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Abstract： 

For pressure equipment in the industrial field, the shakedown design methods presented in the ASME 

and other international design codes are mainly based on the Bree problem. The original Bree problem and 

its related modified Bree problems usually contain two types of stress parameters, whereas design by analysis 

based on the stress categorisation of the codes actually includes multiple types of stress parameters. In this 

paper, the four-stress parameters Bree-type shakedown problems (involving mechanical membrane and 

bending as well as thermal membrane and bending) have been studied under three typical thermo-mechanical 

loading conditions for the first time to reveal the mechanisms of the four-dimensional Bree diagram. A 

detailed discussion on the mechanical models for various uniaxial Bree-type problems is conducted to clarify 

the scope of application and mechanical assumptions for each problem. A common finite element model is 

developed for all discussed Bree-type problems. The Linear Matching Method (LMM) is utilised to construct 

the shakedown boundaries of three examples under three loading conditions, and the semi-analytical 

parametric equations of the shakedown boundaries are derived based on the numerical results and four-

dimensional ratcheting boundary theory. Using the idea of a minimum shakedown boundary, a unified and 

conservative shakedown assessment scheme is proposed for the four-stress parameters Bree-type problems. 

The newly presented results can enhance the understanding of the structural behaviour of pressure equipment 

for many loading conditions and guide shakedown design and ratcheting assessment of practical industrial 

components. 
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1. Introduction 

Shakedown is a beneficial concept in plastic mechanics, and it means that a certain amount of plastic 

deformation occurs after the initial several load cycles, resulting in a favourable time-independent residual 

stress field. The elastic limit load of the body is enhanced, and the structure behaves elastically in the 

subsequent load cycles after shakedown. Compared with pure elastic design, shakedown analysis takes 

advantage of the plastic behaviour of the material and excavates the load-bearing potential of the structure. 

Therefore, it can save materials, reduce resource consumption, and improve the economy while ensuring 

safety. For pressure-bearing equipment in the petrochemical, nuclear power, aerospace and other industrial 

fields, such as cracking furnaces, high-temperature boilers, and industrial pipelines, it is necessary to ensure 

that structures and components meet the shakedown condition to avoid plastic collapse caused by incremental 

plastic deformation (ratcheting) and low cycle fatigue associated with the alternating plasticity [1-23].  

As for the shakedown design of pressure equipment such as vessels and piping, the analysis methods 

given in the leading international design codes (such as ASME VIII-2 [24], ASME III-NB [25], ASME III-

NH [26], EN 13445-3 [27]) are based on the Bree problem. The thermal stress ratcheting assessment code 

rules were developed from the Bree ratcheting boundary equations for components subjected to medium- and 

low-temperature variation ranges. For the shakedown design of high-temperature components, the main idea 

of the simplified inelastic analysis method is to adopt the modified Bree diagram considering the effective 

creep stress parameter. Although Bree's work [28,29] laid the foundation for the shakedown design and 

ratcheting assessment of pressure equipment, many basic assumptions were adopted in the original Bree 

problem to simplify the analytical derivation. The Bree problem considers an axisymmetric cylindrical shell 

model; since the axial stress and radial stress are ignored, it can be regarded as a uniaxial ratcheting problem 

of a rectangular section beam, and only two types of stress parameters in the hoop direction of the shell are 

considered, i.e., mechanical membrane and thermal bending.  

Over the past decades, many modified Bree problems and related modified Bree diagrams that broke 

the basic assumptions of the original Bree problem have been continuously developed. For instance, Bradford 

[30,31] and some other scholars [32-35] considered the influence of more types of thermo-mechanical 

loading conditions and established modified Bree diagrams applicable to in-phase and out-of-phase loading 

through cycle-by-cycle derivation. Pei et al.[36] recently have developed a universal procedure that can 

generate modified Bree diagrams with arbitrary phase shifts between the thermal and mechanical loads. Peng 

et al.[1] studied the shakedown regions of Bree problems considering three types of loading numerically 

based on the stress compensation method. O'Donnell and Porowski [37,38] developed the elastic core stress 

diagram based on the Bree problem, which can be used to evaluate creep ratcheting and creep fatigue of high-

temperature components. Bradford[39] and McGreevy[40] developed modified Bree diagrams involving the 

effects of different yield strengths during the start-up and shutdown stages. Peng[41]derived modified Bree 

shakedown boundaries with the yield stress linearly dependent on temperature gradient using the non-cyclic 

method. Nayebi et al.[42,43] extended the Bree diagram by considering damage mechanics and strain 

hardening, and the effects of strain hardening on the Bree diagram have also been studied by Pei et al.[34, 
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44]. Since the original Bree problem is uniaxial, Bree and other scholars [45-49] have also developed some 

biaxial stress modified Bree diagrams; however, the biaxial stress Bree diagrams have not been widely used 

due to the over-conservatism. Hasbroucq et al.[9] derived the modified Bree diagram of thin plate considering 

the temperature dependence of Young's modulus and Poisson's ratio. Recently, the Bree diagram has been 

extended by Liu et al.[10]to involve progressive buckling failure, and it is shown by Ma et al.[2] that constant 

fatigue life curves can be incorporated into Bree-like diagrams for unified ratcheting and fatigue analysis. 

Although much progress has been accumulated over the past few decades on modified Bree problems and 

modified Bree diagrams, the shakedown analysis methods adopted by the mainstream codes and standards 

are still based on the classical uniaxial Bree problem due to its groundbreaking guidance and effectiveness in 

engineering. However, for the main international design codes of pressure equipment, design by analysis 

based on the stress categorisation actually includes some other types of stress parameters that were not 

considered by the original Bree problem, such as the thermal membrane and mechanical bending. 

Consequently, there is a mismatch between the original theory and practical engineering application of the 

Bree problem. It is important to study the multi-stress parameters modified Bree problems and corresponding 

multi-dimensional modified Bree diagrams further.  

Due to the adoption of many basic assumptions, there are always some inherent conservative and non-

conservative issues about the Bree problem. It is pointed out that the original Bree problem has limitations 

in situations involving high thermal membrane stress [50,51]. To solve the inherent non-conservatism of the 

Bree problem, Reinhardt [50] derived a three-dimensional (3D) ratcheting boundary based on the rectangular 

beam model using the non-cyclic method [52-54]. The influence of the thermal membrane was added so that 

the Bree ratcheting boundary became a sideline of the ratcheting boundary established by Reinhardt. Since 

the 2013 edition of ASME VIII-2 [55], the ratcheting check on thermal membrane stress has been 

supplemented; however, the primary bending stress is not involved in the thermal stress ratcheting 

assessment. In 2018, Shen et al. [56] considered the influence of primary bending stress in shakedown 

analysis and established a four-dimensional (4D) ratcheting boundary, which involves the four most common 

thermo-mechanical stress parameters of the stress categorisation method. The four-stress parameters 

ratcheting theory is of considerable value since there are relatively few closed-form theoretical solutions to 

ratcheting problems. However, the four-dimensional ratcheting boundary formulas are too complicated and 

must be further simplified and analysed to be suitable for engineering applications. 

