we only considered those
from pretraining run 3. In terms of mean terminal velocity, these
three agents performed very similarly. While run (3,2) had the highest
maximum terminal velocity of the three, its mean terminal velocity was
only 0.03 m∕s higher than that of run (3,1). In addition, run (3,2) gave
the lowest values of mean and maximum terminal position out of these
runs. For these reasons, we selected run (3,2) for online tests.

4.4. Online updates

The remainder of the results come from experiments run on the Jet-
son Nano hardware. Three different agents were run on the hardware
to test their performance:

• Pretrained agent - using the fixed weights of the pretrained agent
without any online updating.

• Offline updated agent - using the pretrained agent plus 500
episodes of offline updates without any online updating.

• Online updated agent - using the pretrained agent plus 500
episodes of offline updates and with online updating.

The pretrained agent uses the weights from pretraining run 3 (Ta-
ble 6) of the agent with the best hyperparameters. Both the offline
and online updated agents use the weights following 500 episodes of
offline updates from run (3,2) (Table 7). In the case of the offline up-
dated agent, these weights are fixed during testing whereas the online



Acta Astronautica 199 (2022) 374–385C. Wilson and A. Riccardi
Fig. 3. Distributions of terminal states for offline- and online-updated agents over 500 episodes.
Table 8
Statistics of terminal states from 500 episodes run on Jetson Nano hardware for three
different configurations of agent.

Agent Position (m) Velocity (m/s)

mean s.t.d. min. max. mean s.t.d. min. max.

Pretrained 49.22 182.40 6.99 1509.36 3.57 5.47 0.22 42.43
Offline updated 18.07 4.32 6.04 31.95 1.81 0.86 0.35 5.77
Online updated 18.07 4.26 7.41 31.85 1.79 0.85 0.21 5.84

updated agent also performs EQLM updates during testing. Table 8
summarises each agent’s performance over the 500 episodes.

The distributions of final states for each of the offline and online up-
dated agents are shown in Figs. 3(a), 3(b), and 4(a). From Fig. 3(b), we
see the terminal velocities in the 𝑖- and 𝑗-directions of both agents are
clustered close to the desired terminal velocity of 0 m∕s. Some episodes
still have terminal velocities outwith the desired range, particularly
towards the negative 𝑖-direction. The distributions of velocities for both
agents seen here are very similar. Considering the terminal positions in
Fig. 3(a), we see that the agent tends to land off-centre towards the
negative 𝑖- and 𝑗-directions. This is likely a consequence of selecting
the random seeds that compromised performance in terms of terminal
position in favour of lower terminal velocities. As with the terminal
velocities, both agents have similar distributions of terminal position.
Fig. 4(a) shows the distribution of velocities in the normal direction for
both agents. In most cases, the terminal velocity in this direction is less
than 2 m∕s. Again we see a similar distribution in both agents, however
the offline updated agent has an extra peak in its probability density at
around −1.2 m∕s.

Looking at the summary statistics of each agent’s performance in
Table 8, this highlights the similar performance of the offline and online
updated agents. Both agents have the same mean terminal position
and only 0.02 m∕s difference in mean terminal velocity. Worst case
performance for both position and velocity is also very similar with
a difference of only 0.07 m∕s.

Compared to the agents updated using EQLM, the pretrained agent
performed very poorly. The distributions of final states for this agent
are shown in Figs. 5(a), 5(b), and 4(b). In 9 of the 500 testing episodes,
this agent failed to land and terminated the episode after 500 steps.
These are highlighted in the cluster of points in Fig. 5(a) that are far
from the desired landing site. In the episodes where this agent did
successfully land, its terminal velocities were still on average signifi-
cantly larger than the EQLM updated agents as shown in Table 8. This
381
Table 9
Statistics of fuel consumption from 500 episodes run on Jetson Nano hardware for
three different configurations of agent. For the pretrained agent episodes, results are
split between the episodes that did land and those that did not and terminated after
500 steps.

Agent Fuel consumption (kg)

mean s.t.d. min. max.

Pretrained (no landing) 770.8 12.1 753.9 791.5
Pretrained 498.5 26.7 436.1 688.4
Offline updated 486.7 24.9 434.1 641.2
Online updated 486.7 25.1 438.9 659.2

highlights the benefit of updating the output weights using EQLM as it
can greatly improve the performance of a pretrained agent. It should
also be noted that the selection of pretrained weights was evaluated
using the performance of the online updated agent. Therefore, it is
likely that these pretrained weights are not those that perform best
without online updates. Nevertheless, in this case the EQLM updates
gave a substantial improvement in performance with respect to the
pinpoint soft landing goal.

