
Capturing Symbolic Expert Knowledge for the Development of Industrial Fault 
Detection Systems: Manual and Automated Approaches  

Andrew Younga*, Graeme Westa, Blair Browna, Bruce Stephena, Andrew Duncanb, Craig Michiea, and 
Stephen McArthura 
aUniversity of Strathclyde, 204 George Street, Glasgow, G1 1XW, UK 
bThe Alan Turing Institute, British Library, 96 Euston Rd, London, NW1 2DB, UK 

 Corresponding author. Tel.: +44 141 444 7241; email: andrew.young.101@strath.ac.uk 

1. Introduction

Fault detection and diagnostics is an active research area,
especially in the nuclear industry for rotating machinery 
[1][9][14][19]. The two most commonly used approaches that 
can be adopted for the development of systems for fault detection 
or diagnostics. These are either data-driven approaches, e.g. 
machine learning, or knowledge-based approached, e.g. expert 
systems. While both of these techniques have similar aims and 
can provide similar results they differ quite significantly in their 
implementation.  

The basis for data-driven approaches is centred around 
statistical models of the problem data. The individual parameters 
of the model are learned through a process called training where 
a large volume of data is input into the model and the model 
attempts to produce the correct output for the majority of cases. It 
should also be noted that related to many data-driven approaches 
a balanced dataset is required, i.e. there is an adequate number of 
samples for both normal data and fault states. Due to the nature 
of these models and the lack of explainability for many data-
driven approaches; for critical assets (especially in the nuclear 
industry) that can present an issue. This is because supporting 
evidence is often required when making decisions on these assets 
as there is a significant amount of cost involved in the repair, 
replacement or downtime of these assets, another consideration is 

that "black box" techniques cannot currently support the safety-
case oriented practices of the nuclear industry for example. 

Knowledge-based approaches are the second technique that 
can be used to solve this problem, they attempt to solve (or 
support the resolution of) complex problems where a significant 
amount of human expertise or expert knowledge is required. This 
knowledge is acquired from the engineers or domain experts 
through a process called knowledge elicitation, this is then 
formalised into a format that is compatible with the technique, 
e.g. as the rules for a rule-based expert system. The one main
advantage of this type of approach over data-driven approaches is
the ability to not only solve a problem but also to explain and
justify the reasoning behind why a decision was made. However,
this comes with the disadvantage that a significant time cost is
associated with the capturing of the knowledge, then formalising
this into a knowledge-based system. Because of this
disadvantage, there has been a significant amount of research
undertaken across numerous fields to streamline the knowledge
elicitation process [12][17], as this is the most time-consuming
part of the development of an expert system.

The next section of this paper provides background 
information into rule-based expert systems, a type of knowledge-
based approach. Section three proposes a new methodology for 
knowledge elicitation through the use of symbolic representation 
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of the expert's knowledge and the parametrization of this 
knowledge. Section four proposes an automated approach that 
can analyse historical data, then propose new diagnostic rules 
using the framework described in section three. While section 
five presents a case study of the manual methodology applied to 
boiler feed pumps from an advanced gas-cooled reactor in the 
UK. Section six presents a case study comparing the manual and 
automated approaches in respect to the time taken to develop the 
system but also the accuracy. Finally, the conclusions and future 
work are presented in section seven. 

2. Rule-Based Expert Systems 

Knowledge-based systems can be used for a variety of 
applications to provide not only accurate decisions but also the 
explanation and reasoning behind these decisions. One example 
of these is rule-based expert systems [8], which stores the 
knowledge captured from the domain expert as a set of rules. 
These rules are formalised in a way that mimics the domain 
experts reasoning process and are mainly applied to knowledge 
or time-intensive problems. 

