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Graph partitioning, or community detection, has been widely investigated in network science. Yet, the
correct community structure on a given network is essentially data-driven. Thus, instead of a formal def-
inition, diverse measures have been conceived to capture intuitive desirable properties shared by most of
the community structures. In this work, we propose a preprocessing based on a doubly stochastic scaling
of network adjacency matrices, to highlight these desirable properties. By investigating a range of com-

munity detection measures, and carefully generalising them to doubly stochastic graphs, we show that
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such a scaling unifies a whole category of these measures—namely, the so-called linear criteria—onto
two unique measures to set up. Finally, to help practitioners setting up these measures, we provide an
extensive numerical comparison of the capacity of these measures to uncover community structures
within stochastic block models, using the Louvain algorithm.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

By mapping local-level elementary interactions between data,
networks provide a powerful template that enables one to analyse
emergent behaviours in complex systems, such as biological sys-
tems, social networks, etc. [Chap.5] [1]. Hence, these last decades,
analysis of complex networks has been at the core of several
research works [2]. One aspect has gained a lot of attention: the
problem of graph partitioning, also called community detection
[Chap.21] [3,4,1]. Defining a network as a set of entities (called
nodes or vertices) connected by interactions (called links or edges),
the aim of community detection is to partition the set of the nodes
into groups of nodes that are similar or strongly related.

In real-world applications, the rightful community structure
depends on the network. For this reason, there exists no formal
definition of a community structure since it is always possible to
find a community structure that contradicts the definition. How-
ever, it is generally admitted that community structures share sim-
ilar properties: a community should be a group of nodes densely
connected, and sparsely connected to the rest of the graph—see
Table 1.1 from [5]. Thus, a number of measures that capture these
properties has been designed to assess the quality of a community
structure proposed on a network, e.g. [6-8]. Optimising such mea-
sures is generally a NP-complete problem [9,3,5], thus approxima-
tion algorithms have been proposed that perform community
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detection by approximating the “best” community structure. The
most famous is probably the Louvain algorithm [10] that aims to
maximise the so-called Newman-Girvan modularity [6]. Because
of its simplicity, its accuracy in detecting communities, and its effi-
ciency in terms of computational cost [11], it has been one of the
most widely-used community detection algorithms for more than
10 years. But there are communities, very intuitive and yet poorly
detected by algorithms in general, that even Louvain is unable to
detect: 1) Small communities in large networks are generally
missed—this is typically the so-called resolution limit [12]. 2) In
directed networks, flow-based communities are usually not
detected in presence of an imbalance of the edges leaving and
entering these communities. Points 1) and 2) are illustrated in
the middle panels of Fig. 1, where the results of Louvain algorithm
applied to two toy networks exhibiting such community structures
are displayed.

The aim of this study is to investigate the potential of matrix
scaling as a preprocessing for community detection. Our contribu-
tions are three-folds:

e We propose a preprocessing based on the so-called doubly
stochastic scaling, to increase the detectability of communities,
in particular those usually hardly detectable as illustrated in
Fig. 1.

¢ By extending several graph partitioning measures to weighted
graphs, in particular doubly stochastic graphs, we show that
the proposed proprecessing unifies these measures onto two
unique measures to set up.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Left: Adjacency matrices of networks with community structures. Middle: The Louvain algorithm cannot detect the smallest community (top matrix, the smallest
community highlighted in the red square); and it is unable to detect the two communities connected in an imbalanced fashion (bottom). Right: After scaling, Louvain can
detect small communities in presence of larger ones (top); and it can detect the community structure when there is an imbalance in the flows of edges (bottom).

e We conduct extensive comparisons of the capacity of these
measures to uncover community structures within stochastic
block models (SBMs), which provides guidance for customising
them.

The paper is organised as follows: Section 2 lists the definitions
and notations to be used through the paper. Section 3 gives an
overview of related work. Section 4 presents the method: we intro-
duce the doubly stochastic scaling (section 4.1) and detail the pro-
posed preprocessing (section 4.2), showing its potential on toy
examples and a real-world network (section 4.3). In section 5, we
discuss the generalisation of six graph partitioning measures to
weighted graphs, in particular doubly stochastic ones. Section 6
compares these measures, first theoretically in section 6.1, then
experimentally in section 6.2. We finally conclude the study and
discuss future work in section 7.

2. Definitions and notations

In this section, we present some definitions and notations to be
used through the study. Basic mathematical objects are listed in
Table 1.

Graphs. In this study, we investigate networks (also called
graphs) that can be weighted or not. Except when stated otherwise,
networks are undirected. For a network G = (V,E,Q), V is the set of
nodes, E C V x V the set of edges, and the function

Q: E - R,
{u,v} — o({u,v})

provides the weights of edges. We limit the study to graphs that are
positively weighted. To simplify notations, we assume that graphs
have integer nodes, i.e. V = {1,...,n}.

When there is no possible confusion about the network, letters
n and m denote the number of nodes and the total weight of edges
respectively, that is n = [V] and m = 3", ,, ;@o({t, v}). The degree
of a node u is defined as d,=3,,  0{u,v}). If
35 € R:Vu e V,d, = 5, the graph is said to be §-regular. We denote
by simple graphs the unweighted undirected networks without
self-loop—i.e. Vu € V, {u,u} ¢ E.
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Vector entry
Vector of 1s

Diagonal matrix from a vector

Cardinality of a set

Parentheses on a vector
e

7()

I

Table 1

Typography of mathematical objects.
Object Typoface Examples
Unweighted graph 2-element tuple G=(V,E)
Weighted graph 3-element tuple G=(V,E,Q)
Edge in a directed graph Tuple of nodes (u, v)
Edge in an undirected graph Curly brackets of nodes {u, v}
Matrix Bold capital letter A S
Matrix entry Letter with subscripts a;;
Matrix of 1s ] J
Identity matrix I I
Transpose of a matrix T AT
Vector Bold minuscule letter u, X

u(i)

g(u), 7(e) =1
IS]

Adjacency Matrices. A (directed) graph G = (V,E, Q) can be rep-

if (i,j) € E
0 otherwise

resented by its adjacency matrix, that is a matrix A € RT*" where

o - {00

Conversely, given a matrix A € R7", we call the adjacency

graph of A the graph whose A is the adjacency matrix.

For undirected graphs, when the adjacency graph of A has no

self-loop, then 2m =31, a;; = e’Ae. When the adjacency

graph of A is unweighted, we define the complementary of A (de-

noted A) as the matrix in R”*" such that
if {i,j} ¢ E

_ 1
iy = {O otherwise M

thatisA=]—A.
Community Structures. Given a graph G = (V,E), a community
structure is a partitioning of the set of nodes V, that is a set of sub-

k
sets of V: ¢ = {C;},_; , such that |JC, =V and Vt #5,C,NCs = &.
t=1

This community structure can be represented as an equivalence
relation 2 on V x V such that

uv<3te{l,.k}:uvecC.
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It can also be represented as a matrix X € {0,1}"™" such that
o { 1 if izj
Y710 otherwise.

A matrix X € {0,1}"" encodes an equivalence relation # (and
hence a community structure) if and only if:

Vie{l,.,.n}, xii=1 (a)
Vi,jG {1,...,1’1}, Xij = Xji (b)
Vl',j,kG {1,..‘,11}, Xik + Xjk — Xij < 1 (C)

where (a), (b), (c) indicate respectively the reflexivity, the symmetry
and the transitivity of the equivalence relation represented by X
[13]. We denote by Eq(n) the set of the equivalence relations on a
set V such that |V| = n. That is, we write X € Eq(n) when a matrix
X € {0,1}™" verifies (a), (b), (c), and 2 € Eq(n) for an equivalence
relation defined on the set V. For any X € Eq(n), its complementary
is defined by X =] — X.

Double Stochasticity. In the following, we specifically focus on
networks that are doubly stochastic, that is such that their adja-
cency matrices have their row and column sums equal to 1. For-
mally, a (directed) network G= (V,E,Q) is said to be doubly
stochastic if its adjacency matrix S € R}*" is doubly stochastic, that

is
We remark that doubly stochastic graphs are 1-regular graphs.
In this study, we preprocess graphs so that they (or equivalently
their adjacency matrices) are doubly stochastic. Transforming a
matrix A € RT*" onto a doubly stochastic matrix is an operation
called “scaling A onto its doubly stochastic form”. One achieves
this by finding two vectors r,c € R"" such that

The matrix S = 2(r)AZ(c) is called the doubly stochastic scaling
of A, and vectors r and c are called the scaling factors. The existence
of a doubly stochastic scaling is non-straightforward and is
detailed in section 4.1.

Se=e
STe=e.

(2)

2(r)A2(c)e
2(c)A"2(re =e.

=€

3)

3. Related work

Doubly Stochastic Scaling for Community Detection. In this study,
we design a preprocessing for community detection, based on dou-
bly stochastic scaling. This scaling has already been used in the
context of community detection. It is the first stage of the algo-
rithm from [14] that partitions migration networks. However, the
rationales for scaling in [14] (invariance of relative odds and
approximation of maximum entropy) greatly differ from ours. Also
in [15], doubly stochastic scaling is used as a preprocessing step for
a spectral algorithm. Furthermore, in [16], authors aim to partition
a dataset by finding the doubly stochastic matrix that best approx-
imates the dataset similarity matrix. Finally, in [17], authors use
doubly stochastic scaling to perform co-clustering, as scaling fac-
tors should approximate the joint densities between the random
variables inferring data, and the random variables inferring parti-
tions. We remark that all these studies use the doubly stochastic
scaling for a very specific purpose: achieving uniform marginals
in the flow table [14], obtaining staircase-like singular vectors
[15] or scaling factors [17], or approximating a similarity matrix
[16]. On the other hand, the method proposed here is a wider-
purpose preprocessing that can be used prior to any community
detection method.
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Community Detection Measures. This study investigates a bunch
of measures designed to assess the quality of a community struc-
ture on a network, based on the network structural properties.
Nodes within a community are supposed to be densely connected,
while being loosely connected to nodes outside their community.
Different manners to define “densely” and/or “loosely” lead to
different measures. They can be subdivided into three families.
Measures based on density, such as Newman-Girvan modularity
[6] or coverage [18], define a community as a group of nodes with
a high density of edges. Measures based on sparsity also exist, that
consider that the amount of edges between two communities
must be low (e.g. conductance, expansion [19], or normalised
cut [7]). Some measures are a mixture of density and sparsity,
such as LambdaCC [5] or Balanced modularity [13]. Given a
dynamic process defined on the graph edges (e.g. a random walk),
measures from the third kind consider a community as a group of
nodes from which the process struggle to escape (such as the Map
equation [8], the Markov stability [20], or the community distance
from [21]). Remark that some measures based on a priori
hypotheses about the ground truth community structure exist,
such as the likelihood from SBM-based techniques [22], the
likelihood of preserving node neighbourhoods in node2vec [23],
or the cross-entropy error over nodes with known label in Graph
Convolutional Networks [24]. But they are beyond the scope of
this study.