For the original 2D Bree diagram, 3D Reinhardt's ratcheting boundary and 4D Shen's ratcheting 

boundary mentioned above, the loading conditions are of the same type, i.e., constant primary load and cyclic 

thermal load. Much progress has been made in extending the 2D Bree diagram to generalised loading 

conditions over the past few decades [30-36], but to the authors' knowledge, similar extensions to 3D and 4D 

shakedown and ratcheting boundaries are rare due to the difficulty of the cycle-by-cycle derivation. In fact, 

the 3D and 4D ratcheting boundaries are derived by the non-cyclic method [52-54], which is confined to the 

classical Bree-type loading. Recently, the 3D Reinhardt-type shakedown boundary has been studied under 

different loading conditions [57], however, the shakedown behaviour of the four-stress parameters Bree-type 
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problem under complex loading conditions is still unknown, which constitutes the research goal of this paper. 

Compared with the two-stress parameters and three-stress parameters shakedown problems, the four-stress 

parameters shakedown problems are more complex. The complexity comes from three aspects. One aspect 

is the difficulty of mathematics, the 4D ratcheting boundary is controlled by seven complicated equations, 

and the four-stress parameters problem can actually plot an infinite number of 3D shakedown and ratcheting 

boundaries, so it is difficult to grasp the essential characteristics of the shakedown and ratcheting boundaries. 

Another aspect of complexity lies in the relationships among four-stress parameters problems and two-stress 

parameters and three-stress parameters problems, especially after introducing complex loading conditions. 

For example, whether the four-stress parameters problem can degenerate into the two-stress parameters and 

three-stress parameters problems. The third aspect of complexity is how to conservatively represent the 4D 

shakedown boundary for shakedown assessment in engineering applications.  

For generalised loading conditions, the analytical cycle-by-cycle derivation of the multi-stress 

parameters Bree-type problem is cumbersome and laborious, and experimental research is usually impractical 

due to the high cost and complex influencing factors. Extensive work has shown that numerical simulation 

is a desirable research method for shakedown problems, especially the direct methods with both efficiency 

and accuracy based on the classical upper bound [58] and lower bound [59] shakedown theorems. The upper 

bound shakedown theorem, also known as the kinematic shakedown theorem of Koiter, seeks the upper bound 

shakedown limit based on the minimization of plastic dissipation energy; While the lower bound shakedown 

theorem, also known as the static shakedown theorem of Melan, seeks the lower bound shakedown limit by 

ensuring the superposition of constant residual stress field and fictitious elastic stress field satisfy the yield 

condition everywhere. Shakedown analysis based on the shakedown theorems can usually be transformed 

into solving mathematical programming problems. Over the past few decades, some optimization approaches 

have been proposed for solving the mathematical programming problem, such as the second order cone 

programming (SQCP)[60] and the interior point method (IPM)[61]. However, optimization algorithms 

usually encounter mathematical difficulties and computational scale problems when dealing with complex 

engineering problems. Going around the mathematical difficulties of optimization approaches, some direct 

methods of shakedown analysis based on the mechanical perspective have been developed, such as the linear 

matching method (LMM)based on upper bound shakedown theorem and stress compensation method (SCM) 

based on lower bound shakedown theorem. The key point of LMM is to construct the kinematically 

admissible strain rate and to approximate nonlinear plastic behaviour with linear solutions by adjusting the 

modulus. While the key point of SCM is to search for the statically admissible residual stress field and satisfy 

the yield condition by applying compensation stress. It is shown in references [1,4] that the computational 

efficiency of the SCM and LMM for complex engineering problems is basically one order of magnitude 

higher than that of finite element step-by-step analysis. Among the many direct methods that have been 

developed, the LMM is relatively robust and mature, and both the upper bound and lower bound procedures 

have been established. Many examples have shown that the LMM can effectively solve a series of structural 

integrity problems, such as high temperature life integrity[62, 63], plastic behaviour and creep rupture 
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assessment[64-66], creep fatigue interaction[67,68], limit analysis of composite laminates[69-71], etc, and it 

has been introduced into the British R5 procedures [72]. 

This paper aims to reveal the mechanisms of the four-stress parameters Bree-type shakedown problems 

under three thermal-mechanical loading conditions based on the upper bound Linear Matching Method 

(LMM) and four-dimensional ratcheting boundary theory, and to propose the corresponding shakedown 

assessment methods under different loading conditions. The logical structure of this paper is as follows. The 

mechanical models for various uniaxial Bree-type problems are discussed in Section 2, and a common finite 

element model for all discussed Bree-type problems is developed in Section 3. Some typical cases of the 

four-stress parameters Bree-type shakedown problems are systematically studied in Section 4 under three 

loading conditions. A unified and conservative shakedown assessment scheme is proposed for the four-stress 

parameters Bree-type problems in Section 5. Conclusions are given in Section 6.  

2. Discussion on the mechanical models for various uniaxial Bree-type problems  

In this section, four kinds of uniaxial Bree-type problems with different stress parameters are discussed 

systematically to clarify the respective mechanical models and scope of application. The Bree-type problems 

considered in this section refer to the theories constructed by derivation or extended by numerical procedures 

based on the uniaxial rectangular beam model. The two-stress parameters Bree-type problems refer to the 

work presented by Bree[28-29], Bradford[30-31], Pei[36,44], etc. Examples of the three-stress parameters 

Bree-type problems are Reinhardt[50], Adibi-Asl[68], Bao[57], etc. The four-stress parameters Bree-type 

problem refers to the work of Shen[56]. Note that all considered three-stress and four-stress parameters 

problems can degenerate into the classical Bree problem. 

2.1 Mechanical models of Bree-type problems applicable to thin-walled cylinders 

The problems discussed in this subsection include the classical two-stress parameters Bree-type 

problems and the three-stress parameters Bree-type problem (named Type-A)[50, 57].  