 

A typical rule-based expert system contains five main 
components, see Figure 1. The first of these is the Knowledge 
Base and which contains all the domain-specific captured 
knowledge from the experts. Figure 2 shows an example of how 
the rules are expressed in an expert system as a set of IF-THEN 
rules. This can be considered as a fixed set of data, therefore it 
remains the same throughout the decision making process. The 
Real World View of Data is the next component, this contains 
all the data, and facts relating to the asset under analysis. This 
can be considered the current state of the machine and hence is 
fluid and constantly changing. The facts relating to the asset are 
then compared with the IF condition in the knowledge-based to 
determine intermediate facts, which can then be stored in the 
Real World View of Data or a diagnostic conclusion. The third 
component is the Inference Engine, which performs the analysis 
by comparing the rules in the knowledge base to the facts stored 

in the real world view of data. The Explanation Mechanism 
provides justifications and an explanation as to why the inference 
engine has decided on a conclusion. This component is crucial 
for the system to be accepted by the user or by industry. Finally, 
a User Interface allows for communication between the user and 
the system, whether this is for the input of new facts relating to 
the data or the output of the diagnostic conclusions, this 
information can also be passed to external programs or systems.  

3. Manual Symbolic Capture of Knowledge 

For many industrial applications fault diagnosis involves the 
engineers following a predefined diagnosis process. Therefore, 
the expert knowledge has already been acquired to some extent, 
although this is not always complete enough to be formalised into 
a set of rules for a rule-based expert system. There is often a 
significant amount of subjectivity involved when the engineers 
assess the problem, due to esoteric experiences with the asset, 
rules of thumb, or different formal training. However, at a high 
level, they are often looking for standard data trends such as 
increases or decreases in specific data, or an increased noise or 
fluctuation. There is often no prescribed quantitative information 
relating to these trends that they analyse, such as how much 
increase or decrease relates to a specific rise or fall, or how much 
increase in fluctuation relates to a signal moving from stable to 
fluctuating, as these values will change based upon multiple 
factors, such as the type of machine, the age of the machine and 
the operational profile of the machine. Therefore, before the 
knowledge can be formalised into a rule-based expert system this 
additional knowledge must be acquired from the domain experts 
through the knowledge elicitation process. There are several 
different approaches for performing this knowledge elicitation 
[3], some of these include: structured and unstructured 
interviews: observation through active participation or focused 
observation; and task or decision analysis. For complex problems 
this is an extremely time-consuming task, this bottleneck in the 
development of a knowledge-based system has long been 
recognised and has hence been called the "knowledge elicitation 
bottleneck" [5].  

The rest of this section focuses on a new methodology to 
streamline this knowledge elicitation process by simplifying the 
knowledge into a set of symbols, or common language, that can 
be easily communicated between domain experts and data 
engineer. The proposed methodology is a three-stage process that 
involves a minimum of two structured interviews. 

3.1. Definition of Symbols 

These symbols were selected as low-level predicates that 
could be used to broadly describe a time series at any instant. The 
trends that were selected are shown in Figure 3, these symbols 
are a stable symbol that relates to normal behaviour, a rise and 
fall symbol for an increase or decrease over a specific time with a 
specified limit, and a fluctuating symbol for an increase in noise 
present in the signal. 

 

These symbols were selected as they are the most basic trends 
that can be present in time-series data, and any complex trend can 

Figure 1: Typical rule-based expert system architecture 

Figure 2: Structure of rules stored in knowledge base 

Figure 3: Four selected symbols/trends 
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be constructed from these primitives. This allows for the domain 
experts to easily communicate the diagnostic process they follow 
using a common language. 

3.2. Definition of Rule Base 

The next stage of the process is to set up a structured 
interview with the domain experts to agree on a definition of the 
rule base. This requires a definition of the individual faults that 
are being analysed, the specific datastreams necessary to 
determine those faults, and the associated trends for each of those 
datastreams. For each fault, a table can be produced that contains 
all the information discussed above, the example format of this 
table is shown in Table 1. Additionally, any comments that the 
engineers can provide at this stage will also prove to be 
extremely useful, this develops a rationale behind each piece of 
knowledge and for example could be: the physical reasoning 
behind the associated trends: or clarification on a subset of faults 
where a full data set or other operational influence is unavailable 
to fully diagnose a specific problem. 