Most of the measures investigated here are listed in [25] to be
used in the Louvain algorithm. This requires them to be defined
for graphs with integer weights, and the measures are thus
extended to such graphs when needed. Since generalisation is
not the purpose of [25], this is done straightforwardly and does
not always fit the philosophy of the initial measures, as shown in
section 5.

4. Doubly stochastic scaling preprocessing

In this section we describe and discuss the preprocessing that
we propose for community detection, that relies on a doubly
stochastic scaling of the graph adjacency matrix. Not every square
matrix is amenable to a doubly stochastic matrix. We thus first
provide the conditions for such a scaling to exist, and discuss the
relations with graph connectivity. We then present the proposed
preprocessing, and discuss its impact on some community
structures.

4.1. Doubly stochastic scaling and graph connectivity

The Sinkhorn-Knopp Theorem. Given a square matrix A € R}, it
is not always possible to find two vectors r,c¢ € R"} such that Eq. (3)
is verified. In order for such a scaling to exist, the pattern of A—i.e.
the positions of its nonzero entries—must respect certain condi-
tions, which are provided by the so-called Sinkhorn-Knopp theo-
rem [26]. In order to introduce this theorem, we first provide
two definitions about the pattern of a matrix on which it relies.
These definitions can be found in [27].

Definition 1. Bi-Irreducibility. A matrix A € R™" is called bi-
irreducible if there is no pair of permutation matrices R,Q such
that

A,

Rae-[g' o]

A;
with Aq, A, two square and non empty matrices.

This definition implies that A is not amenable to a block trian-
gular matrix by independent permutations of its rows and its
columns.
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Definition 2. Total Support. A matrix A € R™" is said to have a
total support if every nonzero entry lies on a strictly positive
diagonal. One characterisation of this definition proposed in [27] is
that there are two permutation matrices R, Q such that

A

RAQ
Ay

with Ay, ..., Ay bi-irreducible matrices.

We can now enunciate the Sinkhorn-Knopp theorem [26].

Theorem 1. Sinkhorn-Knopp. Given a matrix A € R*", a necessary
and sufficient condition that there exists a doubly stochastic matrix
S = 2(r)AZ(c) withr,c € R%", is that A has a total support. If S exists
then it is unique. Vectors r and c are also unique up to a scalar multiple
if and only if A is bi-irreducible.

Relations with the Connectivity of the Adjacency Graph. We now
introduce the definition of irreducibility, that draws a link between
the connectivity of a network and the pattern of its adjacency
matrix.

Definition 3. Irreducibility. A matrix A € R™" is called irreducible
if there is no permutation matrix Q such that

A A }
0 A
with Ay, A, square and non empty. A characterisation of irreducible

matrices from [28] is that they are the adjacency matrices of
strongly connected graph.

Q- |

Every bi-irreducible matrix is also irreducible. Reciprocally, if a
matrix is irreducible with its diagonal zero-free—
a;; #0,Vie {1,...,n}—, then this matrix is bi-irreducible (easily
proven by applying the algorithm from [29] to such a matrix).
Since Definition 3 states that irreducible matrices are adjacency
matrices of strongly connected graphs, then the adjacency matrix
of every strongly connected graph can be made bi-irreducible (thus
scalable) by ensuring that its diagonal is strictly positive (e.g. by
adding a positive diagonal matrix to the adjacency matrix, which
is equivalent to adding self-loop to the graph).

Remark 1. For an undirected graph, adding a diagonal matrix to its
adjacency matrix is sufficient to make it scalable onto a doubly
stochastic graph, whatever its connectivity. Indeed, every sym-
metric matrix with zero-free diagonal has a total support (Lemma
3.3 from [30]).

For a directed graph, each strongly connected component must
be scaled and partitioned apart.' These components can be found by
applying the Dulmage-Mendelsohn decomposition on the graph
adjacency matrix whose diagonal has been made zero-free [29].

4.2. The preprocessing

We propose to apply a doubly stochastic scaling on networks as
a preprocessing for community detection. As discussed in section
4.1, some requirements have to be fulfilled to ensure that the net-
work can be scaled, which depend on whether the graph is direc-
ted. The steps to follow to scale a matrix A € R}*" are described
in algo. 1 if A is the adjacency matrix of an undirected graph,
respectively in algo. 2 if the adjacency graph of A is directed.

! This implies that nodes from different strongly connected components cannot
end within a same community.
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Algorithm 1: Preprocessing Undirected Graphs

Data: A symmetric matrix A € R7*".,
Result: A doubly stochastic matrix § € RT*".

1¢+ 1078 x min (a;)
i,j:a;%#0

2 S = symscalone(A + ¢l)

Algorithm 2: Preprocessing Directed Graphs

Data: A non-symmetric matrix A € R},
Result: A doubly stochastic matrix S € RY*?, with p < n.
1 B —largest block returned by dmperm(A +1)

_8 .
2e6—10°x Ug}irio(bu)

3 S =RAS(B + ¢l)

In algo. 1, symscalone is the method from [31] that can compute
a doubly stochastic scaling of a general square matrix with total
support. It is well designed for symmetric matrices in particular,
because it preserves matrix symmetry. In algo. 2, dmperm is the
Dulmage-Mendelsohn decomposition, evoked in Remark 1. When
applied to A +1, it returns the strongly connected components of
the adjacency graph of A. The largest component is then scaled
using the so-called RAS or Sinkhorn-Knopp Algorithm [26,30]. For
both directed and undirected networks, the adjacency graph of
the doubly stochastic matrix S returned by the algorithm is the
one on which communities are then detected. For directed net-
work, it means that only the largest strongly connected component
is partitioned. However, this is straightforward to extend to the
whole graph, by scaling and partitioning each component in turn.

For both algorithms, it is necessary to add entries in the diago-
nal of the matrix to scale, to ensure that conditions from Theorem 1
are verified. We remark that adding diagonal elements leaves the
community structure intact, as the community structure of a graph
is linked to the diagonal block structure of its adjacency matrix,
which is not impacted by its diagonal entries. In both versions of

the preprocessing, we choose to add very small entries (10~% times
the matrix smallest entry) to impact as little as possible the numer-
ical values in the final scaling. This is an empirical choice which is
not theoretically justified, and it would be interesting to analyse
how these diagonal entries impact the final scaling. We leave this
analysis to further work.

4.3. Impact of the preprocessing on synthetic and real-world data

Rationales on Toy Examples. Our intuition that the doubly
stochastic scaling may improve community detection comes from
the two toy examples from Fig. 1, used in section 1 to illustrate the
difficulty of detecting some community structures. First, doubly
stochastic scaling leverages the weight of the edges in small and
large communities. One may think at a trivial example, where a
simple graph is composed of two disjoint communities of different
size n; > ny, such that the probability for two nodes in a same com-
munity to be linked is equal to p;,, for both communities. Then, in
average, a node in the large community shares more links with
nodes from its community than a node in the small community
(pin X M1 > P x N2). This is not true anymore if we look at the dou-
bly stochastic scaling of the adjacency matrix. In this case, every
node in both communities shares strictly the same amount of
edges with nodes from its community, that is 1 by definition of
the doubly stochastic scaling.
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Secondly, doubly stochastic scaling can rationally be expected
to mitigate against an existing imbalance in the direction of edges,
because of its so-called vanishing effect. To understand it, we
explain the behaviour of doubly stochastic scaling on
A= {(1) ” This matrix has no total support. Thus, according to
Theorem 1, it is not amenable to a doubly stochastic form. Never-
theless, doubly stochastic scaling algorithms provide scaling fac-

tors r and c that tend towards (0,+co)’ and (+oc,0)"
respectively, so that the doubly stochastic scaling of A tends
10
towards S = {0 1
ished [30,26].

As a matter of fact, the proposed preprocessing indeed improves
the detectability of community structures of the toy examples
from Fig. 1: Louvain algorithm applied directly on the graphs fails
to detect their structures; on the other hand, when applied on the
preprocessed graphs, it returns their ground truth community
structures, as shown in the right panels of Fig. 1.

Food Web of Florida Bay. Here we observe the impact of the
proposed preprocessing on the network of trophic dynamics
within Florida Bay. In this directed network, a node is a com-
partment and an edge indicates carbon exchanges—roughly, an
edge from node a to node b means that species in compart-
ment a are eaten by species in compartment b. The network
contains 128 compartments, that can be divided onto 9 types
according to [32], namely Phytoplankton producers, Seagrass
and seagrass roots, Microfauna, Macroinvertebrates, Fishes,
Birds, Reptiles, Mammals, and Detritus. According to [33], this
partitioning into types corresponds to the network underlying
community structure. The largest strongly connected compo-
nent contains 103 compartments: 11 are Microfauna, 22
Macroinvertebrates, 47 Fishes, 16 Birds, 3 Reptiles, 2 Mammals,
and 2 are Detritus.

The matrix S € RP*P returned by algo. 2 is illustrated in Fig. 2.
The ground truth community structure is indicated by the black
lines. Because numerical values range from 1 to 10~%2, only entries

higher than 107'? are plotted. Nonzero entries below this threshold
are shown by black ‘+'s. From Fig. 2 we observe that the prepro-
cessing clearly tends to make vanish the edges between communi-
ties. This is highlighted by the high density of black ‘+'s in the off-
diagonal blocks, meaning that numerous entries in S off-diagonal
blocks have a value that falls below 107'2. To assess the extent to
which the preprocessing indeed sharpens the network community
structure, we need to compare the consistency of these communi-
ties on both the raw and the scaled networks. We base this com-
parison on the concepts defined below.

}, in which the off-diagonal element had van-

Definition 4. Community Structure Consistency. Assuming a
matrix M € R2*P and ¢ its ground truth community structure. The
level to which a node u € {1,...,p} belongs to a community C € ¥
is assessed” by ¢(u,C) = 7%;5:((3]’)) that is the ratio between the
g1

amount of edges that node u shares with nodes in C and the degree
of u. Thus, the average level to which nodes from community C € %
belong to community K € % is

O(C,K) = %Z(p(u, K), (4)

ueC
and matrix ® provides a view of the community structure

consistency.

2 ¢ is actually the opposite of the so-called mixing parameter introduced in section
6.2.
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Clearly, the higher the reflexive values of @, the more consistent
the community structure. We compute the values of ® for two
matrices that are symmetrisations of the raw and preprocessed

directed networks, namely B + B, where B is the adjacency matrix
of the raw network largest strongly connected component; and

S + ST, where S is the matrix S with its diagonal values put to 0.
We remove the diagonal because most of S diagonal entries are
scaled close to 1 (whereas they are initially very small). Thus, keep-
ing the diagonal provides spuriously high values for
d(C,(),VC € %, whatever the community structure.

