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Abstract

This paper proposes a method for modelling volatilities (conditional covariance matrices)

of high dimensional dynamic data. We combine the ideas of approximate factor models for

dimension reduction and multivariate GARCH models to establish a model to describe the

dynamics of high dimensional volatilities. Sparsity condition and thresholding technique are

applied to the estimation of the error covariance matrices, and quasi maximum likelihood esti-

mation (QMLE) method is used to estimate the parameters of the common factor conditional

covariance matrix. Asymptotic theories are developed for the proposed estimation. Monte

Carlo simulation studies and real data examples are presented to support the methodology.
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1 Introduction

In the last decade, studies on modelling high-dimensional time series and space-time data have

become a hot research area in statistics. The reason is that the current big-data environment

creates new challenges in modeling such big dynamic data in many scientific fields, including en-

gineering, environmentology, psychology, economics and finance. In theory, vector autoregressive

moving-average (VARMA) models are often used for multivariate time series. However, even in

the moderate dimension case, people often encounter the difficulties of over-parametrization and
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identifiability problem. To overcome these issues, various methods have been developed to reduce

the dimension of data and the number of parameters. One of effective methods for dimension

reduction is the factor analysis for time series such as Pan and Yao[23], Lam, Yao and Bathia[16],

Lam and Yao[17] and Gao and Tsay[13]. But the above results are focused on the conditional

mean (the first conditional moment). There are also many papers investigating the covariance

matrix estimation for high dimensional data, see e.g., Bickel and Levina[1, 2] Cai and Liu[3] and

Cai and Zhou[4]. To avoid over-parametrization of covariance matrices, some restrictions on pa-

rameters are often put in the models. Sparsity is one of the commonly used assumptions in high

dimensional modelling. For example, Fan, Liao and Mincheva[8, 9] considered the estimation of

covariance matrices for high-dimensional time series with a factor structure. They assumed the

majority of off-diagonal elements for error covariance matrix were zero or close to zero, and the

number of these elements grown very slowly when the dimension became large.

However, the existing literature on high dimensional covariance matrix estimation is mainly

restricted to the unconditional case. In financial application, e.g. the portfolio allocation in risk

management, the conditional covariance matrices ( so-called volatilities) are often used to describe

the dynamical structure of risk, see e.g., Markowitz[21] and Markowitz[22]. Hence modelling high

dimensional volatilities has become an important problem in statistics. Motivated by this point,

Guo, Box and Zhang[14] proposed a dynamic structure and developed an estimation procedure

for high-dimensional conditional covariance matrices. Their work is insightful but not applicable

for the cases when the dimension p is equal to or larger than the sample size T . A feasible way

to solve such problems is to use factor analysis to reduce the dimension first and then fit a lower

dimensional volatility model to the common factors. Following this direction, in this paper, we

propose a factor-GARCH model to study the high-dimensional volatilities which can be estimated

even the dimension p is equal to or larger than the sample size T .

The rest of this paper is arranged as follows. We specify the proposed methodology in Section

2. Asymptotic properties of the proposed estimators including the necessary assumptions are

given in Section 3. A portfolio allocation is constructed based on the formula for Markowitz’s

optimal portfolio in Section 4. Section 5 presents simulation experiments to show the finite sample

behaviour of the estimation. In Section 6, we apply the methodology to a real data set consisting

of 30 industry portfolios which are freely available from Kenneth French’s web-site. Section 7

provides some conclusions. All proofs of theoretic results are put in the Appendix.

2

A factor-GARCH model for high dimensional volatilities



Through out the paper, we use Aτ , λmin(A) and λmax(A) to denote the transpose, the mini-

mum and maximum eigenvalues of a matrix A, respectively. Let A be a q× r matrix and denote

by vec(A) the qr × 1 vector formed by stacking the r columns of A underneath each other in

the order from left to right. Notations ‖A‖F , ‖A‖ and ‖A‖max represent the Frobenius norm,

spectral norm (operator norm) and elementwise norm of a matrix A, defined respectively by

‖A‖F = tr1/2(AτA), ‖A‖ = λ
1/2
max(AτA) and ‖A‖max = maxi,j |aij |. When A is a vector, both

‖A‖F and ‖A‖ are equal to the Euclidean norm.