Table 1: Example format for individual fault diagnostic rules 
Datastream Trend Comments 

Datastream A   

Datastream B   

Datastream C   

Datastream D   

Datastream E   

 

Following the meeting, each of the tables for the individual 
faults are combined to produce an overall rule-base for the asset 
being analysed, an example of this is shown in Table 2. 
Regarding system development, it is now possible to construct a 
prototype rule-based expert system using placeholder values for 
the quantitative parameters relating the each of the individual 
trends, which will be set in the next stage. 

Table 2: Example format for asset-specific rule base 
Cause Datastream A Datastream B Datastream C 

Fault 1    

Fault 2    

Fault 3    

Fault 4    

Fault 5    

3.3. Definition of Parameters 

Having defined the necessary symbols to accurately interpret 
related data streams; agreed with the domain experts the 
individual faults and the associated trends used to assess these 
faults: the next stage is for all this information to be tabulated and 
parametrised. Subsequently, a second structured interview is 
arranged to determine the individual magnitudes for each specific 
trend associated with each specific rule. The previously 
mentioned symbols that are now shown in Figure 3 are regarded 
as the most basic trends that are present in the data. The expert 
knowledge that is required to qualify the diagnostic rules shown 
in Table 2 is the subtle differences in the trends in Figure 3. For 
each symbol various parameters must be assigned to them that 
accurately describe the possible variations in the symbols for 
different rules, this is shown in more detail in Figure 4 and Table 

4. This information and the corresponding parameters can be 
tabulated and presented to domain experts in a structured 
interview knowledge elicitation session. An example of this 
structure is shown in Table 3. The parametrisation of the 
knowledge allows for efficient and accurate capture of the 
domain-specific knowledge by focusing the domain experts on a 
simplified version of the problem. This also facilitates the ease of 
formalising this knowledge into the rules for a rule-based expert 
system, without the need to listen to hours of audio recording or 
to interpret the engineer's answers to specific questions. 

 
Table 3: Example structure for rule specific table to be 
completed during knowledge elicitation session 

Datastream Parameters 

Datastream A – Rising x =   ,y =   , z = 

Datastream B – Falling x =   ,y =   , z = 

Datastream C – Fluctuating x =   ,y =    

Datastream D – Stable x =   ,y =    

 
3.4. Implementation 

After gathering all the expert knowledge from the knowledge 
elicitation meetings, the methodology proposed to evaluate the 
diagnostic rules on time series data is to first segment the data 
into specific time regions, see Figure 5. Splitting up the time 

Figure 5: Example of signal to symbol transformation for two 
time series data sources 

Figure 4: Definition of parameters for subtle difference in 
symbols/trends 
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series data into various timesteps, or segments, based on the 
information provided by the expert, each data stream/channel 
timestep is assigned a symbol that is either rising, falling, 
fluctuating or stable. 

Table 4: Description of parameters for quantifying the subtle 
difference in the trends 

Trend Parameter Description 

Stable x The upper limit in variation for a 
signal to be considered stable 

 y The lower limit in variation for a 
signal to be considered stable 

Rising x The period for the rise to occur over 

 y The minimum change in the 
measurement 

 z Two values relating to the spread of 
the x and y parameters 

Falling x The period for the fall to occur over 

 y The minimum change in the 
measurement 

 z Two values relating to the spread of 
the x and y parameters 

Fluctuating x The upper limit for the transition 
between stable to fluctuating 

 y The lower limit for the transition 
between stable to fluctuating 

The assigning of the symbols is performed using a technique 
based on Signal to Symbol transformation [11] which has been 
successfully used for rotating plant in the nuclear industry 
previously [4]. For this application, the symbols are assessed by 
first calculating the average of the first and last 10% of the 
timestep, a comparison is then performed to determine which of 
the following four categories best describes the timestep. The 
categories are defined as:  Stable less than 50% of the data is out 
with the thresholds set by x and y, Fluctuating more than 50% of 
the data is out with the thresholds set by x and y, Rising the mean 
value for the first 10% of the data is greater than y times the 
mean value of the last 10%, and Falling the mean value for the 
last 10% of the data is greater than y times the mean value of the 
first 10%, where x, y and z are defined in Figure 4. Algorithm 1 
shows the pseudocode for this calculation and an example is 
shown in Figure 6 for a generic pressure datastream.  
 