These values of @ are displayed in Fig. 3. The three last commu-
nities that contain no more than 3 nodes are missed by both the
raw and the preprocessed matrices. And looking at the structure
of these communities restricted to the analysed component in
Fig. 2, it is indeed not possible to consider them as standalone com-
munities, without having been told so. The community corre-
sponding to the Birds tends to be merged with Fishes by both
raw and preprocessed networks. This is also in line with what
can be observed from Fig. 2. Finally, the three non trivial commu-
nities corresponding to Microfauna, Macroinvertebrates and
Fishes, are assessed as fairly consistent in the preprocessed net-
work (lowest reflexive value of @ is 0.58, highest non reflexive
value is 0.26). On the other hand, in the raw component, Micro-
fauna and Macroinvertebrates are missed and merged with Fishes.
We also remark that the preprocessing has more impact on the
consistency of smaller communities—reflexive ® values are 3.74
times higher in the preprocessed network than in the raw one
for Microfauna and Macroinvertebrates, 1.73 for Fishes. These
observations illustrate the potential of the proposed preprocessing
to increase the detectability of community structures within net-
works with an imbalance in edge direction between communities,
as well as small-size communities.

5. Generalisation of some graph partitioning measures to
weighted networks

In this section, we investigate six measures—or criteria—that
assess the quality of a community structure on a graph, namely:
the Newman-Girvan modularity [6], Balanced modularity [13],
the Deviation to Uniformity criterion [Chap.5.2.6] [34], the Devia-
tion to Indetermination criterion [13], the Zahn criterion [35] and
the Correlation Clustering criterion [36].

This list of graph partitioning measures is not exhaustive. These
measures are actually the linear criteria from [34]. Formally,
denoting by F a criterion that assesses the quality of a community
structure on a graph represented by its adjacency matrix, F is a lin-
ear criterion [25] if it can be written as

F: R™ xEq(n) — R

— ii@(a,‘j)xi\j + K’ ®)

i=1 j=1

(A, X)

where A and X are respectively a graph adjacency matrix and a
community structure, ¢ : R — R is a function and K is some con-
stant scalar.

For each criterion, we address three points:

e We explain quickly the measure background, that is how it
works and why it assesses community structures, as well as
its formulation.

e Most of these measures are initially designed for unweighted
networks, and some have been generalised to weighted graphs
afterward. When such a generalisation exists, we may either
use it or derive another one that we find more suitable for the
community structure detection on doubly stochastic graphs.
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Fig. 3. @ values for the raw network (left) and the scaled network without self-loop (right). The three first communities are much more consistent in the scaled network
(diagonal @ values are dominant) than in the raw one.

We hence discuss the measure generalisation to weighted 5.1. Newman-Girvan modularity
graphs and especially to doubly stochastic ones.

e We provide a reduced form for the problem of finding the best Principle. The Newman-Girvan modularity introduced in [6] is
community structure on a graph represented by its adjacency the most famous graph partitioning measure. The idea behind this
matrix A using a criterion F. Namely, this problem is expressed criterion is that a community structure in a network actually char-
as acterises the property of assortative mixing in this network [37].

The assortative mixing is the tendency of similar nodes to draw
X' = argmax (F(A, X) = 2(45(%‘) _ ¢(aij))xu)» (6) connection amongst t_hemsel\{es instead than with dissimilar
XeEq(n) 5 nodes: as an example, in a social network, people who speak the

same language or have similar sociological background have more
where ¢ and ¢ are two functions in R, respectively called the chance to be friends. Hence, given an assortative network, a good
positive and negative agreements, as in [34]. This reduced form community structure is one such that the fraction of edges that
allows us to compare the criteria in section 6. connect nodes in a same community is high.
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However, this notion cannot be used as a standalone. Indeed,
the trivial structure that brings all the nodes in a same community
always maximises this fraction of edges. Thus, to derive the mod-
ularity, Newman and Girvan also assume that random graphs do
not exhibit a community structure [6]. The modularity is hence
designed to compare the fraction of intra-community edges in a
network with the expected fraction of intra-community edges in
random graphs with the same degree sequence than the initial
graph (i.e. generated by the configuration model). In the configura-
tion model with degree sequence {dy,...,d,}, the probability of an
edge between two nodes i and j can be approximated by d;d;/2m.
The modularity is thus defined as

ZZZ(ﬂ’ddj/zm)

Ce% ieC jeC
with A the adjacency matrix of the network, and ¥ a community
structure. In turn, this can be re-written (as in [38])

1 did;
et = 505 (a0 b
ij

with X € Eq(n) the matrix representation of the community struc-
ture .

Generalisation. The initial Newman-Girvan modularity from [6]
is designed for unweighted graphs only. In [38], Newman proposes
two steps to generalise modularity to weighted graphs. First, he
investigates multi-graphs, that are simple networks in which two
vertices can share more than one simple edge, as in Fig. 4. Newman
generalises some basics from simple networks to multi-graphs to
derive an adapted modularity. Namely, let A € N™" be a multi-
graph adjacency matrix: 1) The degree d; of a vertex i in the
multi-graph is the number of simple edges adjacent to
i:di=>,air. 2) The constant 2m becomes the sum over the
degrees, that is 2m =) ,d;. With these simple adaptations of
degrees and number of edges, Newman generalises the modularity
by simply applying Eq. (7) to multi-graphs, with a;j,d; and 2m as
defined above.

Secondly, modularity is extended from multi-graphs to posi-
tively weighted graphs with the following remark: Given a graph
whose adjacency matrix can be written as A = N, with « € R,
and N e N™", and considering d; = ,a;x and 2m =3 ,d;, then
for any X € Eq(n), the results of the formula from Eq. (7) applied
to A and to N are equal. Hence, the modularity as defined in Eq.
(7) can be extended to graphs for which it exists a unit flow—i.e.
an o—allowing to consider them as multi-graphs.

We show in [Property 1] [39] that for every square matrix
whose entries are rational, a unit flow can be found, but that this
is not true for any weighted matrix. However, we also provide
[Property 2] [39] a proof that Eq. (7) can be extended to any undi-
rected positively weighted graph®. We thus apply directly Eq. (7) to
doubly stochastic matrices in the following.

Reduced Form. Given an adjacency matrix A, finding the best
community structure in the sense of the Newman-Girvan modular-
ity provided in Eq. (7) is equivalent to maximising the function

did; x
2m )"

This provides the reduced form of Eq. (6), with positive and neg-
ative agreements equal to respectively ¢(a;)=a; and
$(a,-_j) = d,dJ/Zm

FNG

(7)

xH%mm:z@J (8)

ij

3 Since [38], modularity has been widely applied to any positively weighted graph.
However, as far as we know, [39] is the first proof that Eq. (7) can be consistently
applied to these graphs.
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Fig. 4. A weighted graph with positive integer edges (left) and the corresponding
multi-graph (right).

Moreover, in a doubly stochastic graph, Vi,d; =1 and 2m = n.
Thus, for a doubly stochastic matrix S, we can simplify the
Newman-Girvan modularity as

mw%@mzxxm—am, 9)
8]

and the negative agreement ¢(s;;) = 1/n does not depends on i,j.
5.2. Balanced modularity

Principle. This criterion is proposed in [13] to complete the
Newman-Girvan modularity. Recall from section 5.1 that, given a
simple graph G=(V,E) and a community structure, the
Newman-Girvan modularity compares the ratio of edges within
communities—i.e. intra-community edges—with the expected ratio
of intra-community edges within a random graph with the same
degree sequence than G. Then, the idea behind the Balanced mod-
ularity is to also take into account the ratio of inter-community
edges. In other words, the Newman-Girvan modularity considers
that a good community structure on G should have a ratio of
intra-community edges “higher than by chance”, whereas the
Balanced modularity considers that a good community structure
should have a ratio of inter-community edges lower than by
chance as well.

To take into account the ratio of inter-community edges, the
Balanced modularity focuses on the complementaries of the
graph and the community structure. We can state its concept
as follows. Let us denote by @ :R™" x R™" — R the function

such that
n n
(s
k=1 _/ [ b
Zzak.l

k=1 I=1

®(A,B) =

> |wi-

ij

ijs

which is equivalent to the Newman-Girvan modularity from Eq. (8)
when A is an adjacency matrix and B € Eq(n). Thus, given A the
adjacency matrix of a simple graph and X a community structure,
the Balanced modularity is defined as
&MA&=®mm+®@X) (10)

An explicit formula can be derived from Eq. (10) by expressing
the degrees and number of edges in the complementary of a simple
graph through those from the graph. It can be indeed observed
from Fig. 5 that

N}, di = iai,k =n—d;

de =n?- Zd =n?-2m

vie{l,...
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a b ¢ d e
af0 1 1 0 0 de =2
b1 0 1 1 0 dy =
@—@ < c¢|1 1 0 0 of d.=2
dlo 1 0 0 1 dg=2
@7@ e\0 0 0 1 0 d.=1

= > di =10
k

a b ¢ d e
afl1 0 0 1 1 d, =3
bfo 1 0 0 1| dy=2
(o= c|o 0 1 1 1| d=3
dl1 o 1 1 0 dg=3
e\l 1 1 0 1 de =4

)

— Y dp=15=25-10
k

Fig. 5. Top: A simple graph and its adjacency matrix. Bottom: the corresponding
complementary graph and its adjacency matrix. Degree of each node is given next
to the corresponding row, the sum of degrees lies below the matrices.

Hence, we can write

> (o -

d;d;
ﬁ)"i.j
ij
(n— n d)
+Z n2 om Xl.jv

which is the formula of the Balanced modularity provided in [13].

Generalisation. The Balanced modularity is built on the comple-
mentary of the graph, which stands for simple graphs only. How-
ever, a generalisation of this criterion to weighted graphs is
proposed in [25]. It consists in stating that @; = n'lt(cllx(ak_,)f

Fem(A,X) =
(11)

G;j = Gmax — G;5 in EqQ. (11). But this generalisation does not fit with
the spirit of this criterion as stated in Eq. (10), because it does not
update d; and Y ,d; according to the new definition of
A = a,J — A in the second sum of Eq. (11). That is, it does not
inject the weighted generalisation of A in Eq. (10). Hence, we pro-
pose another generalisation. Considering that, for a weighted graph
defined by its adjacency matrix A, the complementary of A can be

expressed as A = o x J — A, with « a scalar (that may depends on
A). Thus, the degrees of nodes in the complementary graph are

_ n
Vie{L...m},d,-:z:ﬁ,-,k:ocxn—di
k=1

n _ n
D di=oxn? =Y di=0axn?-2m
k=1 k=1
By injecting A in Eq. (10), the Balanced modularity becomes

did;
Z Qij = 5m ) Xij

7
+Z( —aj) -

It remains to discuss the value of «. First, we remark that, for A
the adjacency matrix of any simple graph, the graph associated
with A+ A is the complete graph with self-loop: it is not possible
to add any edge in this graph, that is, all edges are saturated. In a
general case, given A< R} the adjacency matrix of some

Fam(A.X) =
(12)

oxnZ—2m

acxn—d,»)(xxn—dj)))_(
———)X;;.
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positively weighted graph, without any other knowledge on the
graph, we can assume that an edge is saturated if its value is
Omax, With apmey as defined above. In this case, we cant state
A = a,J — A as in [25]. This generalised Balanced modularity is
provided by setting o = anq in Eq. (12), which is slightly different
than changing @;; for an. — a;; in Eq. (11), as proposed in [25]. For
doubly stochastic graphs, there is an upper-bound on the weight of
an edge, that is 1. Indeed, as a doubly stochastic graph is a 1-
regular, positively weighted graph, no edge can have a weight
above 1. Hence, 1 is the value that saturates an edge, and we can
state « = 1 in Eq. (12) if the matrix is doubly stochastic.