Table 9 shows the performance of each agent with respect to the
goal of minimising fuel consumption. In the case of the pretrained
agent, we distinguish between the 9 episodes where it did not land and
the rest of the episodes. Clearly, the largest fuel consumption comes
from these episodes where the pretrained agent did not land. From the
rest of the agents, both the offline and online updated agents have the
same mean fuel consumption of 486.7 kg. The offline updated agent has
a slightly lower minimum and maximum fuel consumption compared
to the online updated agent, but only by 1.1% and 2.8% respectively.

Fig. 6 shows one example trajectory obtained using the online
updated agent. This agent starts from an initial position of 𝐱 =
{0.79,−0.06, 2.43} km and initial velocity of 𝐱̇ = {−68.4, 31.0,
−91.0} m/s. Its trajectory lasts 65.6 s and its terminal position is 14.88 m
from the desired location with a terminal velocity of 1.62 m∕s. Over this
episode, the fuel consumption was 469.7 kg. In addition to the trajectory
and thrust profile, Fig. 6(d) shows how the magnitude of the output
weights vary over this episode. The overall trend shows the difference
in weights from the initial weights gradually increased during online
updates. The total change at the end of the episode was approximately
4 × 10−7. This is significantly less than the average weight magnitude
of approximately 6 × 10−2, which shows that on average most weights
remained at similar values. On the other hand, the maximum change
in weights across this episode was approximately 1.6 × 10−3, which



Acta Astronautica 199 (2022) 374–385C. Wilson and A. Riccardi

s
t
A

t
o
S
u
f
o

t
c
P
C

Fig. 4. Distributions of terminal k-velocities for each of the agents over 500 episodes.
Fig. 5. Distributions of terminal states for the pretrained agent over 500 episodes.
i
d
s
t

uggests some weights varied more significantly. A notable feature of
he control profile is the jitter in thrust commands shown in Fig. 6(c).
ssuming a minimum thrust duration of 0.01 s [49], this profile could

be realised by the thrusters. However, regular switching of thrust
commands could affect the system’s performance and dynamic effects
of the thrusters are more likely to be significant. This simplified model
still shows desirable performance that motivates further analysis with
more realistic models of the overall system and thrusters.

4.5. Update times

The final results we show are the time taken to update the agent
when running on the Jetson Nano to get an indication of how feasible
this approach is on spacecraft hardware. Fig. 7 shows histograms of
the time taken to select an action and perform EQLM updates over 500
steps. Action selection always takes less than 0.01 s. Weight updates
ake longer and are mostly in the range 0.04 − 0.07 s. On a few
ccasions these updates last slightly longer but always less than 0.1 s.
ince the sampling time in this environment is 0.2 s, this shows that
pdates can be performed online sufficiently quickly using near-term
light hardware. These update times could also be reduced by further
ptimising the code for updating weights, if necessary.

To explore the update times on flight hardware further, we analysed
he effect of different hardware configurations on the update times and
ompared these to pure software-in-the-loop simulations on a PC. The
C hardware used here ran Ubuntu 18.04 with a 3.6 GHz Intel i7-4790
382

PU and 8 GB RAM. We also restricted the Jetson Nano to only using u
Table 10
Timings for weight updates across different hardware configurations.

Device Update duration (ms)

mean s.t.d. min. max.

PC 5.06 2.58 3.03 22.86
CPU 47.5 6.95 40.92 88.6
CPU+GPU 51.16 5.04 44.86 93.06

the CPU to see the effect of using the GPU. Table 10 shows the results
for each hardware configuration. Clearly the PC times are fastest and
on average approximately 10× faster than either configuration of the
Jetson Nano. It is interesting to note that in this case the use of a GPU
results in slower updates. This is likely caused by the communication
time between CPU and GPU, which is more significant for this relatively
small size of network.

As shown, at the scale we considered here GPU acceleration did not
improve the speed of this control system. Use of a GPU becomes more
beneficial for larger network sizes. Therefore, we tested the update
times of NNs with the same number of layers but different numbers of
hidden nodes - (𝑁, 23𝑁,𝑁) in each layer, where 𝑁 = 300 is the size used
n previous experiments. Fig. 8 shows the variation in update times for
ifferent values of 𝑁 . At the smaller network sizes, the CPU updated
lightly faster on average without the GPU. For networks with more
han 450 output weights, GPU acceleration did provide a speed-up in

pdate times in this example.