2 Methodology

2.1 The factor-GARCH model

Let yt = (y1t, · · · , ypt)τ be a p-dimensional time series. Consider the following approximate factor

model

yt = Bxt + ut, (1)

where B = (b1, · · · bp)τ , for bi is an unobservable K-dimensional vector of factor loadings, i =

1, · · · , p; xt = (x1t, · · · , xKt)τ is an observable K-dimensional vector of common factors, and K is

fixed; ut = (u1t, · · · , upt)τ is an unknown p-dimensional vector of idiosyncratic errors of yt, which

is independent of {xt−i, i ≥ 1}. We assume

Σx(t) ≡ Var(xt|Ft−1) ≡DtΓDt, (2)

where Ft−1 is the past information available up to time t− 1, Dt = diag(h
1/2
1t , · · · , h

1/2
Kt ), and

Γ =

{ 1 γ12 · · · γ1K

γ21 1 · · · γ2K

...
... · · ·

...

γK1 γK2 · · · 1

}
. (3)

Denote ht = (h1t, . . . , hKt)
τ , and assume that

ht = ϕ+
r∑
i=1

Φix
2
t−i +

s∑
j=1

Ψjht−j , (4)

where x2
t = (x2

1t, . . . , x
2
Kt)

τ , ϕ is a K-dimension vector, Φi and Ψj are K×K matrices. The true

parameter vector is denoted by θ0 = (δτ ,γτ )τ , where δ = vec(ϕ,Φ1, . . . ,Φr,Ψ1, . . . ,Ψs), and
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γ = (γ21, . . . , γK1, γ32, . . . , γK2, . . . , γKK−1)τ , with γij = γji. The main feature of this model is

that the conditional correlation

γij = E(xitxjt|Ft−1)/
√
E(x2

it|Ft−1)E(x2
jt|Ft−1)

is constant over time, where i 6= j and xit is the ith element of xt. Ling and McAleer[18] has

explained that it is possible to provide a straightforward explanation for the hypothesis of constant

correlation. Thus we can write the common factor as follows

xt = Σ1/2
x (t)ηt, (5)

where Σx(t) = DtΓDt, ηt ∼ IID(0, IK) and IK is an identity matrix.

Note that the conditional covariance matrix Σy(t) of yt is given by

Σy(t) = BΣx(t)Bτ + Σu, (6)

where Σu = (σu,ij)p×p is the conditional covariance matrix of ut, which does not dependent on

Ft−1. The literature on approximate factor models typically assumes that the first K eigenvalues

of BΣx(t)Bτ diverge at rate O(p), whereas all the eigenvalues of Σu are bounded as p→∞. In

addition, in this paper, we assume that Σu is approximately sparse, as in Bickel and Levina[1]

and Rothman, Levina and Zhu[24]: for some q ∈ [0, 1), define

mp = max
i

∑
j

|σu,ij |q,

and the sparsity assumption puts an upper bound restriction on mp:

m2
p = o

(
T

log p

)
.

One of the distinguished features of our factor model is that Σy(t) is divided into two parts. One

is dependent on t, and the other is not.

Bear in mind that the common factor is observable in our model. In the next two subsections,

we are to use least square method to estimate B and a thresholding method to estimate the

covariance matrix Σu in a similar way as Fan, Liao and Mincheva[8].

2.2 The least square estimation (LSE) of B

To estimate the factor loading matrix B in the approximate factor model (1), denote Y =

(y1, · · · ,yT ), X = (x1, · · · ,xT ) and U = (u1, · · · ,uT ). Then, model (1) can be written in a

4

A factor-GARCH model for high dimensional volatilities



more compact form,

Y = BX +U .

Then B can be estimated by the least square method. Denote the estimator of B by B̂ =

(b̂1, b̂2, . . . , b̂p)
τ , where

b̂i = arg min
bi

1

Tp

T∑
t=1

p∑
i=1

(yit − bτi xt)2,

then

B̂ = Y Xτ (XXτ )−1. (7)

2.3 The thresholding estimation of Σu

In the factor models, we do not observe the error term directly. Hence before estimating the error

covariance matrix of the factor model, we need to construct a sample covariance matrix based

on the residuals ûit which can be obtained by the estimated factor loadings. Following the least

square estimator (LSE), we have

ûit = yit − b̂
τ

i xt.

Let ût = (û1t, û2t, . . . , ûpt)
τ . We then construct the residual covariance matrix as

Σ̂u =
1

T

T∑
t=1

ûtû
τ
t ≡ (σ̂u,ij)p×p.