Reduced Form. We derive the reduced form for the formula
given in Eq. (12), as this formula can be used for weighted and sim-
ple graphs as well (by setting o = 1, it becomes equal to Eq. (11)
when A represents a simple graph). Recalling that X =] — X—or
equivalently, Vi,j,X;; = 1 — x;j—, maximising Eq. (12) is equivalent
to maximising

Feu (A, X) =

Z (ai.j i (om—d;)(an—d;) _

20n2—4m
ij

o2m+d;d;
am )i

and the positive and negative agreements for the Balanced modu-

(13)

larity in the general case can be stated as respectively
(on—d;)(on—d; 2m+d;d
o(ay) = @y + ) and §(ay;) = e

However, for a doubly stochastic matrix S, the formula of Eq.
(13) can be greatly simplified. With o« =1, by remarking that
Vi,di=1and 2m=n

e

Fou(S,X) =) (s,» i+
ij
- Z (S‘J 2n2 2n Lnl)xi-j
= Z Sij + 1 = Bah)Xi
= Z Si,i — E Xj‘j.,
ij
which allows us to simplify the positive and negative agreements as

&(sij) = sij and ¢(s;;) = L, with the latter one that does not depends
oni,j.

(n-dp)(n-d;)  2m-dd;

2n2—4m 4m

5.3. Deviation to uniformity

Principle. This criterion, proposed in [Chap.2.5.6] [34], is based
on a principle very similar to Newman-Girvan’s one. The concep-
tual difference between these two criteria is that, given a graph
and a community structure, the Deviation to Uniformity criterion
compares the ratio of intra-community edges within the graph
with the expected ratio of intra-community edges within J-
regular random graphs, by stating ¢ as the average degree in the
initial graph—whereas the random model in Newman-Girvan mod-
ularity has the same degree sequence than the initial graph. Such a
random model corresponds to graphs where edges are uniformly
distributed among nodes. Thus the probability that there is an edge

between two nodes i and j is equal to % where d;s are the
degrees of the nodes in the initial graph. Hence, given A € RT*"
the adjacency matrix of some positively weighted graph, and
X € Eq(n) a community structure, the Deviation to Uniformity
can be written as

>

—— | Xij-

Fou(A,X) = 2

(14)

> |-

ij
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This criterion is defined for weighted graphs such that those
that fall into the scope of this study, so we do not discuss its
generalisation.

Reduced Form. The reduced form
Fpuy(A,X) = Z(d)(ai.j) - a(ai.j))xi.j

ij
is directly derived from Eq. (14) by stating the positive and negative
agreements as respectively ¢ (a;;) = a;; and ¢(a;;) = Zigdk. For a dou-
bly stochastic matrix S, then },d; =n and the criterion from Eq.
(14) can be simplified as

Fao($.X) = 3 (s )

ij
The negative agreement thus becomes ¢(s;;) = 1.

n

(15)

5.4. Deviation to indetermination

Principle. This criterion introduced in [13], is based on the prin-
ciple of indetermination between two categorical variables as
explained below. Given a set .~ of M objects, and P, Q two categor-
ical variables on . A categorical variable indicates the category
taken by an object from the set. For instance, the objects can be
human beings, and the categories are mother tongues, or first
names, as long as we can consider that each human being has only
one mother tongue and only one first name. Formally, we state

Po s = Apvbad g Q0 o {40
u - P(u) u - Q(u)
where {p,,...,p,} are the categories of variable P—e.g., languages if

P(u) is the mother tongue of individual u—, respectively {q;,...,q,}
the categories of variable Q. We remark that, as a unique category is
attributed to each object by a variable, P and Q also represent equiv-
alence relations—two individuals named Morgan are in relation
according to the Q that represents first names. We remark that P
and Q can be represented by two matrices P € {0,1}*, respec-
tively Q € {0,1}"°, such that

(1 ifP) =p, .
P,1 = {0 otherwise ’ Qu1) = {

which allows us to write the equivalence relations defined by the
P and Q C? =PP" € Eq(M), respectively
C? = QQ' € Eq(M). We can also derive their contingency table
N =P’Q, with

nij=|{u e ¥ :P(u) =pandQ(u) = q;}|

the number of objects with both category p; from P and category ;
from Q.

Given these matrix notations, we explain below the indetermi-
nation between categorical variables. Considering two categorical
variables as two equivalence relations, an interesting problem is
to measure their association [40]. This is done by comparing the
agreements and disagreements between the two variables—these
notions are illustrated in Table 2. Indetermination is a special case
of association. Strictly speaking, one says that two variables are
indetermined if their number of agreements is equal to the their
number of disagreements, that is

1 if Qu) =g
0 otherwise

variables as

(q)

(e x e+ xefh) = >

u,v

uves
The notion of indetermination can be generalised to allow one
to weight positive and negative cases differently. Indeed, it might
worth to give more weight to objects that are related than to those
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Table 2
All possible agreement/disagreement relations between two objects u and v
according to two categorical variables P and Q.

P\Q Q) =Q(v) Q) # Q(v)
P(u) = P(v) agreement disagreement
P(u) # P(v) disagreement agreement

that are not [41]. Recall that 7 (respectively ¢) is the number of
categories for variable P (respectively Q), an interesting generalisa-
tion of indetermination is to weight positive cases with 7 — 1 and
negative cases with 1 in P, respectively ¢ — 1 for positive and 1 for
negative cases in Q. This provides the following equality for
indetermination

(m-1)(e-1) > chxch+ Y alxah =

uvey uvey (1 6)
(-1 alyxalh+©@-1)Y alyxal
uved uved

This choice of weights is special because two categorical vari-
ables that verify Eq. (16) verify also other properties, e.g. they make
vanish the so-called Jansen-Vegelius criterion, one of the most
famous association criteria. Besides, Eq. (16) is strongly related to
another special case of association, called the geometrical indepen-
dence—see [41] for comparisons and discussions about the differ-
ent notions of independence and indetermination. From here, we
use the term indetermination to speak about the generalised inde-
termination weighted as in Eq. (16).It is shown in [41] that Eq. (16)
can be rewritten using the contingency table N as

donie >ong
t s

M
+ —

"nxo

v17] PNy —

g T

Thus, for any contingency table N € NP*9, the deviation to inde-
termination is measured by

Zn,;[ Znsj Znt,s
D | mi- tq - =

ij

ET (17)

The Deviation to Indetermination criterion is based on Eq. (17),
and can be understood as follows. Let N € NP*P be a contingency
table built on two variables with the same categories

P,Q € {0,1}®, thus, an equivalence relation X e Eq(p) that
maximises

Zn,»_[ Znsj Znt,s
ts
2\mm T

ij

XiJ‘ (18)

groups together categories such that P and Q are highly determined
(or far from the indetermination) when restricted to categories from
a same group. The parallel with community structures is done by
remarking that a multi-graph can be seen as the contingency table
of two categorical variables, whose categories are nodes and which
are defined on a set % consisting in the end nodes of edges. An
example is provided in Fig. 6. In this figure, the edges of a multi-
graph are named ey, ..., es, and we define two categorical variables
on their end nodes. Namely, each edge can be written e = (u, v),
where u and v are the end nodes of e, with u the source node
(e(s)) and v the target node (e(t)). As the direction of an edge is
immaterial in a undirected graph, the two categorical variables
are created by swapping the role of end nodes—e.g. in Fig. 6, P sees
e1 = (a,b), whereas Q states e; = (b, a).
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@ |a b ¢ d

e ¢s al0 1 0 O

€3 <~ N-= b|1 0 1 2

e1 €9 C 0 1 0 1

d|{0 2 1 0
a b ¢ d a b ¢ d
ei(s)[1 0 0 O ei(s) |0 1 0 O
ex(t) [0 1 0 0 e |1 0 0 0
e2(8) |0 1 0 O e2(s) |0 0 1 O
e2(t) |0 0 1 0 e2() |01 0 0
P=] e(s)|0 1 0 O and Q=1 es(s) |0 0 0 1
es(t) |0 0 0 1 es(t) [0 1 0 0
ea(s) |O 1 0 O ea(s) |0 0 0 1
es() [0 0 0 1 es(t) |0 1 0 0
es(s) |0 0 1 0 es(s) |0 0 0 1
es(t) [0 0 0 1 es(t) [0 0 1 0

Fig. 6. Top: A multi-graph (left) is the contingency table (right) of two categorical variables. Bottom: In these categorical variables, variables are edges and categories are end
nodes. For undirected graphs, source and target end nodes can be swapped (right versus left).

Thus, considering A € N™" the adjacency matrix of some
multi-graph as the contingency table of two such variables, one
can look for the community structure that groups together the
nodes such that these two categorical variables are highly deter-
mined when restricted to these nodes. Roughly, given such a
group of nodes, it means that most of the edges have either both
or none of their end nodes in this group. By adapting Eq. (18) to
the specific case of multi-graphs, we remark that finding such a
community structure is equivalent to finding X € Eq(n) that
maximises

d
0, "
n

g
g

Foi(A,X) =

ij

X,'Ju (19)

n2

Generalisation. This criterion is naturally defined on mutli-
graphs, since we can write them as contingency tables. Using
the same trick than for Newman-Girvan modularity, this crite-
rion can be directly applied to undirected positively weighted
graphs.

Reduced Form. The Deviation to Indetermination criterion from
Eq. (19) can be rewritten as in Eq. (6) by choosing the positive
and negative agreements as respectively

)

Cl,'-l-d'
¢ (i) = aij + .

n

and $(au) =

For a doubly stochastic matrix S, simplifications can be
done. Indeed, since Vi,di=1 and  ,dy=n, Eq. (19) can be

simplified as
1
Sij — E Xij.

The positive and negative agreements become respectively
$(sij) = sij and $(s;;) = 1/n, the latter not depending on i,j.