Having formalised the rules and implemented the Signal to 
Symbol Transformation as described above, it is possible to 
detect faults in near-real-time across multiple data sources. As 
new timesteps are input into the system each datastream can be 
assigned a symbol. When all datastreams have been assigned a 
symbol the expert system can then compare the symbols with the 
rule base to determine if any fault has occurred. If a positive 
correlation occurs this timestep is marked with the corresponding 
fault type. Over time it is possible to build up a history of any 
faults that have occurred historically in the asset, an example of 
this over a small period is shown in Table 5.  
 
Table 5: Example processing of 4 datastreams for 5 timesteps 

Datastream T1 T2 T3 T4 

A     

B     

C     

D     

Fault N/A 7 6 N/A 

4. Automated Symbolic Capture of Knowledge 

In the previous section, a new symbolic based knowledge 
elicitation methodology was proposed to capture, formalise, and 
implement a knowledge-based diagnostic system. While an 
improvement in the time taken to perform and knowledge 
elicitation session this approach still requires significant input 
from a domain expert to capture the expert knowledge. The rest 
of this section attempts to alleviate this issue and proposes an 
automated knowledge capture approach. This captured 
knowledge would form the knowledge base in a typical expert 
system architecture (Figure 1). 

The proposed methodology is shown in Figure 7 and is a 
three-stage process. Initially, all the condition monitoring 
datastreams are segmented into individual time segments and 
each of these segments are assigned a symbol using a signal to 
symbol transformation. For each symbol key metrics are 
calculated that aid in distinguishing between the same symbol. 
Producing a symbolic representation of that data reduces the 
length of the data in the time domain but increases the 

Figure 6: Example of signal to symbol transformation 
for pressure datastream. (Green - Stable, Blue - 
Rising, Yellow - Falling, and Red border - 
Fluctuating) 

Figure 7: Proposed automated knowledge extraction 
methodology 
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dimensionality of the data by the number of parameters 
calculated for each symbol. This increased dimensionality 
presents not only a problem from a processing standpoint but also 
an explainability perspective. Therefore, to overcome this a 
dimensionality reduction technique, principal component analysis 
(PCA), was implemented so the data could be visualised and 
more easily processed. To automatically process and cluster the 
data density-based spatial clustering of applications with noise 
(DBSCAN) was used to group repeating patterns that relate to 
features, or potential faults, within the data. From these clusters, 
it is possible to automatically generate a rule and hence populate 
a knowledge base that can be implemented into an expert system 
architecture. 

4.1. Signal to Symbol Transformation 

The first stage of the process is to produce a symbolic 
representation of all the data using a signal to symbol 
transformation (SST) [4]. This works by segmenting the data at 
discrete time intervals then for each time interval one of four 
symbols is assigned. In the previous section, the four symbols 
were defined in Figure 3 and the various parameters that require 
to be calculated are defined in Figure 4. An algorithm was 
developed to complete this process automatically where the 
output for each time segment is four associated parameters, see 
Table 6, which accurately represent the data in that time segment. 

Table 6: Description of signal to symbol transformation 
parameters 

Parameter Options 

1 Stable, Rising, or Falling 

2 Positive float for Rising, Positive float for 
Falling, or 0 for Stable 

3 Fluctuating or N/A 

4 Positive integer, or N/A 

 

4.2. Principal Component Analysis 

While producing this symbolic representation of the data 
reduces the overall length of the data with respect to time, it 
increases the dimensionality four-fold due to the four symbols 
produced for each time segment. Processing and visualisation of 
this processed data becomes complicated due to the increased 
dimensionality; therefore, a dimensionality reduction technique 
must be implemented. Doing this allows for the domain experts 
to visualise the symbolic representation of their data, but also 
allows for the data to be more easily clustered to produce the 
rules for the diagnostic system. Principal Component Analysis 
(PCA) [15] is a well-known and used dimensionality reduction 
technique to increase the interpretability of multivariate data 
while minimizing information loss. By selecting the first two 
principal components of the data, which covers a large 
percentage of the variation within the data, it is possible to 
visualise the data on a standard 2D plot. 