Unfortunately, the above Σ̂u is generally not a consistent estimator when dimension p is large

than the sample size T . To obtain a consistent estimator, based on Σ̂u, we further apply the

adaptive thresholding estimator introduced by Cai and Liu[3] to estimate the error covariance

matrix, which is given by

Σ̂
T
u = (σ̂Tu,ij), σ̂Tu,ij = σ̂u,ijI(|σ̂u,ij | ≥

√
ϑ̂ijωT ), (8)

ϑ̂ij ≡
1

T

T∑
t=1

(ûitûjt − σ̂u,ij)2, (9)

where ωT is to be specified later.
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2.4 The estimation of Σx(t)

As xt and K are known in this paper, we now give procedures to estimate the unknown parameters

in the GARCH model: θ0 = (δτ ,γτ )τ . To capture the past information completely in the

multivariate case, it is obvious that hkt should contain some past information, not only from xkt

but also from xjt. As a simple illustration, we assume, for k = 1, 2, . . . ,K

xkt = hktη̃kt, hkt = ϕk +

r∑
i=1

K∑
l=1

αiklx
2
lt−i +

s∑
j=1

K∑
l=1

βjklhlt−i, (10)

where, ϕk > 0, αikl, βjkl ≥ 0, and η̃t ≡ (η̃1t, · · · , η̃Kt)τ = Γ1/2ηt, ηt ∼ IID(0, IK).

Remark: In fact, Equation (10) is the same as Equation (4), e.g. ϕk is the k component of

ϕ, and αikl and βjkl are the (k, l) entry of Φi and Ψj respectively, for 1 ≤ k, j ≤ K, i = 1, · · · , r

and j = 1, · · · , s.

The estimators of the parameters in model (10) are obtained by maximizing

LT (θ) =
1

T

T∑
t=1

lt(θ), lt(θ) = −1

2
ln |DtΓDt| −

1

2
xτt (DtΓDt)

−1xt, (11)

with initial values being

x2
0 = · · · = x2

1−r = h0 = · · · = h1−s = ϕ.

Francq and Zaköıan[11] has shown that the choice of the initial values is unimportant for the

asymptotic properties of the QMLE, but making sure that the conditional variance is positive.

Then, a QMLE of θ is defined by:

θ̂T = arg max
θ∈Θ

LT (θ). (12)

Once the parameters in θ have been estimated, by substituting them into (10), we can obtain an

estimator ĥkt of hkt, an estimated matrix Γ̂ of Γ, and hence an estimator Σ̂x(t) of Σx(t).

3 Theoretical properties

In this section, we are going to present the asymptotic properties of the proposed estimators

described in Section 2 when T , p→∞.

First, we need to impose the strong mixing conditions to conduct asymptotic analysis of the

least square estimates. Let F0
u,−∞ and F∞u,T denote the σ-algebra that are generated by {ut : t ≤ 0}
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and {ut : t ≥ T} respectively. Define the mixing coefficient

αu(T ) = sup
A∈F0

u,−∞,B∈F∞u,T
|P (A)P (B)− P (AB)| . (13)

Assumption 1. {ut}t≥1 is stationary and ergodic, and α-mixing with geometric rate αu(T ) ≤

exp{−cT ν0}, for ν0 > 0, and c > 0. In addition, {ut}t≥1 and {xt}t≥1 are independent.

This assumption is standard in approximate factor models literature (see Fan, Liao and

Mincheva[8, 9]), allowing {ut}t≥1 to be weakly dependent. Note that, under Assumption 4 de-

fined later, {xt}t≥1 is strictly stationary and ergodic, and α-mixing with geometric rate (see

Lindner[19]). And in Lemma A.2, we will prove that the α-mixing coefficient defined on {(xt,ut)}t≥1

has geometric rate.

Assumption 2.

(a). There are constants 0 < a1 < a2, and a3 < a4, such that a1 < λmin(Σu) ≤ λmax(Σu) < a2,

and a3 < Var(uitujt) < a4 for all 1 ≤ i, j ≤ p.

(b). There exists a constant M > 0, for all i and j, such that |bij | < M .

(c). There are ν1 > 0 and b1 > 0 such that, for any y > 0 and i ≤ p,

P (|uit| > y) ≤ exp{−(y/b1)ν1}.