Acta Astronautica 199 (2022) 374–385C. Wilson and A. Riccardi

a

Fig. 6. Example spacecraft trajectory from the online-updated agent. Dashed lines indicate desired final state of position and velocity equal to zero. ‘x’, ‘y’, and ‘z’ refer to 𝑖-, 𝑗-,
nd 𝑘- directions respectively. Variations in output weights are calculated as norm of the difference in weights from the start of the episode divided by the number of weights.
Fig. 7. Histogram of time to update the agent’s weights online.

Fig. 8. Variation in update times with network size for each hardware configuration.
383
5. Conclusions

This work demonstrates the potential for intelligent control methods
to be implemented on flight suitable hardware for onboard space-
craft control. Using a RL based approach, we were able to train an
agent to solve a powered descent problem subject to environmental
uncertainties. This RL training was supplemented with optimal control
demonstrations. Once pretrained offline, the agent could also perform
weight updates online with new information. The fast update times for
this approach as implemented on near-term flight hardware show its
suitability for implementation onboard a spacecraft.

When comparing the performance of agents updated using EQLM
to the pretrained agent, in this case we observed an improvement in
performance from adding the EQLM updates. This improvement mainly
came from the offline updates, while the online updated agent had
comparable performance to that of the offline updated agent. Given the
online updates used the same data collected offline with limited online
experiences, this does not give a great deal of potential for improving
the agent’s performance online. Furthermore, the environment mod-
elled here only incorporated uncertainties in disturbing forces. Future
work should investigate greater levels of uncertainty in more of the
system’s components, as well as uncertainties not modelled in offline
training, to determine the merits of this approach.

Here we mainly considered feasibility of the approach in terms of
hardware performance. In addition to constraints on the update time
of the controller, other factors affect the feasibility of this method for
use in a real mission. Space missions undergo strict verification and
validation processes which are often difficult to apply to ML methods.
For example, the approach used here relied heavily on testing across
random seeds to optimise performance. While this can find effective
configurations for the agent, in practice this would be an unreliable
process that cannot be easily verified without extensive offline simu-
lation. A more formal approach to improving the agent’s performance
which is agnostic to random seeds would be beneficial. In addition, the

limited mass memory onboard spacecraft must be carefully considered.



Acta Astronautica 199 (2022) 374–385C. Wilson and A. Riccardi
The approach used here would require offline experiences to be stored
onboard the spacecraft, which is undesirable for limiting the agent’s
memory requirements. These experiences could be replaced with a
system model that estimates future states and uses these to update
the control system, thereby reducing the need for additional onboard
memory and potentially helping the agent adapt better to environ-
mental uncertainties. This approach of online updating RL remains
low Technology Readiness Level (TRL), however future developments
in these areas could see the eventual use of such methods for space
missions.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Supported by European Space Agency (Contract Number:
4000124916/18/NL/CRS/hh).

References

[1] C. Wilson, F. Marchetti, M. Di Carlo, A. Riccardi, E. Minisci, Classifying
intelligence in machines: A taxonomy of intelligent control, Robotics 9 (3) (2020)
64, http://dx.doi.org/10.3390/robotics9030064.

[2] M. Janakiram, NVIDIA ups the ante on edge AI with jetson AGX orin, Forbes
(2022).

[3] J. Wu, Edge AI is the future, intel and udacity are teaming up to train developers,
Forbes (2020).

[4] G. Mateo-Garcia, J. Veitch-Michaelis, L. Smith, S.V. Oprea, G. Schumann, Y. Gal,
A.G. Baydin, D. Backes, Towards global flood mapping onboard low cost satellites
with machine learning, Sci. Rep. 11 (1) (2021) 7249, http://dx.doi.org/10.1038/
s41598-021-86650-z.

[5] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, second ed., in:
Adaptive Computation and Machine Learning Series, The MIT Press, Cambridge,
Massachusetts, 2018.

[6] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G.
van den Driessche, T. Graepel, D. Hassabis, Mastering the game of go without
human knowledge, Nature 550 (7676) (2017) 354–359, http://dx.doi.org/10.
1038/nature24270.