4.3. Density-based spatial clustering of applications with noise 

Following this, the next stage takes the dimensionality 
reduced symbolic representation and clusters the repeating 
patterns within this data using the Density-based spatial 
clustering of applications with noise (DBSCAN) [7] algorithm. 
Each of these clusters will relate to instances in the data where 
there is a matching pattern across all datastreams that has 
occurred throughout the data. These clusters could relate to faults 

that occur on the asset but also may highlight repeating features 
that occur during normal operational behaviour. By highlighting 
these clusters on a 2D plot that can be easily displayed to the 
end-user, the expert can have the final say on what is included in 
the knowledge base of the expert system. 

5. Case Study: AGR Boiler Feed Pumps – Manual Approach 

Following the proposed methodology for capturing expert 
knowledge manually, a case study was performed for data 
gathered from boiler feed pumps of an advanced gas-cooled 
(AGR) reactor in the UK. This case study was selected as these 
assets are critical to the continued operation and electrical 
generation of an AGR power station, therefore, it is imperative 
that the pumps are monitored for any abnormal behaviour that 
may contribute to accelerated plant degradation or to tripping the 
plant which would result in reduced or zero power generation. 
The diagnostics rules for the asset were supplied by the domain 
experts at the beginning of the project. This determined each data 
stream necessary to diagnose a given predefined list of faults, 
These rules were represented by a set of trends, i.e. stable, 
fluctuating, rising or falling. The data contained 37 faults and the 
associated trends for 10 specific data streams covering pressure, 
temperature, speed, vibration, and flow. The additional data 
required to formalise this knowledge into the rules for a rule-
based expert system were acquired through knowledge elicitation 
meetings following the proposed methodology. 

 

Having captured and formalised the domain experts 
knowledge it was possible to develop a prototype demonstrator 
for quickly and accurately identifying faults in the boiler feed 
pump data in real-time. To implement the knowledge base, all the 
knowledge that was acquired from the knowledge elicitation 
meetings is stored in a Microsoft Excel spreadsheet. It was stored 
in this format so that any engineers using the system would easily 
be able to view all the captured knowledge and therefore 
provides greater acceptance of the system and also that the 
captured knowledge is correct. If the analyst wishes to amend a 
specific rule or add a new fault type, this can be done by editing 
the spreadsheet directly. Any updates that are made to the rule-
based are automatically detected by the system, and displayed to 
the analyst in the "Changes to Rule Base" panel in formatted text, 
see Figure 8. Currently, any amendments made to this file will 
only be saved for the same session, however, the functionality to 
load the rule base from historical sessions can be added in the 
future. This functionality will also require for validation of any 
new, or amended rules using historical data to ensure that the 
quality of the knowledge base is maintained. When the analyst is 
satisfied with the knowledge stored in the rule base the analyst 
can begin to perform the analysis. The average analysis for the 
current rule base (37 faults and 10 datastreams) takes less than 

Figure 8: Main GUI for automated boiler feed pump 
diagnostics 
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0.5 seconds to complete one timestep of the analysis. When 
potential faults are detected, they are displayed to the analyst in 
the "Potential Faults" panel, see Figure 8. The date of any fault 
detected is displayed and the analyst can select this to open up a 
new window (Figure 9). This presents the analyst with a drop-
down menu that contains all faults detected and the associated 
data streams used in the analysis. The analyst can then view each 
of these datastreams to display the data covering the time in 
question on the axis to the right of this window and confirm that 
the correct fault has been identified. 