Condition (a) requires the non-singularity of Σu and Σ−1
u , and allows the idiosyncratic com-

ponents to be weakly dependent. Condition (c) allows us to apply the Bernstein-type inequality

for the weakly dependent data. This assumption is standard in the approximate factor models as

in Fan, Liao and Mincheva[8].

Assumption 3. ‖p−1BτB −Ω‖ = o(1) for some K ×K symmetric positive definite matrix

Ω such that λmin(Ω) is bounded away from zero.

Assumption 3 allows that the factors to be pervasive, that is, impact every individual time

series (e.g. Harding[15], Fan, Liao and Mincheva[8, 9]). To establish the results for estimating

conditional covariance matrix of Σx(t), we introduce more assumption

Assumption 4.

Let Aθ(z) =
∑r

i=1 Φiz
i and Bθ(z) = IK −

∑s
j=1 Ψjz

j . By convention, Aθ(z) = 0 if r = 0, and

Bθ(z) = IK if s = 0. Let `(Φ0) denote the top Lyapunov coefficient of the sequence of matrices

Φ0 = (Φ0t) as defined in (10.41) of Francq and Zaköıan[11].
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(a). The parameter space Θ is a compact subspace of Euclidean space, such that θ0 is an

interior point in Θ.

(b). `(Φ0) < 0 and, for all θ ∈ Θ, detB(z) = 0⇒ |z| > 1.

(c). The components of ηt are independent and their squares have non-degenerate distribu-

tions. And there exist ν3 > 0 with 3ν−1
3 + ν−1

2 > 1 and b3 > 0 such that for any y > 0 and

i ≤ K,

P (|ηit| > y) ≤ exp(−(y/b3)ν3),

(d). If s > 0, then Aθ0(z) and Bθ0(z) are left coprime and M1(Aθ0 ,Bθ0) has full rank K,

where M1(Aθ0 ,Bθ0) =
[
Φr Ψs

]
.

(e). Γ is a positive definite correlation matrix for all θ ∈ Θ.

(f). E‖ηtητt ‖2 <∞.

The above assumption is standard in CCC-GARCH models as in Francq and Zaköıan[11].

Condition (a) is a common condition for GARCH models. Under Condition (b), {xt}t≥1 is strictly

stationary and ergodic. We can apply the Bernstein-type inequality for the weakly dependent data

based on Condition (c). Condition (d) makes that Aθ0 and Bθ0 have no common roots. Σx(t)

is positive definite under Condition (e). If Condition (f) is satisfied, {xt}t≥1 has finite κ-order

comments, where κ will be defined in Theorem 1 later.

Then, we are to state asymptotic theory for model estimator. It can be seen from Equation (6)

that the asymptotic properties of Σ̂y(t) depend on the estimators for Σx(t) and Σu, respectively.

Hence, we firstly give asymptotic results for the estimation of Σx(t) and Σu. Following Theorem

10.8 of Francq and Zoköıan[11], we have

Lemma 1. Let θ̂T be the QMLE from (12). Then, under Assumption 4,

θ̂T → θ0, almost surely when T →∞

Lemma 1 ensures that the estimator of θ0 is strong consistent. And the following theorem

establishes the convergence rates of Σx(t).

Theorem 1. Suppose 0 < 2ε < κ/2 − 2, and κ > 4. Under the same assumptions as in

Lemma 1, there exists C > 0, such that

P

(∥∥Σ̂x(t)−Σx(t)
∥∥2

F
>
C log T

T

)
= O

(
1

T 1+ε

)
.
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In Lemma 2, we will construct the asymptotic properties of the thresholding estimator Σ̂
T
u

based on observation with estimation errors, where ν−1 = 1.5ν−1
1 + 1.5ν−1

3 + ν−1
2 , ν1, ν2 and ν3

are defined in Assumptions 2 and 4, and Lemma A.2, respectively.

Lemma 2. Suppose Assumptions 1-4 hold, and let (log p)6/ν−1 = o(T ). Then there exist

C1 > 0 and C2 > 0 in the adaptive thresholding estimator (7) with

ωT = C1

(√
log p

T

)
,

such that

P

(∥∥Σ̂Tu −Σu

∥∥ ≤ C2mp

√
log p

T

)
≥ 1−O

(
1

p2
+

1

T 2

)
.