[7] J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese, T. Ewalds,
R. Hafner, A. Abdolmaleki, D. de las Casas, C. Donner, L. Fritz, C. Galperti,
A. Huber, J. Keeling, M. Tsimpoukelli, J. Kay, A. Merle, J.-M. Moret, S.
Noury, F. Pesamosca, D. Pfau, O. Sauter, C. Sommariva, S. Coda, B. Duval, A.
Fasoli, P. Kohli, K. Kavukcuoglu, D. Hassabis, M. Riedmiller, Magnetic control
of tokamak plasmas through deep reinforcement learning, Nature 602 (7897)
(2022) 414–419, http://dx.doi.org/10.1038/s41586-021-04301-9.

[8] P.J. Antsaklis, Defining intelligent control, IEEE Control Syst. Mag. 14 (3) (1993).
[9] M.B. Quadrelli, L.J. Wood, J.E. Riedel, M.C. McHenry, M. Aung, L.A. Cangahuala,

R.A. Volpe, P.M. Beauchamp, J.A. Cutts, Guidance, navigation, and control
technology assessment for future planetary science missions, J. Guid. Control
Dyn. 38 (7) (2015) 1165–1186, http://dx.doi.org/10.2514/1.G000525.

[10] Z.-y. Song, C. Wang, S. Theil, D. Seelbinder, M. Sagliano, X.-f. Liu, Z.-j. Shao,
Survey of autonomous guidance methods for powered planetary landing, Front.
Inf. Technol. Electron. Eng. 21 (5) (2020) 652–674, http://dx.doi.org/10.1631/
FITEE.1900458.

[11] A.R. Klumpp, Apollo lunar descent guidance, Automatica 10 (2) (1974) 133–146,
http://dx.doi.org/10.1016/0005-1098(74)90019-3.

[12] Y. Guo, M. Hawkins, B. Wie, Waypoint-optimized zero-effort-miss/zero-effort-
velocity feedback guidance for mars landing, J. Guid. Control Dyn. 36 (3) (2013)
799–809, http://dx.doi.org/10.2514/1.58098.

[13] Y. Guo, M. Hawkins, B. Wie, Optimal feedback guidance algorithms for plan-
etary landing and asteroid intercept, in: AAS/AIAA Astrodynamics Specialist
Conference, AAS, 2011.

[14] S. Boyd, S.P. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University
Press, 2004, Google-Books-ID: mYm0bLd3fcoC.

[15] B. Acikmese, S.R. Ploen, Convex programming approach to powered descent
guidance for mars landing, J. Guid. Control Dyn. 30 (5) (2007) 1353–1366,
http://dx.doi.org/10.2514/1.27553.

[16] B. Acikmese, J.M. Carson, L. Blackmore, Lossless convexification of nonconvex
control bound and pointing constraints of the soft landing optimal control
problem, IEEE Trans. Control Syst. Technol. 21 (6) (2013) 2104–2113, http:
//dx.doi.org/10.1109/TCST.2012.2237346.
384
[17] Y. Mao, M. Szmuk, B. Açıkmeşe, Successive convexification of non-convex
optimal control problems and its convergence properties, in: 2016 IEEE 55th
Conference on Decision and Control (CDC), 2016, pp. 3636–3641, http://dx.doi.
org/10.1109/CDC.2016.7798816.

[18] M. Szmuk, T.P. Reynolds, B. Açıkmeşe, Successive convexification for real-time
six-degree-of-freedom powered descent guidance with state-triggered constraints,
J. Guid. Control Dyn. 43 (8) (2020) 1399–1413, http://dx.doi.org/10.2514/1.
G004549.

[19] C. Sánchez-Sánchez, D. Izzo, Real-time optimal control via deep neural networks:
Study on landing problems, J. Guid. Control Dyn. 41 (5) (2018) 1122–1135,
http://dx.doi.org/10.2514/1.G002357.

[20] S. You, C. Wan, R. Dai, J.R. Rea, Learning-based onboard guidance for fuel-
optimal powered descent, J. Guid. Control Dyn. 44 (3) (2021) 601–613, http:
//dx.doi.org/10.2514/1.G004928.

[21] L. Cheng, Z. Wang, Y. Song, Fanghua Jiang, Real-time optimal control for
irregular asteroid landings using deep neural networks, Acta Astronaut. 170
(2020) 66–79, http://dx.doi.org/10.1016/j.actaastro.2019.11.039.