This methodology has allowed for the rapid development of a 
rule-based expert system for fault detection in boiler feed pumps. 
Due to the novel approach adopted for the knowledge elicitation 
process, it was possible to minimise the amount of time required 
from the domain experts but still accurately elicit all the 
knowledge necessary to develop the system. 

6. Case Study: Tennessee Eastman Process – Automated 
Approach 

The second case study compares the time taken to develop and 
accuracy of a system developed using the methodology proposed 
to capture expert knowledge manually in Section 3 against the 
automated approach proposed in Section 4 and is discussed in 
more detail in [20]. This comparison is achieved using the 
publicly available Tennessee Eastman Process (TEP) Dataset [1]. 
This is a real industrial process that was modelled 
computationally in 1993 by Downs and Vogel [6]. The dataset 
has been widely utilised in studies on fault identification and 

diagnosis. For fault detection, [21] employs a case-based 
reasoning technique, whereas [18] proposes support vector 
machines for fault diagnosis in chemical plants. Figure 10 depicts 
the TEP's schematic, which includes five primary units: the 
condenser, compressor, reactor, vapour/liquid separator, and 
product stripper. 

TEP_FaultFree_Training and TEP_Faulty_Training are the 
two major training datasets in the TEP simulation dataset. There 
are 500 simulations with 500 samples each in the fault-free 
dataset, all of which are examples of normal operation. The 
faulty dataset is made up of 500 simulations of 20 different 
defects, each with 500 samples. The data was sampled every 3 
minutes. Both datasets were then integrated, with the defective 
data being injected at predetermined intervals into the fault-free 
dataset to form a dataset that includes nearly 40 years of 
condition monitoring data. This data was divided into two parts: 
20% for training and 80% for testing. 

A symbolic representation of the training dataset was created 
using the mentioned signal to symbol transformation approach. 
The four parameters shown in Figure 4 were generated for each 
time segment. For a domain expert, this simplified dataset makes 
detecting trends in the data simpler; but, without intensive 
knowledge elicitation sessions, it would be exceedingly difficult 
for someone unfamiliar with the asset to reach the same 
conclusions. PCA was used to decrease the dimensionality of the 
data to simplify the 204-dimension symbolic representation (52 
datastreams x 4 parameters). Figure 11 shows a plot of the first 
two principal components having performed this operation. It 
may be concluded from this that the data is divided into three 
primary clusters, with the premise that the larger cluster 
represents normal behaviour or fewer distinguishable defects, 
while the two smaller clusters indicate two fault situations. 
DBSCAN was used to automate the process of labelling these 
clusters, with the results displayed in Figure 11. At this point, the 
user's only manual input is to choose the labels that would reflect 
the diagnostic system's recommended rules. 

The two potential rules to be incorporated into the expert 
system's knowledge base were labelled one and two. Each 
datastream's symbolic representation was compared for each of 
the two clusters. Any uncorrelated representations for specific 
datastreams were deleted and considered irrelevant states, and a 
rule was created to categorise each point within that cluster for 
the remaining data streams. Table 7 displays all of the knowledge 
that was retrieved. The entire process of creating the two rules 

Figure 9: Fault justification window for boiler feed pump 
diagnostics 

Figure 10: Schematic diagram for the Tennessee Eastman 
Process [13] 

Figure 11: Plot of first two principal 
components of the signal to symbol 
transformation output. Labelled using 
DBSCAN 
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and inserting them into the knowledge base took less than 30 
seconds. 

Table 7: Automatically extracted knowledge formulated into 
rules. U is a rising trend, D is a falling trend, and F is a 
fluctuating trend. 