Further, if ωTmp = o(1), then with probability at least 1 −O( 1
p2

+ 1
T 2 ),

λmin(Σ̂
T
u ) ≥ 0.5λmin(Σu),

and ∥∥∥∥(Σ̂
T
u )−1 −Σ−1

u

∥∥∥∥ ≤ C2mp

√
log p

T
.

Now we are to state the asymptotic theory for Σ̂y(t). Following Equations (6)-(8) and (12),

it is easy to obtain

Σ̂y(t) = B̂Σ̂x(t)B̂
τ

+ Σ̂
T
u . (14)

To evaluate the accuracy of an estimator Â of a matrixA of size p, the entropy loss norm proposed

by James and Stein[12] is often applied. Its formula is

∥∥Â−A∥∥
Σ

= p−1/2
∥∥A−1/2

(
Â−A

)
A−1/2

∥∥
F
.

Then the following theorem establishes the asymptotic properties of the estimator for Σy(t) based

on several norms.

Theorem 2. Under the assumptions of Lemma 2 and Theorem 1, there exists a constant

C3 > 0, and we have

(i)

P

(∥∥Σ̂y(t)−Σy(t)
∥∥2

Σ
≤ C3p(log p)2

T 2
+
C3m

2
p log p

T

)
= 1−O

(
1

p1+ε
+

1

T 1+ε

)
,
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P

(∥∥Σ̂y(t)−Σy(t)
∥∥2

max
≤ C3 log p+ C3 log T

T

)
= 1−O

(
1

p1+ε
+

1

T 1+ε

)
.

(ii) If mp

√
log p
T = o(1), with probability at least 1 −O( 1

p1+ε
+ 1

T 1+ε ),

λmin(Σ̂y(t)) ≥ 0.5λmin(Σu),

and ∥∥∥∥Σ̂−1

y (t)−Σ−1
y (t)

∥∥∥∥ ≤ C3mp

√
log p

T
.

Remark: In the proposed model, the number of factors K can be large, possibly growing

with T at a certain rate. However, it is typically small compared to p and T in many applications,

hence it is assumed to be fixed for simplicity.

4 Portfolio allocation

In this section, we will briefly introduce the estimated portfolio allocation based on proposed mod-

el. We denote E(yt|Ft−1) as the conditional expectation of yt, and take conditional expectation

of (1), we have

E(yt|Ft−1) = BE(xt|Ft−1).

Therefore, we use

Ê(yt|Ft−1) = B̂Ê(xt|Ft−1) (15)

to estimate E(yt|Ft−1), where E(xt|Ft−1) is estimated by using a VAR(1) model

Ê(xt|Ft−1) = µ̂+ Ξ̂xt−1.

Based on the mean-variance optimal portfolio by Markowitz[21, 22], we construct the estimated

optimal portfolio allocation similar to Guo, Box and Zhang[14]: w denoted the allocation vector

of p risky assets, to be held between times t− 1 and t, is defined as the solution to

min
w
wτΣy(t)w

subject to wτ1p = 1 and wτE(yt|Ft−1) = π,
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Table 1: Mean and covariance used to generate b

µB ΣB

0.9219234 0.01313649 0.02523216 0.01722212

0.7589148 0.02523216 0.09039758 0.03606229

0.4904847 0.01722212 0.03606229 0.08802161

where π is the target return imposed on the portfolio, and 1p is a p-dimensional column vector

of 1. The solution ŵ is given by

ŵ =
d3 − d2π

d1d3 − d2
2

Σ̂
−1

y (t)1p +
d1π − d2

d1d3 − d2
2

Σ̂
−1

y (t)Ê(yt|Ft−1), (16)

where

d1 = 1τpΣ̂
−1

y (t)1p, d2 = 1τpΣ̂
−1

y (t)Ê(yt|Ft−1),

d3 = Ê
τ
(yt|Ft−1)Σ̂

−1

y (t)Ê
τ
(yt|Ft−1).

5 Simulations

In this section, we use four examples to show how well the proposed estimation procedure works.

The models for our simulation study are modified versions of the Fama-French three factor models

described in Fan, Fan and Lv[7] and Fan, Liao and Mincheva[8]. The Fama-French three-factor

model constructed by Fama and French[5, 6] has the form

yit = bi1x1t + bi2x2t + bi3x3t + uit,

where yit is the excess return of the ith industry’s portfolio, i = 1, 2, · · · , p, x1t, x2t, and x3t are

three observable common factors: market, size and value.