Foi($,X) = (20)

ij
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5.5. Zahn criterion

Principle. Strictly speaking, the Zahn criterion does not assess
the consistency of a community structure on a given network.
However, it can be straightforwardly extended to such a purpose.
The Zahn criterion is designed to compare two relations over a
set of objects [35]. More precisely, given a finite set V and a sym-
metric relation # over this set (that is V(u,v) € V x V, 2 verifies
uRv < vZu), Zahn wants to find the equivalence relation 2
which is the closest to #. To this aim, Zahn designs a distance
between two relations by considering both relations as subsets of
the cardinal set V x V, and counting the number of pairs that
belong to only one subset. An example is provided in the top panel
of Fig. 7, where the symmetric relation # and the equivalence rela-
tion 2" are defined on a set V = {a, b, c,d, e}. They are represented
as subsets of V x V by grids, where a coloured cell means that
the two corresponding objects are related. For instance, by looking
at the row of object a in the grids, we see that a#b and aZc for %,
and aZa,aZb, and aZ'c for Z. This can be rewritten (a, b), (a,c) € #
and (a,a),(a,b),(a,c) € Z. In both grids, the dark coloured cells
correspond to pairs of objects that belong to both relations and
the light ones are pairs that lie in only one subset. With this map-
ping between the relations defined on a set V and the subsets of
V x V, the distance defined by Zahn is

Ay (R, 2) = |T %] + |7 2|, (21)

with # a symmetric relation, and 2" an equivalence relation.

In [34], it is proposed to use this criterion to assess community
structures on simple graphs, by remarking that a simple graph can
be characterised by a symmetric relation over the set of its nodes,
and a community structure on this graph is an equivalence relation
over the graph nodes as well. The bottom panel of Fig. 7 illustrates
the relations # and 2 as respectively a graph and a community
structure. Zahn distance is also rewritten in [34] to get a matrix-
oriented formulation of this criterion. Denoting A the adjacency
matrix of the simple graph associated with the symmetric relation
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ReVxV: (RNX)U( )
d
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XeVXV: X=(XNR)U(XNR)
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Fig. 7. Top: The Zahn distance defined between two relations is based on the set
representation of these relations. Coloured cells indicate pairs of related objects.
Bottom: A symmetric relation can be seen as a simple graph. An equivalence
relation corresponds to a community structure.

2, respectively X the matrix representation of the equivalence
relation %,

ANT ={(i,j) e VxV:a;(1-x;)#0}
ENR= {(l,]) EVXV:X,‘J‘(‘I —au) #0}

Hence, Zahn distance can be rewritten as
dz(A7 X) = %Z(aiﬁi_j +x,-J-ﬁ,-_j). (22)

ij

When used for community detection, the Zahn criterion is often
stated as equivalent to the so-called Condorcet criterion [34]. How-
ever, in [Chap.1.1.3] [39], we show that the Condorcet criterion
cannot be extended to the problem of finding the best community
structure given a graph.

Finally, we observe that the criterion of Eq. (22) defines a dis-
tance in the formal mathematical sense (i.e., it is positive, symmet-
ric, separable and verifies the triangle inequality). This does not
hold anymore for any generalisation presented below.

Generalisation. Zahn distance, originally designed for compar-
ing relations over a finite set, is straightforwardly extended to
simple graphs and community structures. On the other hand,
its generalisation to weighted graphs is not as straightforward
since there is no trivial matching between a weighted graph
and a symmetric relation. However, a generalisation of Zahn cri-
terion to weighted graphs is proposed in [25]. It is directly
derived from Eq. (22) by defining the complementary of the
real-valued matrix A as A = dpeJ — A, With dpe = ml_(sz(aiJ-). This

leads to the criterion

71 (A, X) = %Z(a,—_j(l = Xij) + Xij(Amax — Gi)). (23)
ij

Nevertheless, we propose other generalisations, as this one does
not always seem suitable. Indeed, the purpose of generalising cri-
teria to weighted graphs is to enable them to assess community
structures on preprocessed doubly stochastic graphs. Assuming
that a graph before preprocessing is simple and thus associated
with a symmetric relation # over its set of nodes. Calling S the
adjacency matrix of the preprocessed graph, and X some commu-
nity structure. Then, with Zahn criterion as defined in Eq. (23):

e There is an imbalance between the impact on the criterion of
pairsin # N7 and in 2 N Z. Any pair in Z N 2 results in a penal-
isation of the criterion equal to sS4, Whereas a pair in 2N%Z

151

Neurocomputing 504 (2022) 141-162

results in a penalisation equal to s;; < Sma. Hence, each pair in
2 N Z penalises the criterion equally to the highest penalisation
that can be reached by a pairin N 7.

e Except for pairs (i,j) such that s;j = Sy, every pair that lies in
2 N 2 penalises the criterion.

We believe that these points are non desirable aspects of the
previous generalisation of Zahn criterion. For this reason, we pro-
pose other generalisations. As authors of [25], given a positively
weighted matrix A, we choose generalisations that simply redefine
the complementary of A in Eq. (22). That is, we define the gener-
alised criterion as

d7 (A,X) =D (aij(1 = xij) + (% — aij)),

ij

(24)

with o« some constant to set up. We find that choosing « as the mean
element of the matrix A, that is, o = Qyean, 1S a good trade-off to mit-
igate against the two drawbacks listed above:

e Each element in Z N % penalises the criterion with the mean
value of the adjacency matrix.

¢ An element in 2 N % penalises the criterion only if its value is
lower than the adjacency matrix mean value. Otherwise it even
favours the criterion.

We consider two possible definitions of o = @yeqn, Namely

1
Amean = ﬁzaija and (25)
ij
Omean = 1 aij 26
mean = ﬁz i+ ( )

ij

We denote by dy, the criterion from Eq. (24) obtained with
0 = Amean from Eq. (25), respectively d‘Z’f3 the one obtained using
Ol = mean from Eq. (26). Different behaviours of dy;,d;, and dy
are illustrated on a toy example in Fig. 8. This figure shows a
weighted graph with two disjoint components, where each compo-
nent is a clique with its unique own edge value. In red and in blue,
two community structures are proposed, that we denote respec-
tively X, and X,. The criterion from Eq. (23) considers that X, is a
community structure that better approximates the ground truth
structure of the graph than X;. On the other hand, the criterion
dy, states that X; is better than X,, which may be a more desirable
situation. Finally, d7, considers the two structures as equivalent.

Remark 2. With both generalisations from Eq. (24) using
o = Umean, Negative values are possible, and the symmetry is not
preserved (dz(A,X) # dz(X,A)), whereas Eq. (23) ensures the
positivity of the results and preserves the symmetry, since
VX € Eq(n), Xmax = 1.

Reduced Form. We now aim to find formulations of Eqs. ()()()
(22)-(24) that fit with the reduced form from Eq. (6). We first
remark that, given A the adjacency matrix of some graph, the Zahn
criterion dz(A, .) is an objective function that one aims to minimise,
whereas in Eq. (6), the criterion must be a function to maximise.
Hence, we express the opposite of d; and remark that minimising
the function given in Eq. (22) is equivalent to maximising

1
(a,-J — i)xu.

For unweighted graphs, the positive and negative agreements of
the Zahn criterion are thus respectively ¢(a;;) =a;; and

Plaiy) =1/2.

X Fz(AX) =)

ij

(27)
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Fig. 8. A weighted graph and two community structures X, (in red) and X, (in blue),
for which dy; (A, X,) = 5 > d5, (A, X,) = 4,d5, (A, X,) = =2 < d, (A, X;) ~ —0.7, and
dy5 (A X;) = dy5 (A, Xp) = 2.

£t = {{1,2},{1,4},{3,4}}
= it e{igh) =+}
BT = {{1,3},1{2,3},{2,4}}

{i, g} - €{i.j}) = -}

Fig. 9. In the graph to the left, the green edges are similarities between the nodes
they link. The set of these edges is denoted by E*. The orange edges link nodes that
are dissimilar. The set of these edges is denoted E.

For weighted graphs, the opposite of d; from Eq. (24) produces
the following reduced form for Zahn criterion

FYAX) =3 (o - %)xu,

ij

(28)

with o = max(a;;) for the generalisation of Eq. (23) and o = @yeqn for
ij

the generalisation proposed here. Moreover, this second generalisa-
tion on a doubly stochastic matrix S implies that o = 1/n using Eq.
(25), respectively a = n/nnz using Eq. (26). Both negative agree-
ments ¢(s;;) = 1/2n and ¢(s;;) = n/2nnz do not depend on i,j.

5.6. Correlation clustering criterion

Principle. The Correlation Clustering is first introduced by Bansal
et al. in [36]. Their problem can be stated as follows. Given a set of
objects such that, for each pair of objects, one knows if the objects
are similar or dissimilar, the aim is to find a clustering that “max-
imises agreements”, or equivalently “minimises disagreements”.
They model the set of objects as a complete graph such that each
pair of nodes (objects)—or equivalently, each edge—has a label “
+" if objects are similar, and a label “-" if objects are dissimilar
(see Fig. 9), and give a formal definition of maximising agree-
ments/minimising disagreements.

e Maximising agreements means finding a clustering with both as
many edges labelled “+” having end nodes in a same cluster as
possible, and as many edges labelled “~” with end nodes in dif-
ferent clusters as possible. With notations from Fig. 9, it means
solving

argmax

XeEq(n) (it

( doxiit+ Y xu)
{id)<E"

e Minimising disagreements means finding a clustering with both
as few edges labelled “+” with end nodes in different clusters as
possible, and as few edges labelled “—” having end nodes in a
same cluster as possible. With notations from Fig. 9, it means
solving

152

Neurocomputing 504 (2022) 141-162

argmin

XeEq(n) {ijreE~

( SR+ Y x,J)
{ijyeE*

One of the authors’ rationales for formalising a clustering prob-
lem as a Correlation Clustering problem is that, on the contrary of
other clustering methods that used to exist, the Correlation Clus-
tering problem can be solved without setting the number of clus-
ters in advance. This makes this technique particularly suitable
for community detection, where the number of communities is
generally not known [36].

Demaine et al. extend the Correlation Clustering problem to
general weighted graphs in [42]*. Given a weighted, labelled graph
= (V,E, Q,¢) where.