The two-stress parameters Bree-type problem was initially analysed for the strain behaviour of the 

reactor fuel clad made of elastic-perfectly plastic material. Therefore, the mechanical model is a thin-walled 

axisymmetric cylindrical shell with closed ends ((a)-(b) of Fig.1). The effects of end and curvature can be 

ignored by assuming 2l D t? ? , where l is the length of the vessel, D is the diameter, and t is the thickness 

of the wall. In order to simplify the theoretical analysis and derive a closed-form analytical solution, only the 

combined thermal and mechanical stresses in the circumferential direction were considered. The hoop 

stresses can be applied on a rectangular section beam, and the stress distributions are shown by (c) of Fig.1, 

where subscript b means bending, m means membrane, p denotes primary and s denotes secondary. The 

bending stress is caused by radial cyclic linear temperature gradient rT , and the membrane stress is caused 
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by constant internal pressure P. It is assumed that the combined stresses do not cause the rotation of the beam 

to reflect the actual condition of the shell.  

 
Fig.1. Mechanical models of the two-stress parameters((a)-(c)) and the Type-A three-stress parameters ((d)-(f)) Bree-

type problems. (a) thin-walled cylindrical shell. (b) the sectional view of the shell with internal pressure P and uniform 

through-wall temperature gradient △Tr. (c) stress distributions on a rectangular section beam corresponding to hoop 

direction (θ) of the shell with radial (r) temperature gradients. (d) cylindrical shell with uniform axial (l) temperature 

gradients. (e) through-wall temperature gradients along the axial direction of the shell. (f) stress distributions on a 

rectangular section beam corresponding to the hoop direction of the shell with axial temperature gradients. 

 

The Type-A three-stress parameters Bree-type problem (σsb, σsm, σpm) considered in this section also 

applies to the cylindrical shell structure, but with additional axial temperature gradients. The thermal stress 

caused by the combined radial and axial temperature gradients can be divided into membrane stress and 

bending stress. The corresponding mechanical model and stress distributions of the Type-A three-stress 

parameters Bree-type problem are shown in (d)-(f) of Fig.1, where Fig. 1d represents a cylindrical shell with 

continuous axial temperature gradients and Fig. 1e displays the through-wall temperature gradients along the 

axial direction of the shell. The linear through-wall temperature gradient △Tr in the radial direction is 

assumed to be uniform, but the average temperatures of adjacent colour blocks in the axial direction are 

different, representing the axial thermal discontinuities. It is assumed that the thermal discontinuities are 

sufficiently continuous, and the stress fields are uniformly distributed. Obviously, when 0sm = , the Type-

A three-stress parameters Bree-type problem can be reduced to the two-stress parameters Bree-type problem.  

2.2 Mechanical models of Bree-type problems applicable to straight pipes 

The problems discussed in this subsection include the three-stress parameters Bree-type problem (named 

Type-B) [73] and the four-stress parameters Bree-type problem[56]. 
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The Type-B three-stress parameters Bree-type problem (σsb, σpm, σpb) adds the effect of primary bending 

stress σpb compared to the original two-stress parameters Bree-type problem. When 0pb  , the application 

scope of this problem has changed compared with subsection 2.1, as shown in Fig.2. The rectangular section 

beam problem in Fig. 2 can be used as an approximation to the ratchet problem of straight pipe [74,75]. This 

problem will be more intuitive if the rectangular section is replaced with a thin-walled pipe cross-section, as 

shown by Fig. 2(a). The axial mechanical stresses can be caused by constant pressure, dead weight or other 

external loads. The thermal stress can be caused by cyclic temperature gradients between the upper and lower 

surfaces of the pipe. The through-wall temperature gradient is not under consideration, which is different 

from the classical Bree problem. 

For the four-stress parameters Bree-type problem, the thermal stress is caused by the combined axial 

and surface temperature gradients, as shown by (b) and (d) of Fig. 2. The four-stress parameters Bree-type 

problem can degenerate into six kinds of two-stress parameters shakedown problems in total, including the 

original and inverse Bree problems. Besides, four kinds of three-stress parameters shakedown problems can 

be obtained from the four-stress parameters Bree-type problem, i.e., the case with 0pb = (named Type-a), 

the case with 0sm = (named Type-b), the case with 0pm = (named Type-c), the case with 0sb = (named 

Type-d). Since the Type-c and Type-d cases cannot degenerate into the classical Bree problem, they will not 

be discussed here. When 0sm = , the results in Section 4.2 show that the Type-b case is identical to the 

Type-B three-stress parameters Bree-type problem. However, despite being very similar, the comparisons in 

Section 4.1 show that the Type-a case is different from the Type-A three-stress parameters Bree-type problem. 

This imperceptible and confusing difference deserves attention. 

 
Fig.2. Mechanical models of the Type-B three-stress parameters ((a) and (c)) and four-stress parameters ((b) and (d)) 

Bree-type problems. (a) a rectangular section beam with uniform surface temperature gradients between the top and 

bottom. (b) a rectangular section beam with uniform surface and axial temperature gradients. (c) stress distribution 

characteristics of the Type-B three-stress parameters Bree-type problem. (d) stress distribution characteristics of the 

four-stress parameters Bree-type problem, where the thermal stress (σsb plus σsm) has five typical distribution 

patterns[50,56].  
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3. A common finite element model for uniaxial Bree-type problems 

At present, several finite element models have been proposed to simulate the classical two-stress 

parameters Bree problem, such as the plane stress model[1, 76], axisymmetric model[77], two-bar model and 

N-bar model[78,79]. An axisymmetric axial thermal gradient FE model is adopted to illustrate the non-

conservatism of the two-stress parameters Bree problem and simulate the thermal membrane stress of the 

Type-A three-stress parameters Bree-type problem [50]. A two-plane model was proposed for the numerical 

verification of the four-stress parameters Bree-type ratcheting problem through cycle-by-cycle FEA [56]. In 

order to simplify the numerical simulation and facilitate the comparison of various problems, a common FE 

model will be developed for all the uniaxial Bree-type problems considered in Section 2 based on the 

modified two-plane model. The FE model implementation methods corresponding to each problem will be 

compared to facilitate the understanding of the differences among various problems.  

A modified two-plane model can be used for all the uniaxial Bree-type problems considered in Section 

2, as shown in Fig.3. The element type is CPS8 in ABAQUS. The two planes are rigidly coupled in the 

direction-2 by the red reference point. For the two-stress parameters and Type-A three-stress parameters 

Bree-type problems, the rotational degree of freedom of the reference point needs to be fully suppressed, 

which is different from the Type-B three-stress parameters and four-stress parameters Bree-type problems. 