Datastream Fault A Fault B 

xmeas_3 U, 0.02 D, 0.03 

xmeas_4 U, 0.01  

xmeas_7 F, 39 U, 0.10 

xmeas_10 U, 0.98 D, 0.41 

xmeas_11 U, 0.01 D, 0.09 

xmeas_13  U, 0.10 

xmeas_16 F, 32 U, 0.10 

xmeas_18 D, 0.02 U, 0.02 

xmeas_19 D, 0.46 U, 0.97 

xmeas_20  D, 0.09 

xmeas_22 U, 0.02 D, 0.04 

xmeas_23  D, 0.28 

xmeas_25  U, 0.32 

xmeas_28 D, 0.63 D, 0.09 

xmeas_29  D, 0.49 

xmeas_30 F, 18 D, 0.01 

xmeas_31  U, 0.56 

xmeas_34 D, 0.61 D, 0.13 

xmeas_35 U, 0.01 D, 0.35 

xmeas_36 U, 0.02 D, 0.43 

xmeas_38  U, 0.19 

xmeas_39 D, 0.30  

 

The approach proposed in Section 3 was used for comparison. 
This was accomplished by personally inspecting 10 instances of 
each datastream for defects. A manual interpretation was used to 
determine what each of the four parameters should be for just the 
related patterns in the dataset. Table 8 displays the results. Due to 

the manual nature of this technique, it took approximately 8 
hours to collect the data for two rules and apply them. 

Table 8: Manually extracted knowledge formulated into 
rules. U is a rising trend, D is a falling trend, and F is a 
fluctuating trend. 

Datastream Fault A Fault B 

xmeas_3 U, 0.02 D, 0.03 

xmeas_4 U, 0.01  

xmeas_7  U, 0.01 

xmeas_10 U, 0.98 D, 0.34 

xmeas_11  D, 0.08 

xmeas_13  U, 0.10 

xmeas_16 F, 32 U, 0.10 

xmeas_18 D, 0.02 U, 0.02 

xmeas_19 D, 0.40 U, 0.96 

xmeas_20  D, 0.09 

xmeas_22 U, 0.02 D, 0.04 

xmeas_23  D, 0.28 

xmeas_24  D, 0.01 

xmeas_25  U, 0.32 

xmeas_28 D, 0.62 D, 0.08 

xmeas_29  D, 0.49 

xmeas_30  D, 0.01 

xmeas_31  U, 0.56 

xmeas_34 D, 0.60 D, 0.12 

xmeas_35 U, 0.01 D, 0.35 

xmeas_36 U, 0.02 D, 0.42 

xmeas_38  U, 0.19 

xmeas_39 D, 0.25  

 

Both knowledge bases were implemented into an expert 
system to detect the two defects using the same 80% of data not 
utilised in the automated approach's training. Fault A was 
discovered to be connected to Fault 2, and Fault B was found to 
be related to Fault 6 in the ground truth data after an examination 
of the information provided. As a result, the ground truth for all 
other faults was adjusted to normal behaviour to identify any 
false positives. 

The results of the knowledge base created using the automated 
approach are shown in Figure 12. There were no false positives 
in any class, and the accuracy for Fault 2 and Fault 6 was 92.89% 
and 92.11%, respectively. However, this resulted in 27 (7.11%) 
of Fault 2 faults being classed as No Fault and 30 (7.80%) of 
Fault 6 faults being classified as No Fault. While this is a 
reasonable result for many applications, the critical nature of the 
main application field would make this an issue, and a preferable 
situation would be to have no false negatives but more false 
positives. 

Figure 13 shows the results of the manual strategy. As 
predicted, the manual approach provides greater classification 

Figure 12: Confusion matrix for knowledge automatically 
extracted using 20% of the data. 

Capturing symbolic expert knowledge for the development of industrial fault detection systems: manual and automated approaches

7



International journal of COMADEM 

 

accuracy than the automated approach. There were no false 
positives for either class, similar to the automated technique, and 
accuracy of 99.74% and 100% for Fault 2 and Fault 6 
respectively was attained. Except for one case of Fault 2, the 

manual technique properly classified all defects. 

While the manual approach detected the two specified defects 
better than the automated approach, it did so at a large time cost, 
with a 960% increase in time (see Table 9) over the manual 
approach. The time it takes to implement the manual technique 
for a modest two-fault problem may be acceptable, but for more 
complicated systems or systems with many more faults or 
datastreams, the suggested approach would greatly reduce the 
time it takes to construct an initial system. 