Q: E — Ry, . .. .
g .., indicates edge weights,
IR () SIS OIC (%)Y ge welg
/: E — {+,-}

. indicates edge labels,

{ijy — ({ij})

they focus on a generalised formulation of the “minimising dis-
agreements” problem by looking for

(Z{u}eE {l J} Xij + Z{u}eE {17]}))‘1])

({ig}) ({ijh=+

argmin (29)

XeEq(n)

In [34], it is proposed to separate positive and negative labels in
the weight indicator Q, that can be expressed as creating two func-
tions Q" and Q" such that

O E — [RQ
and

QO . E — R,

G e = { o i)ftlife{in:\{i}s)e.:_

This allows to simplify Eq. (29) as

argminy " (" ({i,j})%j + o~ ({i,j})xij).
XeEq(n) ij

(30)

By denoting
8cc(G.X) =Y (0" ({i,j)%j + o ({i,j})xis),
ij
we remark that minimising X — g« (G
ing a function d¢c defined by

X dec(GX) = > (o ({i.j}) -

ij

,.) is equivalent to minimis-

" ({i,j})xi;. (31)

Generalisation. The case of graphs with positive and negative
edges is beyond the scope of this study. However, in positively
weighted networks, it is natural to assume that an edge indicates
that its two end nodes are similar. In turn, one can assume that dis-
similarities are indicated by an absence of edge. We use this idea to
generalise the Correlation Clustering criterion to positively
weighted graphs. For this purpose, we define the pattern of a
matrix as the following function

R {0,1}™"
M — 2M)=pP"

P

4 Bansal et al. generalise it for complete weighted graphs whose weights lie in
[-1,1] in [36].
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such thatptf = { . gfnérnise
weighted graph and A € R™" its adjacency matrix, the absence of
edge in G is characterised by J — P*. Thus, denoting by /% > 0 the
penalisation for clustering together nodes that are dissimilar, the
Correlation Clustering from Eq. (31) becomes

dic(AX) = 32 (2% (1-p8) - ay ),

ij

. Given G = (V,E, Q) some positively

(32)

where A is the adjacency matrix of some positively weighted graph,
and X is a community structure on this graph. The proposed gener-
alised Correlation Clustering hence depends on some parameter
4> 0 to set up.

Remark 3. When focusing on simple networks, this generalised
Correlation Clustering criterion is close to the ramepacc function
proposed in [43].

Remark 4. Another way to generalise the Correlation Clustering
criterion may be to consider that a positively weighted graph is
actually a complete graph, where an edge whose weight is equal
to 0 is the strongest case of dissimilarity. In this case, one can shift
the weights so that the graph has positive and negative values.
Given A the adjacency matrix, the most straightforward way to
do so is to consider that an edge is a dissimilarity if it is below

the mean value of A, that is % In this case, the criterion from
Eq. (31) becomes

dz)C(A7 X) = _Z

ij

which is equivalent to the formula of the Deviation to Uniformity
criterion developed in Section 5.3.

Reduced Form.

We aim to reduce the formula from Eq. (32) to make it fit with
Eq. (6). As the Correlation Clustering criterion defined at Eq. (32) is
a criterion to minimise to obtain the best community structure, we

look at its opposite. Minimising d’gc is equivalent to maximising

Fec(AX) = Z(ai_j —AX (] _pﬁi)>xij~

ij

(33)

The positive and negative agreements for this generalised crite-

rion are respectively ¢(a;;) = a;; and ¢(a;;) = 4 x (1 - pf_‘j).

6. Comparison of the criteria

In this section, we compare the criteria from section 5. In
Table 3, we recall the reduced formulations of these criteria when
applied on simple or doubly stochastic graphs.

6.1. Homogenisation on doubly stochastic graphs

The first key result directly observed from Table 3 is that, when
applied to doubly stochastic graphs, many criteria become equiva-
lent, as stated in Theorem 2.

Theorem 2. Given S ¢ R™" the adjacency matrix of some doubly
stochastic graph, and X € Eq(n) a community structure, thus

Fre(S,X) = Fyy (8, X) = Fpy (8, X) = Fy (S, X).
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Theorem 2 extends Theorem 6.1 from [34] that states that these
criteria are equivalent in the case of k-regular simple graphs. Fur-
thermore, the doubly stochastic Zahn modularities, while not
strictly equivalent to these four criteria, have very similar formula-
tions. Actually, one can draw a parallel between Zahn formulations
and the parametrised Newman-Girvan modularity, used to miti-
gate against the so-called resolution limit of the Newman-Girvan
modularity—that is, its unability to highlight small communities
[12]. This function is defined in [44] as

did

<ai.j - Vz—nDXi.j-,

with A the adjacency matrix of some simple graph, X € Eq(n), and
y > 0 the parameter. In Definition 5, we also define a parametrised
criterion for the doubly stochastic version of Newman-Girvan
modularity.

FI<IG(A7X) = Z

ij

Definition 5. Given S € R™" the adjacency matrix of some doubly
stochastic graph, X € Eq(n), and y > 0 a scalar, the parametrised
doubly stochastic Newman-Girvan modularity is defined as

FRd(8.%) = 3 (s - %)x,-_j.

ij
These parametrised versions of the Newman-Girvan modularity
are added to the list of criteria, as the last row of Table 3, for both
simple and doubly stochastic graphs. The doubly stochastic ver-
sions of the Zahn criterion can be expressed using Definition 5,
as stated in Property 1.

Property 1. Given S € R™" the adjacency matrix of some doubly
stochastic graph and X € Eq(n). The doubly stochastic Zahn mod-
ularities can be expressed as parametrised doubly stochastic
Newman-Girvan modularities, using the following values for the
) parameter:

e F2,(S,X) is obtained with p = 1Smax,
o F7,(S,X) is obtained with y =1,
e F$5(S,X) is obtained with y

__n
" 2xnnz(S)*

Thus, the Correlation Clustering criterion is the unique doubly
stochastic criterion from Table 3 that cannot be expressed as a
parametrised doubly stochastic Newman-Girvan modularity. We
now provide the main result of this study in Result 1.

Result 1. Generalising the criteria to doubly stochastic graphs
unifies those criteria. Namely, there are two families of para-
metrised criteria:

1. The Newman-Girvan-like ones

Y
FRd(8,X) =) (Su - E)Xu

2. The Correlation Clustering-like ones

F& (8, X) = Z(si.j —Ax (1 - pgj))x'ﬂ'

ij

)

Each criterion is obtained from one of these parametrised
criteria, using a specific parameter.
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Table 3
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Reduced formulations of the different criteria when applied on simple (respectively doubly stochastic) graphs.

Criteria If A represents a Simple Graph If S is Doubly Stochasic
Nevhzlnciafll-cﬁtfva“ Fre(A.X) = ¥2i; (aij - $2)xi; (S X) = X5 (sij — )Xij
odularity
Balanced —d)(n—d ; Fori(S,X) = 325 (sij — Dxij
Modularity Feu(A.X) =Y;; (ai it <n2"2 Sm’> _ 2 d,) X, B (S, X) = 3035 (Si — )i
'ije‘{ifa'tioﬁ to Fou(A,X) = Y2y (i) — 28 )i Fiy(8,X) = 3 (sij — )i
niformity
[ geviatign to Fol(A.X) = ¥ (ai,j o #)Xi.j Fpi(8,X) = (515 — )iy
ndetermination
FZ1(S,X) = Zi_j (Sij - S"‘iﬂ)xi\i
(Zja}lm Fz(A,X) = 32;(ai - $)xij
Modularity
Correlati FZ3(8.X) = 321 (Sis — ) Xig
orrelation — A \x
Clustering FCC (A,X) =37 (au (1 Pu))xu
Parametrised id) . Fol(S,X) = ij
Flio(A,X) = a; 1) x; i NG ( =321 (8iy — 2)xig
Modularity e Z,]( ” /2m) N Y

6.2. Numerical comparisons

In this section we compare the behaviours of the different crite-
ria to uncover community structures, applied on modular simple
graphs on one hand, and their doubly stochastic preprocessing
on the other hand. To that purpose, we optimise those criteria
using the optimisation framework proposed by the Louvain algo-
rithm [25].

Benchmark. For these numerical experiments, we build a range
of random modular networks, using eight Stochastic Block Models
(SBMs). In brief, SBMs are random models for generating networks
with some block structure, with prescribed probabilities of edges
within and between the blocks. Models in which intra-block prob-
abilities are higher than inter-block probabilities produce net-
works with community structures [45]. Each SBM is used to
generate 10 graphs of 1600 nodes, with an average degree equal
to 100 and 31 blocks: 16 blocks of 20 nodes, 8 blocks of 40 nodes,
4 blocks of 80 nodes, 2 blocks of 160 nodes and one block of 320
nodes. They all have one unique probability of intra-block edge
and one unique probability of inter-block edge, denoted respec-
tively p;, and p,,. These SBMs differ in the values of parameters
pin and p,,, which are chosen so that the community structures
of the random graphs become less and less sharp. The sharpness
of the community structure is assessed by the so-called network
mixing parameter [4]. The nodal mixing parameter measures the
strength of a node’s community membership by computing the
ratio between its links outside the community and its degree.
The greater the mixing parameter for each node, the weaker the
community structure. The network mixing parameter u is the
mean value of the nodal mixing parameters [11]. Two instances
from the benchmark are illustrated in Fig. 10. These are two mod-
ular networks generated by the SBMs with highest and lowest mix-
ing parameters. Finally, 80 benchmark graphs are built using SBMs
from the NetworkX library®, and preprocessed using algo. 1. The
pairs of intra- and inter-edge probabilities p;, and p,,, used in the
SBMs are showed in Table 4, along with the corresponding theoret-
ical mixing parameters, and the average mixing parameters
observed in the simple graphs, and in the doubly stochastic scaling
of these graphs, respectively. All numbers are multiplied by 10 to
improve readability. We observe that the mixing parameters of the
preprocessed graphs tend to be slightly below those of the simple
graphs, and of the theoretical value as well.

5 https://networkx.org/l
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Scores. To assess the quality of the community structures
returned by Louvain, we compare them to the ground truth by
adapting the definitions of Precision, Recall and F1-score to com-
munity detection. Namely, assume we have X" € Eq(n) the ground
truth, and X € Eq(n) the community structure returned by Louvain.
We define the number of true positives as the number of pairs of
different elements that are put together by both community struc-
tures, that is TP = >, ;X;; x x;;. The number of false positives is the

number of pairs that are put together by X but not by
X' FP= Y, Rij x (1 -
the number of pairs that are put together by X* but not X, namely
FN =3",_;(1 — Xij) x ;. Now, we can derive Precision, Recall and

x;‘_j). And the number of false negatives is

F1-score of X as usual.

_TP_
TP+FP

e Precision: Prec()?)

_
= TP+FN

e Recall: Rec (X)
Prec(;) Rec (;)
X

Prec(x) +Rec( )

Furthermore, since the Louvain algorithm is sensitive to node
labelling, we apply it four times to each network in the benchmark,
using a random labelling. Thus, in the following figures, the points
on the curves are the average score of the 40 returned community
structures (10 networks and 4 runs of Louvain). For each point,
these 40 community structures are summarised by box plots, that
indicate the median (white circle with black point), 25th and 75th
percentiles (edges of the box), and extreme values (extrema points
of vertical segments).