It is assumed that the cyclic temperature gradients of both planes in the direction-1 are linear. The thermal 

bending stress is controlled by the temperature gradient 2T in the direction-1 and sb E T = . The thermal 

membrane stress is governed by the mean temperatures Tm1 and Tm2 of both planes. For the two-stress 

parameters and Type-B three-stress parameters Bree-type problems, 1 2m mT T = + . For the Type-A three-

stress parameters and four-stress parameters Bree-type problems, 1 2m mT T  + . The mechanical stresses F 

and M can be applied directly to the reference coupling point. By changing the combinations of the four types 

of stresses, rotation conditions and applied temperature fields, the modified two-plane model can apply to all 

uniaxial Bree-type problems considered in Section 2.  

 
Fig.3. A common FE model for the Bree-type problems considered in Section 2.  
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4. Shakedown Analysis of the four-stress parameters Bree-type problems 

In this section, three examples of the four-stress parameters Bree-type shakedown problems are 

investigated by numerical analysis and semi-analytical derivation under three typical loading conditions, as 

shown in Fig.4. Loading case Ⅰ is the classical Bree-type loading, where the thermal stress t   and 

mechanical stress p   vary in the ranges of 0t T t       and 0p p p  =  . T   and p   are two 

multipliers for thermal and mechanical loads; 0t  and 0p  are two preset elastic stresses. For loading case 

Ⅱ, t   and p   vary proportionally, i.e., in-phase loading, where 0t T t       and p t =  . For 

loading case Ⅲ, t   and p   vary independently, where 0t T t       and 00 p p p     , and the 

loading paths can be arbitrary within the domain ABCD. The upper bound LMM is adopted for strict 

shakedown analysis, and the numerical procedure (refer to Appendix A) has been implemented into 

ABAQUS using user subroutines. Following the assumption of the classical Bree problem, an isotropic ideal 

elastic-plastic material is adopted, and the analysis is confined to associative plasticity by assuming 

associated flow rule. Table 1 lists the basic temperature-independent material properties. It is worth 

mentioning that although specific material parameters are used here, the analysis results in the following are 

expressed in a dimensionless form, so they can be applied to other ideal elastic-plastic materials. 

 
Fig. 4. Loading cases for shakedown analysis. For loading case I, p  remains constant, and t  keeps cycling. For 

loading case II, both p  and t  cycle continuously and vary proportionally. For loading case III, p  and t  can 

vary independently within their respective ranges.  

 

Table 1. Material properties  

Young 's modulus E (MPa)  2×105 

Coefficient of thermal expansion α (/°C)   1×10-5 

Yield strength σy (MPa)    300 

Poisson 's ratio v   0.3 

 

In order to represent the four-dimensional shakedown boundary in a two-dimensional or three-

dimensional coordinate system, it is necessary to specify at least one stress variable value or stress ratio value 

in advance. Several typical cases ( 0pb() = , 0sm = , 0sb = ，  means range) are selected in the 
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following to perform the shakedown analysis, study the variation of the shakedown boundaries, and establish 

the semi-analytical parametric equations correspondingly. It is shown that the three cases are sufficient to 

reveal the general variation trend of the four-dimensional shakedown boundary and clarify the differences 

among various Bree-type problems.   

To quantitatively distinguish the influence of different types of stress parameters and facilitate the 

dimensionality reduction representation, the concepts of “primary membrane bending ratio” R1 and 

“secondary thermal membrane bending ratio” R2 are introduced in this paper, which are defined as follows: 

 1 2,pm sm

pb sb

R R
 

 

() 
=

( 
=

)
 (1) 

4.1 Mechanical bending stress reduced to zero 

For the original four-stress parameters ratcheting theory, when the thermal stress variation range t  

is less than twice the yield strength, that is, 2t y   , the ratcheting boundary governing equations are as 

follows [56]:   
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In the above formulas, sm denotes the variation range of thermal membrane stress, sb denotes the 

variation range of thermal bending stress, pm  denotes the constant mechanical membrane stress and pb  

denotes the constant mechanical bending stress. Define the following variables: t sm sb   =  +  , 

p pm pb  = + , /pm pm yX  = , /pb pb yX  = , y/sbY  =  , y/smZ  =  , /p p yX  = , y/tY   =  . 

In order to directly compare the Type-A and Type-a three-stress parameters Bree-type problems 

considered in Section 2, the mechanical bending stress in the four-stress parameters shakedown problem is 

reduced to zero. Assume 0pb = , then 11/ 0R = . A series of 2R  values were assumed to perform the strict 

shakedown analysis. The convergence level is set as 1e-4 between successive asymptotic solutions to obtain 

the approximate limit multipliers. The variation range of thermal stress is: 

 00 S
t t T t     = − =  (7) 

where 0t   denotes the preset maximum elastic thermal stress， S  and T  are the shakedown limit 

multiplier and thermal load multiplier, respectively. 

  

 
Fig. 5. Comparisons between the numerical results and theoretical solutions (Eqs. (2)-(6)) for the four-stress parameters 

Bree-type problem (σpb=0) under loading case Ⅰ. Y'= Y+Z in this example denotes the dimensionless thermal stress 

range. The three-dimensional elastic shakedown domain is displayed in the XpmYZ coordinate system. 
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The calculation results for loading case Ⅰ and the corresponding theoretical values (Eqs. (2)-(6)) are 

compared in Fig. 5. The results in Fig.5 show that the shakedown boundaries are composed of two segments 

except for the case of 21/ 0R = . With the gradual increase of 2R , the shakedown regions decrease gradually. 

For different values of 2R , the shakedown regions always pass through two fixed points ( ( , (1,0)pmX Y ) =

and ( , (0,2)pmX Y ) = ) on the coordinate axes; the horizontal alternating plasticity boundary always remains 

unchanged, and the lower shakedown boundaries agree well with the four-stress parameters ratcheting 

boundaries. The corresponding three-dimensional shakedown domain in the pmX YZ coordinate system is also 

displayed in Fig.5.  

Typical 2R  values were selected in Fig. 6 to compare the calculation results under different loading 

conditions. For different 2R   values, the boundaries are always the same under loading case Ⅱ. The 

shakedown boundary for a given 2R  value under loading case Ⅲ consists of two sections, in which the 

upper section overlaps with the shakedown boundary of loading case Ⅱ, and the lower section overlaps with 

the shakedown boundary of loading case Ⅰ. This conclusion is always valid in the analysis of this paper and 

is consistent with the conclusions obtained in the literatures [1,57] for the two-stress and Type-A three-stress 

parameters modified Bree problems. Fig. 6 also shows the corresponding three-dimensional elastic 

shakedown domains of loading case Ⅱ and loading case Ⅲ in the pmX YZ   coordinate system, where 

y/pm pmX   =  .  