[22] L. Cheng, Z. Wang, F. Jiang, Fanghua Jiang, J. Li, Fast generation of optimal
asteroid landing trajectories using deep neural networks, IEEE Trans. Aerosp.
Electron. Syst. 56 (4) (2020) 2642–2655, http://dx.doi.org/10.1109/taes.2019.
2952700.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy
optimization algorithms, 2017, arXiv preprint arXiv:1707.06347 [cs].

[24] A. Zavoli, L. Federici, Reinforcement learning for robust trajectory design of
interplanetary missions, J. Guid. Control Dyn. 44 (8) (2021) 1440–1453, http:
//dx.doi.org/10.2514/1.g005794.

[25] N.B. LaFarge, D.H. Miller, K.C. Howell, R. Linares, Autonomous closed-loop
guidance using reinforcement learning in a low-thrust, multi-body dynamical
environment, Acta Astronaut. 186 (2021) 1–23, http://dx.doi.org/10.1016/j.
actaastro.2021.05.014.

[26] S. Boone, S. Bonasera, J.W. McMahon, N. Bosanac, N.R. Ahmed, Incorporating
observation uncertainty into reinforcement learning-based spacecraft guidance
schemes, in: AIAA SCITECH 2022 Forum, 2022, http://dx.doi.org/10.2514/6.
2022-1765.

[27] L. Federici, B. Benedikter, A. Zavoli, Deep learning techniques for autonomous
spacecraft guidance during proximity operations, J. Spacecr. Rockets 58 (6)
(2021) 1774–1785, http://dx.doi.org/10.2514/1.a35076.

[28] A. Rubinsztejn, K. Bryan, R. Sood, F.E. Laipert, Using reinforcement learn-
ing to design missed thrust resilient trajectories, in: South Lake Tahoe,
California, Jet Propulsion Laboratory, National Aeronautics and Space Ad-
ministration, 2020, URL https://trs.jpl.nasa.gov/handle/2014/54432. Accepted:
2022-03-16T02:52:17Z Publisher: Pasadena, CA: Jet Propulsion Laboratory,
National Aeronautics and Space Administration, 2020.

[29] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W.
Zaremba, OpenAI gym, 2016, arXiv preprint arXiv:1606.01540.

[30] B. Gaudet, R. Furfaro, Adaptive pinpoint and fuel efficient mars landing using
reinforcement learning, IEEE/CAA J. Autom. Sin. 1 (4) (2014) 397–411, http:
//dx.doi.org/10.1109/JAS.2014.7004667, Conference Name: IEEE/CAA Journal
of Automatica Sinica.

[31] B. Gaudet, R. Linares, R. Furfaro, Deep reinforcement learning for six degree-
of-freedom planetary landing, Adv. Space Res. 65 (7) (2020) 1723–1741, http:
//dx.doi.org/10.1016/j.asr.2019.12.030.

[32] R. Furfaro, A. Scorsoglio, R. Linares, M. Massari, Adaptive generalized ZEM-
ZEV feedback guidance for planetary landing via a deep reinforcement learning
approach, Acta Astronaut. 171 (2020) 156–171, http://dx.doi.org/10.1016/j.
actaastro.2020.02.051.

[33] R. Furfaro, R. Linares, Waypoint-based generalized ZEM/ZEV feedback guidance
for planetary landing via a reinforcement learning approach, in: 3rd International
Academy of Astronautics Conference on Dynamics and Control of Space Systems,
2017, pp. 401–416.

[34] C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation of
deep networks, in: Proceedings of the 34th International Conference on Machine
Learning, PMLR, (ISSN: 2640-3498) 2017, pp. 1126–1135.

[35] L. Federici, A. Scorsoglio, L. Ghilardi, A. D’Ambrosio, B. Benedikter, A. Zavoli,
R. Furfaro, Image-based meta-reinforcement learning for autonomous terminal
guidance of an impactor in a binary asteroid system, in: AIAA SCITECH
2022 Forum, in: AIAA SciTech Forum, American Institute of Aeronautics and
Astronautics, San Diego (CA), USA, 2022.

[36] B. Gaudet, R. Linares, R. Furfaro, Terminal adaptive guidance via reinforcement
meta-learning: Applications to autonomous asteroid close-proximity operations,
Acta Astronaut. 171 (2020) 1–13, http://dx.doi.org/10.1016/j.actaastro.2020.02.
036.