Table 9: Comparison of results for automated vs manual 
method. 
Method Fault 2 Fault 6 Time 

Automated 353 

(92.89%) 

350 

(92.11%) 

< 30 seconds 

Manual 379 

(99.74%) 

380 

(100%) 

≈ 8 hours 

7. Conclusions & Future Work 

Essential assets in critical infrastructures, such as nuclear 
power production, are constantly monitored to guarantee 
dependable service delivery by anticipating operating anomalies. 
Engineers now analyse condition monitoring data manually using 
a specified diagnostic method; however, the rules employed by 
the engineers to do this analysis are frequently subjective, 
making it difficult to incorporate them into a rule-based 
diagnostic system. The transfer of an engineer's expert 
knowledge into a format appropriate for encoding into a 
knowledge-based system requires knowledge elicitation. Existing 
ways of doing so are exceedingly time-consuming, hence a large 
amount of research has been done to try to cut down on this. The 
contributions from this paper are twofold; first, an approach to 
capture domain expert knowledge using symbolic primitives is 
proposed, and secondly, an automated approach building on this 
manual symbolic approach making use of data mining algorithms 
is proposed. 

7.1. Manual Symbolic Capture of Knowledge 

This paper first proposed a new approach to knowledge 
elicitation for the development of a knowledge-based fault 
detection system, specifically a rule-based expert system. The 

benefits of knowledge-based systems over data-driven 
approaches are the increased explainability, however, the 
increased cost in the development time has been highlighted as a 
disadvantage. The methodology discussed attempts to reduce the 
burden placed on the domain experts by streamlining the 
knowledge elicitation process, the most time-consuming part of 
developing an expert system. Through the use of symbolic 
representation of knowledge and the parametrisation of these 
symbols, it was possible to set out a framework to follow for 
these streamlined knowledge elicitation sessions.  

Using this framework, it was possible to develop a rule-based 
expert system for boiler feed pumps from an AGR power station 
in the UK. Having further developed the expert system beyond 
the knowledge elicitation process it has been possible to 
implement all 37 faults that occur on the boiler feed pumps for 
the corresponding 10 datastreams. The resulting system can 
detect faults in the data in real-time due to the segmentation of 
timesteps into symbols and the efficient inference engine 
deployed in CLIPS (C Language Integrated Production System) 
[16]. 

7.2. Automated Symbolic Capture of Knowledge 

Secondly, a method for automating knowledge extraction 
from several time series datastreams for the development of a 
rule-based fault diagnosis expert system was proposed. The 
results demonstrated that it is feasible to automatically generate a 
knowledge base utilising a combination of signal to symbol 
transformation to construct a symbolic representation of the data 
and clustering methods. While the results for this automated 
approach were above 90% accuracy for both of the identified 
defects in the case study given, they still fell short of the accuracy 
provided by the manual approach. However, the large reduction 
in implementation time, as well as the elimination of formal 
knowledge elicitation sessions, which have historically been the 
major barrier to expert system deployment, offset the small 
performance decline obtained by the automated technique. 
Importantly, because all of the knowledge utilised to make any 
choice is kept in the knowledge base, this technique offers a 
completely explainable output for why any decision was taken. 

7.3. Future Work 

Future work will involve the development of a human in the 
loop system to improve the captured knowledge during the 
system operation. By initially using the methodology discussed 
in this paper to set the initial parameters for the knowledge and 
the formalisation of the rule base it should be possible to develop 
an active learning system [10] to query the analyst to determine 
any false positives. These labelled false positives will then be 
used to amend the current parameters to improve the overall 
system performance. For the automated approach, to extract more 
rules that were not captured using the proposed approach, more 
advanced clustering algorithms or dimensionality reduction 
techniques would be applied. Additionally, more complex forms 
of signal to symbol transformations will be investigated to 
establish new symbols and parameters inside the data to which 
symbols will need to be mapped. This mapping needs to be 
identified through data or knowledge-driven methods. 
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