  
 Fig. 6. Comparisons of the shakedown regions under different loading conditions for the four-stress parameters Bree-

type problem when σpb=0. For loading case I, the coordinate system is XpmY'. For loading cases II and III, the 

coordinate system is △XpmY'. Y'= Y+Z in this example denotes the dimensionless thermal stress range. The three-

dimensional elastic shakedown domains under loading cases II and III are displayed in the △XpmYZ coordinate system. 
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Fig. 7. Comparisons of the shakedown boundaries between the four-stress parameters Bree-type problem (σpb=0) and 

the Type-A three-stress parameters Bree-type problem under different loading conditions. For loading case I, the 

coordinate system is pmX Y  . For loading case II, the coordinate system is pmX Y  . The dashed lines with dots 

represent the calculation results of this section, and the solid lines are obtained from the parametric equations of the 

shakedown boundaries for Type-A three-stress parameters Bree-type problem studied in the literature [57]. 

 

Fig. 7 compares the calculation results in this section (Type-a three-stress parameters Bree-type 

problem) with the Type-A three-stress parameters Bree-type shakedown boundaries given by literature [57]. 

For the loading case Ⅰ, when 2 =0R  or 21/ =0R , the calculation results in this section are consistent with the 

literature [57]. However, when 2R  takes any other value, the calculation results in this section are more 

conservative, such as the comparison between the orange dashed line ( 2 0.8R = , Type-a) and the green solid 

line ( 2 0.8R = , Type-A) in Fig.7. This is because the stress action section of the Type-a problem can rotate 

compared with the Type-A problem. For most thermal stress distributions ( 2 0R  and 21/ 0R  ), when the 

non-cyclic method is used for derivation, the residual yield stress distributions for final limit analysis are not 

symmetrical about the neutral axis of the beam. However, the primary membrane stress is symmetrical about 

the neutral axis, so primary bending stress is required to meet the equilibrium condition. Actually, except for 

the cases of 2 =0R  and 21/ =0R , when the pm  reaches the maximum under any given thermal stress, the 

pb  calculated by substituting the Type-A three-stress parameters Bree-type problem into the four-stress 

parameters ratcheting theory is a negative value. Due to structural deformation constraints of the shell, the 

cross-section rotation of the beam is restricted for the Type-A problem, which implies a favourable and 
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negative primary bending stress, thereby improving the structural load-bearing capacity and expanding the 

shakedown region. Therefore, when 0pb =  , the four-stress parameters ratcheting theory could not 

degenerate into the Type-A three-stress parameters Bree-type problem given by Reinhardt [50]. 

For loading case Ⅱ, the shakedown limits are the same for the Type-A and Type-a three-stress parameters 

Bree-type problems, and are only controlled by the 3S criterion line. For loading case Ⅲ, it can be concluded 

that the Type-a problem is still more conservative than the Type-A three-stress parameters Bree-type problem 

except for cases of 2 =0R  and 21/ =0R .  

4.2 Pure thermal bending stress case (R2=0)  

When 0sm = , the ratcheting boundary expression under loading case Ⅰ can degenerate from Eq. (6) 

as follows:   

For 2sb y   :  

 

3
22 2 3 3

2
) 12 3 8 ][ 8(

2
pm y y pm y ysb sb sb sb

pb
sb

         




+ − + + −− −    
=


 (8) 

It is verified that Eq. (8) is equivalent to the ratcheting boundary formula given in the literature [73] for 

the rectangular section beam, although the formula forms look different. Therefore, when 0sm = , the 

four-stress parameters ratcheting theory could degenerate into the Type-B three-stress parameters Bree-type 

problem. As pointed out in the literatures [74,75], the problem considered in this section can be approximately 

applicable to straight pipes that ratchet in a beam mode. For the straight pipe problem, the primary stresses 

are actually the axial stresses, and the temperature gradient on the pipe wall thickness is not considered. 

However, for the thermal stress ratcheting problem considered by Bree [28] and Reinhardt [50], the primary 

stress corresponds to the hoop stress of the shell, and a linear temperature gradient is assumed through the 

wall thickness. As for the thin-walled pipe cross-section, the exact shakedown boundary expression is 

difficult to obtain explicitly, so the theoretical solutions based on the rectangular beam are of importance. In 

order to extend the application scope of the theoretical formulas, the shakedown boundary parametric 

equations under different loading conditions are established below.  

Fig. 8 shows the calculation results of shakedown limits under loading case Ⅰ, where pX represents the 

dimensionless total primary stress, and the ordinate represents the dimensionless thermal bending stress. It is 

shown that the calculation results agree well with the theoretical values (Eq. (8)). With the gradual increase 

of R1, the shakedown regions will first increase and then decrease. When the primary stress is pure mechanical 

membrane stress ( 11/ =0R ), the shakedown region will reach the minimum (the black dotted line in Fig. 8), 

which is equivalent to the Bree shakedown boundary. As the shakedown boundary can be conservatively 

regarded as composed of two straight lines, the general approximate form can be summarised, as shown in 

the lower-left corner of Fig. 8.  
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The parametric equations of the shakedown boundaries can be quickly constructed by determining the 

inflexion point coordinates c
pX  and plastic limit load coordinates f

pX  of the shakedown regions, where 

=f f f
p pm pbX X X+ . The relationship between f

pmX  and f
pbX can be obtained from the plastic limit analysis of 

the rectangular beam, as shown by Eq. (9).  

 ( )
23= 1

2
f f
pb pmX X −

  
 (9) 

 
Fig. 8. Comparisons of the shakedown limit calculated results and theoretical solutions (Eq. (8)) under loading case Ⅰ 

when R2=0, where σp=σpm+σpb and Y'= Y in this example. The calculated results are shown by scatter points of various 

shapes, and theoretical solutions are presented by dotted lines. The results with R2=0 & 1/ R1=0 correspond to the 

shakedown boundary of the classical Bree problem.  

 

When 0sb → , Eq. (9) can also be obtained from Eq. (8). Combined with 1=f f
pm pbX R X , the expression of 

f
pX  can be derived as follows: 

 
2

1 1
2

1

(1 )( 9 1 1)
=

3
f
p

R R
X

R
+ + −

 (10) 

1.5f
pX → when 1 0R → , and 1f

pX → when 1 +R →  . Given =2sb y  , it can be obtained from Eq. (8) 

that:  

 
3
2

3= (1 2 ) 3
2

c c c
pb pm pmX X X− − −  (11) 

where =c c c
p pm pbX X X+  , and 1=c c

pm pbX R X  . c
pX   can be expressed as a function of 1R  , and a set of 

conservative expressions are given here by fitting, as follows: 
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 
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 










，

，

 (12) 

The proposed fitting expressions in Eq. 12 are all conservative compared to the theoretical solutions. 