[37] A. Scorsoglio, A. D’Ambrosio, L. Ghilardi, B. Gaudet, F. Curti, R. Furfaro,
Image-based deep reinforcement meta-learning for autonomous lunar landing,
J. Spacecr. Rockets 59 (1) (2022) 153–165.

[38] Y. Chow, O. Nachum, E. Duenez-Guzman, M. Ghavamzadeh, A Lyapunov-based
approach to safe reinforcement learning, in: Advances in Neural Information
Processing Systems, 31, Curran Associates, Inc., 2018.

http://dx.doi.org/10.3390/robotics9030064
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb2
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb2
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb2
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb3
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb3
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb3
http://dx.doi.org/10.1038/s41598-021-86650-z
http://dx.doi.org/10.1038/s41598-021-86650-z
http://dx.doi.org/10.1038/s41598-021-86650-z
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb5
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb5
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb5
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb5
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb5
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/s41586-021-04301-9
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb8
http://dx.doi.org/10.2514/1.G000525
http://dx.doi.org/10.1631/FITEE.1900458
http://dx.doi.org/10.1631/FITEE.1900458
http://dx.doi.org/10.1631/FITEE.1900458
http://dx.doi.org/10.1016/0005-1098(74)90019-3
http://dx.doi.org/10.2514/1.58098
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb13
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb13
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb13
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb13
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb13
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb14
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb14
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb14
http://dx.doi.org/10.2514/1.27553
http://dx.doi.org/10.1109/TCST.2012.2237346
http://dx.doi.org/10.1109/TCST.2012.2237346
http://dx.doi.org/10.1109/TCST.2012.2237346
http://dx.doi.org/10.1109/CDC.2016.7798816
http://dx.doi.org/10.1109/CDC.2016.7798816
http://dx.doi.org/10.1109/CDC.2016.7798816
http://dx.doi.org/10.2514/1.G004549
http://dx.doi.org/10.2514/1.G004549
http://dx.doi.org/10.2514/1.G004549
http://dx.doi.org/10.2514/1.G002357
http://dx.doi.org/10.2514/1.G004928
http://dx.doi.org/10.2514/1.G004928
http://dx.doi.org/10.2514/1.G004928
http://dx.doi.org/10.1016/j.actaastro.2019.11.039
http://dx.doi.org/10.1109/taes.2019.2952700
http://dx.doi.org/10.1109/taes.2019.2952700
http://dx.doi.org/10.1109/taes.2019.2952700
http://arxiv.org/abs/1707.06347
http://dx.doi.org/10.2514/1.g005794
http://dx.doi.org/10.2514/1.g005794
http://dx.doi.org/10.2514/1.g005794
http://dx.doi.org/10.1016/j.actaastro.2021.05.014
http://dx.doi.org/10.1016/j.actaastro.2021.05.014
http://dx.doi.org/10.1016/j.actaastro.2021.05.014
http://dx.doi.org/10.2514/6.2022-1765
http://dx.doi.org/10.2514/6.2022-1765
http://dx.doi.org/10.2514/6.2022-1765
http://dx.doi.org/10.2514/1.a35076
https://trs.jpl.nasa.gov/handle/2014/54432
http://arxiv.org/abs/1606.01540
http://dx.doi.org/10.1109/JAS.2014.7004667
http://dx.doi.org/10.1109/JAS.2014.7004667
http://dx.doi.org/10.1109/JAS.2014.7004667
http://dx.doi.org/10.1016/j.asr.2019.12.030
http://dx.doi.org/10.1016/j.asr.2019.12.030
http://dx.doi.org/10.1016/j.asr.2019.12.030
http://dx.doi.org/10.1016/j.actaastro.2020.02.051
http://dx.doi.org/10.1016/j.actaastro.2020.02.051
http://dx.doi.org/10.1016/j.actaastro.2020.02.051
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb33
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb33
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb33
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb33
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb33
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb33
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb33
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb34
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb34
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb34
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb34
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb34
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb35
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb35
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb35
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb35
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb35
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb35
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb35
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb35
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb35
http://dx.doi.org/10.1016/j.actaastro.2020.02.036
http://dx.doi.org/10.1016/j.actaastro.2020.02.036
http://dx.doi.org/10.1016/j.actaastro.2020.02.036
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb37
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb37
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb37
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb37
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb37
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb38
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb38
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb38
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb38
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb38


Acta Astronautica 199 (2022) 374–385C. Wilson and A. Riccardi
[39] H. Holt, R. Armellin, N. Baresi, Y. Hashida, A. Turconi, A. Scorsoglio, R. Furfaro,
Optimal Q-laws via reinforcement learning with guaranteed stability, Acta
Astronaut. 187 (2021) 511–528, http://dx.doi.org/10.1016/j.actaastro.2021.07.
010.