Finally, the number of communities returned by Louvain often
helps to explain some observations done on the scores. Indeed,
as the number of communities is not constrained, Louvain algo-
rithm may find either more or less communities than expected,
with different impacts on Precision and Recall. Thus, we also com-
pare the number of communities returned by Louvain with the
expected number (31). Given n. the number of communities in

X, we compute

(%)={
This allows a fairer comparison between the criteria that over-

or under-partition the graphs. These ratios are displayed in Table 5.
Structures with more (respectively less) communities than

e Fl1-score: F1 (f() =2x

n./31
31/n.

if n. > 31,
otherwise.
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Fig. 10. Two instances from the benchmark, built using the p;, and p,,, from the first column (left) and the last column (right) of Table 4.

Table 5

Average ratio scores of the community structures returned by Louvain, with standard deviations between parentheses. Top:
: less than 2 communities, in average;

communities less than half the expected number, in average. Bottom:

: more communities than expected; | : number of

: less than 6 nodes per community, for x = 0.18.

Comparison # Uncovered Blocks VS # Expected Blocks

w 0.18 0.304 0.4 0.484 0.558 0.63 0.699 0.769
Fp; | 7.567(0.52) 7.6~ (0.47) 7.527(0.56)  7.487(0.6) 7.177(0.76)  6.787(0.84)  6.77 (0.84)  6.437(0.85)
Fpa | 4.727(0.48)  4.867(0.53)  5.297(0.5)  5.637(0.69)  5.667(0.69)  6.217(.084)  6.057(0.74)  6.057 (0.74)
Fye | 2.797(0.2)  3.957(0.27) 4.17(0.45)  4.537(0.58)  5.137(0.71) 5.477(0.68)  5.587(0.78)  5.76(0.78)
Fy 1.167(0.06)  1.68%(0.1) 2.97(0.23)  4.99%(0.19)  7.977(0.29)  11.267(0.27) 137(0.14) 13.387(0.14)
Fpy | 1.017(0.01) 1.027(0.03) 1.047(0.03) 1.06(0.05)  1.097(0.05) 1.27(0.07) 1.557(0.1) 1.9470.14
Fle | 1.797(0.07) [2.017(0.09) 2.07-(0.13)  1.927(0.1) 1.737(0.12) 1.67(0.09) 1.547(0.08) 1.08*(0.05)
Fic 17(0.01) 17(0.01) 1.017(0.01) 1*(0.01) 1.01*(0.02) 1.04*(0.03) 1.397(0.07) 1.94%(0.07)
Fy, | 46.97(1.39) 46.87 (1) 47.27(1.22)  46.47(1.93)  45.87(2.04) 437 (1.73) 40.57(2.23) 36.37(2.26)
Fg, | 1.897(0.13) 3.957(0.32)  7.47(0.66) 11.67(2.8)  17.447(5.19) 28.28  (5.96) 317 (0) 317 (0)
Fy o, [1002H(024)7 9.467(0.2)  8.947(0.18) 8.127(0.28)  7.387(0.22) 8.737(0.18)  10.93%(0.09) 12.691(0.17)
F&%o | 1.27(0.06)  1.547(0.07) 1.837(0.09) 2.217(0.12) 2.77(0.24) 3.367(0.32)  3.957(0.35)  4.477(0.39)
Fpd | 1.027(0.03) 1.077(0.05) 1.17(0.05)  1.14(0.06)  1.16 (0.05) 1.167(0.05) 1.187(0.05) 1.23%(0.08)
F&2 | 1.027(0.02) 1.047(0.04) 1.067(0.04)  1.17(0.05) 1.17(0.04) 1.087(0.05) 1.17(0.05) 1.287(0.09)

expected are highlighted by a “+” (respectively a “—") exponent.
Also, it may happen that some of the 40 structures have more com-
munities than expected, while other have less. Such cases are indi-
cated by the exponent “*”.

Parametrised Newman-Girvan Modularities. We first focus on the
behaviours of the parametrised Newman-Girvan modularities,
when varying the parameter ). The Fl-scores (y-axis) over 7y
parameters (x-axis) of the Newman-Girvan modularities applied
on simple and preprocessed graphs are provided in Fig. 11 and
12 respectively. As stated in the legends, each curve corresponds
to one mixing parameter value g, from Table 4.

On these figures, we observe that both modularities are able to
provide community structures close to the ground truth for some
y € [1.25,2]. In the right panels, one can also observe that, for very
large y’s, F1-score tends to 0. This means that, whatever the sharp-
ness of the ground truth community structure, it exists some )
beyond which Louvain returns the structure with one community
per node. We also observe that the fundamental difference
between simple and doubly stochastic criteria is that the para-
metrised Newman-Girvan modularity is much more sensitive to
y variations when applied on simple graphs. Indeed, in Fig. 11,
the F1-score curves are quite sharp. For each p, there is a peak at
the y value that maximises the F1-score. Moreover, this peak is
not located at the same y across the p's (1.625 for u = 0.769,
1.75 for u=0.699 and 1.875 for the other values of u). On the
other hand, in Fig. 12, the F1-score curves are much smoother
and the maxima lie along a plateau, whose length depends on
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the mixing parameter u. Thus, there is much more chance to pick
a y that provides a sound community structure for preprocessed
graphs than for simple ones.

Correlation Clustering Criteria. We now focus on the behaviours
of the Correlation Clustering criteria, when varying the parameter
A. As previously, Fl-scores over /. parameters are provided in
Fig. 13 and 14, for Louvain algorithm applied on simple and pre-
processed graphs, respectively. This time, criteria on both simple
and doubly stochastic graphs highlight plateaus at their maxima.
However, one can observe that these plateaus do not appear for
the same parameter values. Indeed, there is a factor 100 between
the x-axes of the two figures (on the left panel of Fig. 13, x-axis
limits are 10/n and 500/n, while these are 1/10n and 50/10n for
Fig. 14). This observation is consistent with Property 2.

Property 2. Given A the adjacency matrix of a simple graph, and

4> nnz(A)/2. Assuming that X" = argmax F’-(A,X). Thus
XeEq(n)

Vi#j,a;=0 éX;j =0.
Respectively, if S € RT*" is doubly stochastic, and 4, > n/2, thus
X' € Eq(n) that maximises F&/(S,.) is such that

Vi ?5].,51'_]' =0 :>X?J =0.

Proof. Straightforward by adapting the proof from [Property 8]
[39]. O



L. Le Gorrec, S. Mouysset and D. Ruiz

Neurocomputing 504 (2022) 141-162

F1-score New.Girv(~) / Simple Graphs

| 1 1 1 1 1

Q'f‘) Q:’JE’ 0% 0@7_6 016 Q.%'\f’.) A \.,\-16 \-}6 \,315 AD \_6'7'6 \1‘_) \?)16

2 S S ) 5 S 5 A%
(L_\l Q¥ flfg\ 2 1.6(7’ 'lt\ 99

Fig. 11. The F1-score (y-axis) over y (x-axis) of the parametrised Newman-Girvan modularity on simple graphs.

This property states that, for large values of the /4 parameter, in
the community structure that optimises the Correlation Clustering
criterion, each community must be a clique of the graph. In the
benchmark analysed here, this strong constraint implies that, for
such 2 values, the optimal community structure does not fit the
ground truth one. Thus, in Property 2, 1 and /4, provide an upper
bound beyond which the Correlation Clustering criteria are not
able to uncover the ground truth community structures of the
graphs from the benchmark. Those graphs having an average
degree equal to 100 implies that those upper bounds are such that
/.~ 100 x /., which is consistent with the differences of x-axes
between Fig. 13 and 14. Finally, we remark that, opposite to the
observations made on Newman-Girvan modularities, maximum
plateaus are smoother for simple graphs.

All Criteria on Simple Graphs.

In this paragraph, we compare the different behaviours of all
the criteria designed for simple graphs. Recall and Precision are
displayed in Fig. 15. The parameters for the Correlation Clustering
and the parametrised Newman-Girvan criteria, respectively
A=210/n and y = 1.625, are chosen so that the average F1-score
is maximised over all the mixing parameters. From the right panel,
we observe that, except for Zahn criterion, all the measures return
high scores of Recall (all above 0.8 even for the largest mixing
parameter). This is consistent with the fact that, except when used
with the Zahn criterion, the Louvain algorithm tends to return
structures with less communities than expected, when applied
on simple graphs, as it can be seen from | -highlighted cells in
Table 5. Thus, some of the ground truth communities are merged
into the returned ones. And a high value of Recall means that the
returned communities tend to cover the ground truth ones. On
the other hand, Louvain with Zahn criterion returns almost 5 times
more communities than expected when p = 0.484, and this ratio
keeps increasing with y, which explains the slump of this criterion
Recall curve. This is an expected result, since it is proven in [34]
that the community structure that maximises the Zahn criterion
is such that subgraphs induced by each community must be 1/2-
dense. Looking at the values of p;, and p,, from Table 4, ground
truth communities are expected to respect this property up to
u=0.484, included. However, Louvain algorithm only approxi-
mates the best community structure for the criterion, which
explains why the slump starts at 4 = 0.484 in the tests.
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When looking at the left panel, we can roughly divide the
remaining measures into two categories: the Balanced Modularity,
the Deviation to the Indetermination and the Newman-Girvan
modularity, that exhibit low Precision scores, and the Deviation
to the Uniformity, the Correlation Clustering criterion and the
parametrised Newman-Girvan modularity that exhibit much bet-
ter Precision values. Once again, this is consistent with the ratio
of the number of communities returned by Louvain, highlighted
in Table 5. Indeed, low Precision values are expected when ground
truth communities are merged into the returned ones. And from | -
highlighted cells in Table 5, one can remark that the tendency of
Louvain algorithm to provide less communities than expected is
emphasised for the criteria with lower Precision scores. Finally,
one can focus on the somehow strange shape of the parametrised
Newman-Girvan modularity, that achieves its minimum for the
second smallest value of mixing parameter. As observed from
Fig. 11, the parameter value y that maximises the F1-score is not
consistent over all the mixing parameters. Thus the choice of 7,
which is a trade-off between the mixing parameters, clearly disad-
vantages graphs with lowest mixing parameters.