When 0≤R1≤20, the comparisons between the fitting solutions and the theoretical solutions are shown in Fig. 

9(a)-(c), and the differences are all within 0.7%. When 0≤R1≤1, c
pX  increases first and then decreases with 

the increase of R1. When 1< R1≤10 and 10< R1≤20, c
pX decreases with the increase of R1, but the latter 

segment decreases more slowly. When R1>20, c
pX   decreases monotonically from 0.515(R1=20) to 

0.5( 1R → )，therefore， c
pX  is conservatively taken as 0.5 in this segment for convenience. 

 

 
Fig. 9. Comparisons between theoretical and fitting solutions for c

pX .  
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Since both c
pX  and f

pX  are only related to 1R , once the parameter 1R is determined, c
pX and f

pX

can be obtained through simple calculation, then the corresponding shakedown region can be constructed. 

Therefore, the parametric equation of the shakedown boundaries can be expressed as: 

 
2,0

= 2( )
,  

c
p p

f
p p c f

p p pc f
p p

X X
Y X X

X X X
X X

  
 

 − 
 




− 

 (13) 

 
Fig. 10. Shakedown limit calculated results under loading case Ⅱ when R2=0, where =p pm pb    +   and Y'= Y in 

this example. The green solid line is the theoretical solution of the shakedown boundary for the Bree problem 

considering in-phase loading derived by Bradford[31]. The general form of the shakedown boundaries is summarised in 

the figure according to the numerical results and theoretical solution.   

 

Fig. 10 shows the results for the loading case Ⅱ, where the abscissa represents the dimensionless primary 

stress range. The results show that with the gradual increase of 1R , the shakedown regions also increase 

first and then decrease. When 11/ 0R = , the area of the shakedown region will reach the minimum, as shown 

by the green solid line in Fig. 10, which is equivalent to the shakedown boundary of the in-phase loading 

Bree problem derived by Bradford [31]. For different values of 1R  , the shakedown boundaries are all 

composed of two sections, one of which is controlled by the 3S criterion line ( + =2pm pbX X Y  +  ), and the 

other is controlled by the corresponding limit load range f
pX  under the given 1R  value. According to

=f f
p pX X , Eq. (14) holds.  
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2
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1

(1 )( 9 1 1)
=

3
f
p

R R
X

R
+ + −

  (14) 

Therefore, for loading case Ⅱ, the parametric equation of the shakedown boundaries can be expressed as: 

 
2 , 2

=
,0

c
p f

p c

Y Y Y
X

X Y Y
−       

  
      

 (15) 

where f
c pY X = − . The results in Section 4.1 show that the shakedown boundaries are independent of the 

2R  value when 1R  is given under in-phase loading. The results in this section prove that the value of 1R  

will affect the extent of the shakedown regions when 2R  is given. Therefore, 1R  is the only key control 

parameter under in-phase loading. However, for loading case Ⅰ, the results of Fig. 5 and Fig. 8 show that the 

values of 1R  and 2R  will both affect the extent of the shakedown regions. 

 

 
Fig. 11. Shakedown limit calculated results under loading case Ⅲ when R2=0, where =p pm pb    +   and Y'= Y in 

this example. The general form of the shakedown boundaries is summarised in the lower-left corner, where the black 

and blue dotted lines denote the corresponding shakedown boundaries for loading case I and case II. The green solid 

line is the theoretical solution of the shakedown boundary for the “positive out-of-phase” loading Bree problem derived 

by Bradford[30].  

 

Fig.11 shows the shakedown limits of loading case Ⅲ. When 11/ 0R = , the calculation results agree 

well with the shakedown boundary of the out-of-phase loading Bree problem given by Bradford [30]. 
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According to the relationships among the shakedown boundaries of three loading cases described above, the 

parametric equation of the shakedown boundaries for loading case Ⅲ can be deduced, as follows:  

 

3

3
1

2 ,0
= 2( )

 ,

c
p p p

f
p p c f

p p pc f
p p

X X X
Y X X

X X X
X X

 −    
 

  − 
   




 − 


 (16) 

where 1c c
p pX X = ， 3c

pX can be determined by Eq. (17).  

 
1

3
1

2
2

c
pc

p c f
p p

X
X

X X


 =
+  −

 (17) 

 
Fig. 12. Three-dimensional shakedown domains under different loading conditions when R2=0，where the domain 

AFBCNH indicated by the green dotted lines corresponds to loading case I; the domain AEBCD indicated by the blue 

solid lines corresponds to loading case II, and the domain AMBCN indicated by the red dotted lines corresponds to 

loading case III. For loading case I, the coordinate system is XpmXpbY'. For loading case II and loading case III, the 

coordinate system is △Xpm△XpbY'. In this example, Y'= Y represents the dimensionless thermal bending stress.  

 

Fig.12 shows the corresponding three-dimensional elastic shakedown domains for the three types of 

loading cases. The shakedown domain for loading case Ⅰ is enclosed by plane AFH and surface FBCH, 

indicated by the green dashed lines. The shakedown domain for loading case Ⅱ is enclosed by plane AED 

and surface EBCD, indicated by the blue solid lines. The shakedown domain for loading case Ⅲ is enclosed 

by surfaces AMN and MBCN, indicated by the red dashed lines.  

Shakedown analysis and assessment method of four-stress parameters Bree-type problems



20 

Since formulas (13), (15) and (16) are only simple functions of 1R  , the complex 3D shakedown 

boundaries have been greatly simplified. The newly proposed parametric equations are intuitive, which are 

more suitable for engineering analysis and design. The analytical solution to loading case Ⅰ has been extended 

to generalised loading conditions that enable a broader application scope. 

4.3 Pure thermal membrane stress case (1/R2=0) 

When 0sb = , the ratcheting boundary expression under loading case Ⅰ can degenerate from Eq. (2) 

as follows: 

 ( )
2
pm

pb sm
sm

33
2

4 2y
y


  

 
= −  +

 −
 (18) 

When pm 0 =  , Eq. (18) can be reduced to the inverse Bree problem; when 0sm =  , Eq. (18) can be 

reduced to Eq. (9).  