[40] C. Wilson, A. Riccardi, Improving the efficiency of reinforcement learning for a
spacecraft powered descent with Q-learning, Opt. Eng. (2021) http://dx.doi.org/
10.1007/s11081-021-09687-z.

[41] C. Wilson, A. Riccardi, Leveraging optimal control demonstrations in reinforce-
ment learning for powered descent, in: 2021 8th International Conference on
Astrodynamics Tools and Techniques (ICATT), Noordwijk, The Netherlands,
2021.

[42] C. Wilson, A. Riccardi, E. Minisci, A novel update mechanism for Q-networks
based on extreme learning machines, in: 2020 International Joint Conference
on Neural Networks (IJCNN), IEEE, Glasgow, United Kingdom, 2020, pp. 1–7,
http://dx.doi.org/10.1109/IJCNN48605.2020.9207098.

[43] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: Theory and
applications, Neurocomputing 70 (1) (2006) 489–501, http://dx.doi.org/10.
1016/j.neucom.2005.12.126.
385
[44] S. Hariharapura Sheshadri, D. Franklin, Introducing the ultimate starter AI com-
puter, the NVIDIA jetson nano 2GB developer kit, 2020, URL https://developer.
nvidia.com/blog/ultimate-starter-ai-computer-jetson-nano-2gb-developer-kit/.

[45] C. Tessler, D.J. Mankowitz, S. Mannor, Reward constrained policy optimization,
2018, arXiv preprint arXiv:1805.11074.

[46] S. Miryoosefi, K. Brantley, H. Daume III, M. Dudik, R.E. Schapire, Reinforcement
learning with convex constraints, in: Advances in Neural Information Processing
Systems, Vol. 32, Curran Associates, Inc., 2019.

[47] W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle, M. Rowland,
W. Dabney, Revisiting fundamentals of experience replay, in: International
Conference on Machine Learning, PMLR, 2020, pp. 3061–3071.

[48] D. Kraft, A software package for sequential quadratic programming, 1988.
[49] K.H. Kienitz, J. Bals, Pulse modulation for attitude control with thrusters subject

to switching restrictions, Aerosp. Sci. Technol. 9 (7) (2005) 635–640, http:
//dx.doi.org/10.1016/j.ast.2005.06.006.

http://dx.doi.org/10.1016/j.actaastro.2021.07.010
http://dx.doi.org/10.1016/j.actaastro.2021.07.010
http://dx.doi.org/10.1016/j.actaastro.2021.07.010
http://dx.doi.org/10.1007/s11081-021-09687-z
http://dx.doi.org/10.1007/s11081-021-09687-z
http://dx.doi.org/10.1007/s11081-021-09687-z
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb41
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb41
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb41
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb41
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb41
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb41
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb41
http://dx.doi.org/10.1109/IJCNN48605.2020.9207098
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1016/j.neucom.2005.12.126
https://developer.nvidia.com/blog/ultimate-starter-ai-computer-jetson-nano-2gb-developer-kit/
https://developer.nvidia.com/blog/ultimate-starter-ai-computer-jetson-nano-2gb-developer-kit/
https://developer.nvidia.com/blog/ultimate-starter-ai-computer-jetson-nano-2gb-developer-kit/
http://arxiv.org/abs/1805.11074
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb46
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb46
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb46
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb46
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb46
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb47
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb47
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb47
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb47
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb47
http://refhub.elsevier.com/S0094-5765(22)00350-2/sb48
http://dx.doi.org/10.1016/j.ast.2005.06.006
http://dx.doi.org/10.1016/j.ast.2005.06.006
http://dx.doi.org/10.1016/j.ast.2005.06.006

	Enabling intelligent onboard guidance, navigation, and control using reinforcement learning on near-term flight hardware
	Introduction
	Problem statement
	Environment
	Optimal control problem
	Reinforcement learning problem

	Methods
	Offline pretraining
	Offline EQLM initialisation
	Online updating

	Simulation and results
	Simulation setup
	Hyperparameter study
	Pretraining and initialisation
	Online updates
	Update times

	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