All Criteria on Doubly Stochastic Graphs. Here, we discuss the
behaviours of the criteria applied to doubly stochastic graphs. As
previously, the parameters for the Correlation Clustering criterion
(2 =20/10n) and for the parametrised Newman-Girvan modular-
ity (y = 1.75), are chosen to maximise the average F1-score over
mixing parameters. Recall and Precision are displayed in Fig. 16.
From the Recall curves on the right panel, we observe three differ-
ent behaviours. First, we remark that two of the three versions of
the Zahn criteria (F7; and F3,) exhibit very low Recall values, even
for the smallest mixing parameter. From [2-highlighted cells in
Table 5, it can be seen that, for ;= 0.18, Louvain used with F7,
returns in average almost 47 times more communities than
expected. Recalling that there are 31 ground truth communities
for 1600 nodes in the networks from the benchmark, this means
that, in the community structure returned by this version of Lou-
vain, a community contains in average about 1.1 node. On the
other hand, Louvain used with F7’; returns communities containing
5.35 nodes in average, when u = 0.18. While larger than for F7,,

this size is yet more than three times smaller than the smallest
communities from the ground truth community structures, which
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Table 4
Edge probabilities in each SBMs (p;, and p,,,), theoretical mixing parameters (), and the observed average mixing parameters on the simple (ft,;,) and preprocessed ( )
graphs.
Din 7.32 6.58 5.83 5.09 4.34 3.60 2.86 2.11
Dout 0.06 0.13 0.19 0.25 0.31 0.38 0.44 0.5
Heneo 1.79 3.02 3.98 4.81 5.56 6.27 6.97 7.67
Ipin 1.80 3.04 4.00 4.84 5.58 6.30 6.99 7.69
Ustoch 1.70 291 3.96 4.69 5.43 6.15 6.83 7.53
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Fig. 13. The F1-score (y-axis) over / (x-axis) of the Correlation Clustering criterion on simple graphs.

contain 20 nodes. This explains the low Recall scores of Fy; and
F75. Opposite to this is the behaviour of Louvain used with the
other version of the Zahn criterion, namely F7,. Its Recall curve is

constant, equal to 1, which means that it does not split any of
the ground truth communities. However, when looking at
-highlighted cells in Table 5, we see that, from p = 0.558, the

157



L. Le Gorrec, S. Mouysset and D. Ruiz

F1-score Corr.Clust()\) / Stoc

Neurocomputing 504 (2022) 141-162

‘r“'?""'ﬁ”'” \‘yvll mrjr(y GRGOGOCRERPaRaDepe

Hpeeepe

hastic Graphs

N T L1
SSTSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSESS
S S S S F 88 ie i EFEE8Rasssssssss
Fig. 14. The F1-score (y-axis) over A (x-axis) of the Correlation Clustering criterion on doubly stochastic graphs.
Precision / Simple Graphs Recall / Simple Graphs
1 [ Gl s peeen) e o> — 160 Sone P S
y RRE SR [ I =T
R S O | 098
09 : =TSR 3 096 1
N
N
‘ S l 094 5
08 -
S 0921 Bal.Mod 1
\\ P N I I | I N b Dev.Ind |
o7k \ i Zahn
’ S 088k - = — Dev.Unif
\ l New.Girv
) M 086 New.Girv(y) |
06 1 | [ Corr.Clust()\)
084 ¥
05+ 4 082~ ]
08 ul
. . . .
04 s
03
03} . | 4 02t B
‘ [ 0.1
o2l) I o ]
] 2| 8] 2 2| 1 1 1 0 1 L 1 L Oy .
0.18 0.304 0.4 0.484 0.558 0.63 0.699 0.769 0.18 0.304 0.4 0.484 0.558 0.63 0.699 0.769

Fig. 15. Precision and Recall (y-axes) of all the criteria applied on simple graphs, over the mixing parameters (x-axes).

number of communities returned by Louvain with F7, is less than
two, meaning that it returns some community structures where all
the nodes belong to a unique community, and the Recall of this
trivial community structure is 1. Thus, Louvain used with F7, does
not split existing communities, but tends to merge them into
one unique community as the mixing parameter increases.
Finally, the parametrised and non-parametrised Newman-Girvan
modularities, along with the Correlation Clustering criterion,
have Recall values that remain equal to 1 for mixing parameters
up to u=0.558, and then start to decrease. The fact that
parametrised Newman-Girvan and Correlation Clustering criteria
have a lower Recall value than the Newman-Girvan modularity
for u = 0.769 is explained by the fact that Louvain algorithm used
with the two former criteria returns more communities than

expected for this mixing parameter—see
Table 5.

Looking at the Precision curves on the left panel of Fig. 16, we
observe that the non-parametrised version of the Newman-
Girvan modularity is not competitive with the parametrised
Newman-Girvan and the Correlation Clustering criteria. On the
other hand, these two latter ones exhibit an extremely close beha-
viour. About the two versions of the Zahn criteria with low Recall
values, Louvain with F7, highlights the highest Precision up to
= 0.558, while Precision of Louvain with F7, decreases quickly.
This is due to the fact that, as already discussed, the latter one
returns essentially one community per node. Such communities
account for 0 in the Recall. Finally, the version of the Zahn criterion

%> with the best possible Recall score, also exhibit the worst

-highlighted cells in
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Fig. 16. Precision and Recall (y-axes) of all the criteria applied on doubly stochastic graphs, over the mixing parameters (x-axes).

results in terms of Precision, with a slump of its Precision as soon
as the second smallest mixing parameter.

Summary. Average F1-scores of all measures are provided in
Table 6, along with standard deviations. To improve readability,
F1-scores are multiplied by 10, and standard deviations by 100.
Parameters for the Correlation Clustering criteria and parametrised
Newman-Girvan modularities are those that maximise the average
F1-score, as explained in the previous paragraphs. We observe that
the most accurate criteria are the parametrised ones. Indeed, the
criterion which provides the best F1-score overall is the Correlation
Clustering criterion on simple graphs (F¢.), closely followed by the
Correlation Clustering and parametrised Newman-Girvan criteria
on doubly stochastic graphs (F&’ and Fyy). Last from this pool is
the parametrised Newman-Girvan modularity on simple graphs
(Fic)- These four criteria exhibit average F1-scores above 0.85 for
all the mixing parameters.

We now compare the four criteria unified by Theorem 2,
namely the Deviation to Indetermination (Fp;), Balanced Modular-
ity (Fpm), Newman-Girvan modularity (Fyc) and Deviation to Uni-
formity (Fpy). First, we observe that the latter provides very high
F1-scores compared to the other measures. Except for the largest
mixing parameter value, and its high standard deviations, the Devi-
ation to Uniformity is almost competitive with the parametrised
criteria. This is an artifact due to the benchmark, in which network
community structures are typical deviations to regular graphs. On
the other hand, the three others are not competitive with the dou-
bly stochastic Newman-Girvan modularity (Fy;) that generalises
them all.

Our last observations concern the Zahn criteria. From Table 6, it
seems that none of the doubly stochastic versions of the Zahn cri-
terion can compete with the one for simple graphs. However, it can
be seen from Table 5 that the number of communities returned by
the Zahn criteria are quite different, making them hard to compare
based on their F1-score. To highlight this, in Fig. 17, we plot the
confusion matrices of a community structure with p =04
returned using F; (left panel), and Fy, (right panel) (for each crite-
rion, the chosen community structure is the one that provides the
maximum F1-score). We observe that their behaviours are oppo-
site: the community structure found on a simple graph correctly
detects the largest communities, but split those of sizes 20 and
40: nodes from the ground truth 20-node communities are
assigned to 36 communities by Louvain (16 are expected), and
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nodes from the 40-node communities are split into 22 communi-
ties (8 expected). On the other hand, Louvain used with F; on a
preprocessed graph perfectly detects communities of size 20, 40
and 80. However, it splits the two communities of size 160 into
20 communities, and the 320-node community into 225 ones. This
illustrates again the tendency of the proposed preprocessing to
sharpen small-size communities, here at the expense of the larger
ones. It also highlights that finding the more desirable partitioning
remains application-dependant, and should not be chosen on the
basis of maximum F1-score only.

7. Conclusion and future perspectives

Broadly speaking, the aim of this study was to investigate the
utility of doubly stochastic scaling as a preprocessing for commu-
nity detection. In particular, its capacity to increase the detectabil-
ity of small-size communities and communities with an imbalance
in edge direction, such communities being in general poorly
detected by community detection algorithms. The proposed pre-
processing was presented in section 4, along with illustrations of
its potential to sharpen those kinds of communities on toy exam-
ples and on a real-world network. In section 5, we have generalised
a range of graph partitioning measures to weighted networks, with
a particular focus on the case of doubly stochastic ones. Of utmost
interest is the result that the doubly stochastic scaling unifies these
measures, as stated in section 6.1. That is, all of the six measures
defined for simple graphs can be expressed using only two para-
metrised measures for doubly stochastic graphs. Extensive com-
parisons of these measures have been conducted using SBMs in
section 6.2, where we observed that the measures the most able
to accurately uncover community structures are the parametrised
ones, for both simple and preprocessed graphs, but foremost that a
great care should be given to the choice of the measure to max-
imise, as different measures behave extremely differently.

In the future, we would like to investigate the impact of the
diagonal added to ensure the convergence of the scaling in algo.
1 and 2, in terms of numerical values within the resulting prepro-
cessed graph. This would provide us with theoretical basis to help
making the right choice. Furthermore, to keep improving commu-
nity detection methods, we would like to incorporate the knowl-
edge obtained from scaling factors to the process of discovering
communities. Indeed, after scaling, all nodes have the same degree.
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Table 6
Average F1-scores (x10) of the community structures returned by Louvain with criteria from Table 3. Standard deviations (x10?) between parentheses.
F1-scores
W 0.18 0.304 0.4 0.484 0.558 0.63 0.699 0.769
Fpr 3.18 (1.7) 3.19 (2)  3.18 (1.6) 3.22 (1.7)  3.27 (2) 3.4 (2) 3.46 (2.5) 4.38 (5.7)
4.27 (2.7)  4.20 (3.1)  3.94 (2) 3.78 (2.4) 3.83(3)  3.61 (2.5)  3.74 (3) 4.76 (5.1)
6.75 (5.4) | 5.09 (1.9) 5.08 (2.4) 4.67 (4.3)  4.16 (4) 4 (2.9) 4.14 (4.1)  4.94 (5.2)

3.99 (2.2)

3.4 (2.2)
4.01 (0.2)

6.9 (4.8)

Legend for the Fl-scores
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Fig. 17. Confusion matrix of one community structure returned by Louvain used with F; (left), respectively F‘Z‘g (right).
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Fig. 18. Doubly stochastic scaling of a toy example of overlapping communities. Left: Values of the scaling factor. Right: The scaling form of a simple graph exhibiting two

overlapping communities.

This may be seen as a non desirable feature, as it means that some
initial information about node centrality (namely, the degree) is
lost. And for real applications, the more central the node, the more
harmful an error of assignation on this node. However, as stated in
[30], another kind of information about node centrality, similar to
hub and authority centralities from [46], is conveyed by the scaling
factors, and should be exploited to ensure that a greater care is
taken to the correct assignation of nodes with high centrality.
Finally, we would like to extend the proposed preprocessing to
the detection of overlapping communities. Indeed, in many appli-
cations, one node can be involved in more than one community
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[47]. In a doubly stochastic scaling, a node belonging to many com-
munities should produce high scaling factors (because of its high
degree) and thus low numerical values in the doubly stochastic

scaling, as illustrated in Fig. 18. This may provide a framework to
identify those nodes.
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