 

 
Fig. 13. Comparisons of the shakedown limit calculated results and theoretical solutions (Eq.(18)) under loading case Ⅰ 

when 1/R2=0. The calculated results are shown by scatter points of various shapes, and theoretical solutions are 

presented by dotted lines. The abscissa represents the sum of the dimensionless primary membrane and bending (Xp= 

Xpm+ Xpb ), and the ordinate represents the dimensionless pure thermal membrane (Y'=Z) in this case.  
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For loading case Ⅰ, the calculation results of shakedown limits are shown in Fig. 13. It is shown that the 

numerical results agree well with the theoretical solutions (Eq. (18)). With the gradual increase of 1R , the 

shakedown regions still increase first and then decrease. For any given value of 1R  , the corresponding 

parametric equation of the shakedown boundaries can be expressed as:  

 =2(1 ), for 0p f
p pf

p

X
Y X X

X
 −    (19) 

When 1=0R , the shakedown boundary governing equation is as follows: 

 2=2(1 )
3 pbY X −  (20) 

When 11/ =0R , the shakedown boundary governing equation is as follows: 

 =2(1 )pmY X −  (21) 

Eq. (20) corresponds to the inverse Bree problem, and Eq. (21) corresponds to the checking condition for 

thermal membrane in the ASME VIII-2 code.  

 
Fig. 14. Three-dimensional shakedown domains under different loading conditions when 1/R2=0, where the domain 

ABC corresponds to loading case I and loading case III; the domain AEBCDA corresponds to loading case II. For 

loading case I, the coordinate system is XpmXpbY'. For loading case II and loading case III, the coordinate system is  

△Xpm△XpbY'. 

 

For loading case Ⅱ, the calculation results of shakedown limits are consistent with Fig. 10, so the 

parametric equation of the shakedown boundaries can be expressed by Eq. (15). Fig. 14 displays the 3D 
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shakedown domains under different loading conditions, in which the domain ABC corresponds to loading 

case Ⅰ, and the domain surrounded by plane AED and surface EBCD corresponds to loading case Ⅱ. As shown 

in Fig. 14, the domain ABC also corresponds to loading case Ⅲ, but the primary stress ranges should be taken 

as the coordinate axes. Therefore, the parametric equation of the shakedown boundaries under loading case 

Ⅲ can be expressed as: 

 =2(1 ), for 0p f
p pf

p

X
Y X X

X


 −    


  (22) 

5. A unified shakedown evaluation scheme for the four-stress parameters Bree-type problems 

Shakedown evaluation methods based on the proposed parametric equations can consider the variation 

of the membrane bending ratios and almost do not lose the accuracy of the original theory. However, the 

parametric equations need to be constructed separately for each thermal stress distribution situation. Usually, 

a general and unified evaluation scheme is often needed in engineering, such as the thermal stress ratcheting 

assessment in the ASME code. Therefore, it is necessary to propose a similar unified shakedown evaluation 

method for the four-stress parameters Bree-type problem.  

 

 
Fig. 15. Ratcheting boundaries of R2=0 (pure thermal bending, surface KFBCHT) and 1/R2=0 (pure thermal membrane, 

surface ABC) for the four-stress parameters Bree-type problem under loading case I, where curve THC is the Bree 

ratcheting boundary, and the classical two-dimensional Bree diagram is located in the Xpb = 0 plane.  

 

Shakedown analysis and assessment method of four-stress parameters Bree-type problems



23 

The thermal ratcheting assessment rule given by ASME VIII-2 is actually a conservative representation 

of the Type-A three-stress parameters Bree-type problem [50,57,80]. Ratcheting boundaries of two typical 

thermal stress cases ( 2 =0R and 21/ =0R ) are adopted for ratcheting assessment. Similarly, based on the four-

dimensional ratcheting boundary theory [56], the ratcheting boundaries for cases of 2 =0R  (pure thermal 

bending) and 21/ =0R (pure thermal membrane) are displayed in Fig. 15. For the case of 2 =0R , the curved 

surface KBCT is the ratcheting boundary. Section AFH is the alternating plasticity boundary under this 

situation, which together with the curved surface FBCH encloses the elastic shakedown domain. For the case 

of 21/ =0R  , the curved surface ABC is the ratcheting boundary, and the alternating plasticity boundary 

degenerates to point A. As shown in Fig. 14, the surface ABC is also the elastic shakedown boundary at this 

time. 

 

 
Fig. 16. Projection diagrams of the alternating plasticity boundaries (Y'=2) on the plane Y'=0, where the dotted lines are 

calculated based on the four-dimensional ratcheting boundary theory, and a series of R2 values are selected to represent 

different thermal stress distributions. The red dotted line corresponds to FH in Fig.15, and the green solid line 

corresponds to BC in Fig.15.  

 

In fact, when 2 0R   , the four-dimensional ratcheting boundary can be displayed in the three-

dimensional coordinate system of Fig. 15. Curve BC on the plane of =0Y   is common to all ratcheting 

boundaries, but the alternating plasticity boundaries on the plane of =2Y  under different thermal stress 

distributions are different. Fig. 16 presents the projections of the alternating plasticity boundaries ( =2Y , 
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indicated by dashed lines) under a series of given thermal stress distributions on the pm pbX X  plane ( =0Y 

), in which the red dotted line and green solid line correspond to curve FH and curve BC respectively in Fig. 

15. Based on Figs. 15 and 16, it can be concluded that although the ratcheting boundaries change with 2R , 

there must be a minimum ratcheting boundary. Obviously, the surface ABC is the minimum ratcheting 

boundary and also the minimum elastic shakedown boundary. This conclusion can also be verified through 

theoretical analysis. When 2Y  , the intersection iY   of the ratcheting boundary and the Y  axis can be 

solved through the four-dimensional ratcheting boundary theory. For 2 1R   , 2 21) / ( 1)iY R R = ( + −  . 

Therefore, when 2R →+ , iY  tends to the minimum value of 2, which corresponds to the case of pure 

thermal membrane. For 20 1R  , there is no intersection between the ratcheting boundaries and Y axis; 

that is, when 0pX → , Y  tends to infinity, such as the case of pure thermal bending. Based on the idea of 

a minimum shakedown boundary, we can propose a unified and conservative shakedown assessment scheme 

for the four-stress parameters Bree-type problems. 

For loading case Ⅰ, Eq. (23) can be adopted for the unified elastic shakedown assessment, as follows: 

 ( )
2
pm

pb

33
2

4 2y t
t y


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 
= −  +

 −
 (23) 

Eq. (23) replaces sm in Eq. (18) with t , that is, Eq. (23) is applicable to any 2R    value. In addition, 

Eq. (23) can also be used as a unified ratcheting assessment method for the four-stress parameters Bree-type 

problem, but since the plastic shakedown region is ignored, Eq. (23) is very conservative when used in 

ratcheting assessment.  

For loading case Ⅱ, the shakedown regions are only affected by 1R . It is very convenient to use Eq. (15) 

proposed in Section 4.2 for shakedown evaluation.  

For loading case Ⅲ, Eq. (24) is proposed for unified elastic shakedown evaluation, as follows:  

 ( )
2
pm

pb

33
2

4 2y t
t y


  

 


 = −  +

 −
 (24) 

Eq. (24) replaces pb  in Eq. (23) with pb ,  and pm  with pm ,  so it can be applied to generalised 

thermo-mechanical loading conditions.  

It is worth noting that the accuracy of the established parametric equations under the three loading cases 

has been verified by the LMM, and the elastic shakedown evaluation methods proposed in this section are 

conservative under the theoretical framework of four-stress parameters Bree-type shakedown and ratcheting 

problems. In order to be extended to engineering applications, the parametric equations and shakedown 

evaluation methods proposed in this paper need to be further compared and verified with typical engineering 

components in the future. 
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6. Conclusions 

In this paper, the four-stress parameters Bree-type shakedown problems (involving two types of 

membrane and bending stresses) are systematically studied numerically based on the LMM and theoretically 

based on the four-dimensional ratcheting boundary theory under three typical thermo-mechanical loading 

conditions to reveal the shakedown mechanisms of four-dimensional Bree diagram.  

A detailed discussion on the mechanical models for various uniaxial Bree-type problems has been 

conducted to clarify the scope of application and mechanical assumptions of each problem. The four kinds 

of Bree-type problems considered in Section 2 are both relevant and different. The relevance is that they are 

all derived based on the uniaxial rectangular section beam and can degenerate into the classical Bree problem. 

The differences lie in the number of stresses considered, the derivation method, the deformation assumptions 

and the applicable structures. Generally speaking, the two-stress parameters and Type-A three-stress 

parameters Bree-type problems are applicable to radial ratcheting of axisymmetric thin-walled cylinders. In 

contrast, the Type-B three-stress parameters and four-stress parameters Bree-type problems are applicable to 

axial ratcheting of straight pipes. 

A common FE model is developed based on the modified two-plane model for all discussed Bree-type 

problems to facilitate numerical research and comparison. Compared with the Type-A three-stress parameters 

problem, the four-stress parameters problem does not restrict the bending rotation of the stress section, which 

makes the latter more conservative. The four-stress parameters problem can degenerate into the Type-B three-

stress parameters problem, which can then be degenerated into the two-stress parameters original Bree 

problem.  

Through the newly introduced membrane bending ratio parameters 1R  and 2R , the variation laws of 

the four-dimensional shakedown boundaries under three loading conditions are revealed based on the LMM. 

The corresponding semi-analytical parametric equations of the shakedown boundaries under two common 

thermal stress distributions are constructed based on the numerical results and four-dimensional ratcheting 

boundary theory. The theoretical solutions with limited application scope can be extended to more general 

loading conditions. It is found that 1R  and 2R  will both affect the shakedown boundaries under loading 

case Ⅰ and loading case Ⅲ, whereas the shakedown boundaries are only related to 1R  under loading case 

Ⅱ.   

Based on the idea of a minimum shakedown boundary for the four-stress parameters Bree-type problem, 

a unified and conservative shakedown evaluation scheme considering generalised loading conditions and 

variable thermal stress distributions is proposed. The new assessment methods can significantly simplify the 

shakedown analysis and reduce the cost in the structural design of pressure equipment. 

The classical two-stress parameters Bree problem lays the foundation of shakedown design and 

ratcheting assessment of mainstream codes such as ASME, and is a special case of the four-stress parameters 

Bree-type problem. Therefore, shakedown mechanisms revealed in this paper are of considerable theoretical 
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and engineering implications for the structural integrity assessment of industrial components subjected to 

variable thermal and mechanical loads. 
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Appendix A. Numerical procedure of the LMM for strict shakedown analysis 

The upper bound procedure of LMM for strict shakedown analysis is adopted in this paper. Koiter’s 

upper bound shakedown theorem states that: If there exists a kinematically admissible strain rate history and 

the work done by the body and surface forces on the corresponding plastic strain in the process of repeated 

loading is greater than the internal plastic dissipation, then the structure will not shake down. According to 

the Koiter’s theorem, the mathematical programming formulation for upper bound can be expressed by Eqs. 

(A1)-(A4), as follows:  

min:  0

0

( )
t

n
F ij

V
t

E n
ij ij

V

dt D dV

dt dV





 

=
 

 
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                      (A1) 
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0

1 ( )
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t
n n
ij ij i j j idt u u  = =  +  &  in V  (A2) 

0

t

i iu u dt =  &  in V        (A3) 

0iu =  on Su        (A4) 

In the above formulas, n
ij&  is the plastic strain rate, ( )n

F ijD &  is the plastic dissipation function, iu  is 

the plastic displacement increment,   is the load multiplier, E
ij is the fictitious elastic stress field caused 

by external loads, V is the volume of an ideal elastoplastic structure body, Su is part of the surface and satisfies 

the zero-displacement rate. 

When an elastoplastic structure subjected to varying thermomechanical loads shakes down, the stress 

history is as follows:  

 ( ) ( ) ( ) ( )ˆ ˆ, , ,P T
ij p ij T ij ijx t x t x t x       = + +   (A5) 
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where ( )ˆ ,P
ij x t   and ( )ˆ ,T

ij x t   are elastic stress fields of mechanical and thermal loads, respectively, 

( )ij x   denotes a constant residual stress field. The idea of energy minimisation is adopted to solve the 

shakedown limit multiplier, and the incremental formulation of the energy function is given by: 

 ( ) ( )( )
1

ˆ,
N

n n n n
ij ij ij ij n ij ij

n V

I t dV      
=

  =  − + 
   (A6) 

where n
ij  denotes the plastic strain increment, n denotes the load instance. For load instance n and kth 

iteration, suppose nk
ij  are known, and the shear modulus nk  of the equivalent linear elastic material 

can be obtained by Eq. (A7), and   denotes the von Mises equivalent strain. 

 3 ( )
2

nk nk
ij y    =  (A7) 

When nk  are known, the following incompressible linear relationship can be proposed:  

 ( )( 1) ( 1)1 ˆ
2

n k k
ij ij n ijnk t  



+ +   = +
 

 (A8) 

Superscript ′ in Eq. (A8) indicates deviatoric variables. By adding the ( 1)n k
ij

+   over a cycle, we can obtain: 
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k n k in k
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where ( 1)k
ij

+  meets the strain compatible condition. 1
k

 and in
ij  can be expressed as:  
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( )ˆij nin k

ij nk
n

t
 


=   (A11) 

Through repeated iteration of Eq. (A9), the energy function ( ),n
ijI   tends to be minimised gradually to 

approach the shakedown limit multiplier, which is given by: 
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