We adopt the over two-year daily data (y̌t, x̌t) from Jun 1st, 2018 to Jun 26th, 2020 (T=524) of

30 industry portfolios to generate the factor loadings B: obtain the LSE of B from y̌t = Bx̌t+ut,

denoted B̌ = (b̌1, · · · , b̌30)τ , where b̌i = (b̌i1, b̌i2, b̌i3)τ , i = 1, . . . , 30, and calculate the sample

mean vector µB̌ and sample covariance matrix ΣB̌. The results are depicted in Table 1. Then,

the factor loadings {bi}Ti=1 can be drawn from normal distribution N3(µB̌,ΣB̌).

For each p ∈ [1, 30], we create the sparse matrix Σu = Q + ssτ − diag{s2
1, · · · , s2

p} in the

following way. Suppose Q = diag{σ2
1, · · · , σ2

p}, where σ2
1, · · · , σ2

p are generated independently
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Table 2: Mean and SD of the estimate errors in Example 1

T = 500 ‖Σ̂y(t)−Σy(t)‖Σ ‖Σ̂y(t)−Σy(t)‖max ‖Σ̂
−1

y (t)−Σ−1
y (t)‖

p = 40 0.168(0.006) 1.341(0.639) 2.200(0.357)

p = 100 0.136(0.014) 1.614(0.939) 1.932(0.217)

p = 300 0.157(0.040) 1.806(1.225) 1.897(0.245)

p = 540 0.192(0.053) 1.9014(1.102) 2.094(0.179)

from the Gamma distribution G(ζ, ξ) with ζ = 4.204, ξ = 0.2227. Create s = (s1, · · · , sp)τ to be

a sparse vector by setting that: each si ∼ N(0, 1) with probability 0.2√
p log p , and si = 0 otherwise.

This leads to an average of
0.2
√
p

log p nonzero elements per each row of the error covariance matrix.

Create a loop that generates Σu multiple times until it is positive definite. Note that, we will let

Σu = Q in Examples 1 and 3, in other words, uit is independent of ujt, for i 6= j.

Now, for each fixed p, the following steps give detailed simulation procedures:

(1) Generate {bi}pi=1 independently from N3(µB̌,ΣB̌), and set B = (b1, · · · , bp)τ ;

(2) Generate {ut}Tt=1 independently from Np(0,Σu);

(3) Generate {xt}Tt=1 from NK(0,Σx(t)), where Σx(t) is given in different GARCH form in the

corresponding example;

(4) Calculate yt = Bxt + ut for t = 1, · · · , T ;

In the following examples, the sample size is T = 500, the replication times is N = 200 and

the dimensions are p = 40, 100, 300, 540, respectively. In addition, ωT = 0.3
√

log p/T is set to

obtain the thresholding estimator Σ̂
T
u in (8).

Example 1. Σu is a diagonal matrix, and Σx(t) = diag(h1t, h2t, h3t), where

{h1t = 0.02 + 0.3x2
1t−1 + 0.3h1t−1,

h2t = 0.05 + 0.1x2
2t−1 + 0.3x2

2t−2 + 0.1h2t−1,

h3t = 0.001 + 0.2x2
3t−1 + 0.1h3t−1 + 0.15h3t−2.

Example 2. Σu is sparse, and Σx(t) = diag(h1t, h2t, h3t), where

{h1t = 0.002 + 0.3x2
1t−1 + 0.1h1t−1,

h2t = 0.0007 + 0.1x2
2t−1 + 0.3x2

2t−2 + 0.1h2t−1,

h3t = 0.001 + 0.1x2
3t−1 + 0.1h3t−1 + 0.2h3t−2.
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Table 3: Mean and SD of the estimate errors in Example 2

T = 500 ‖Σ̂y(t)−Σy(t)‖Σ ‖Σ̂y(t)−Σy(t)‖max ‖Σ̂
−1

y (t)−Σ−1
y (t)‖

p = 40 0.090(0.201) 0.354(0.165) 0.681(0.962)

p = 100 0.087(0.042) 0.475(0.156) 0.944(0.548)

p = 300 0.114(0.032) 0.583(0.132) 1.487(0.413)

p = 540 0.141(0.046) 0.669(0.155) 1.687(0.222)

Example 3. Covariance matrix Σu is diagonal, and Σx(t) = DtΓDt, where

Γ =

( 1 0 0.13

0 1 0.3

0.13 0.3 1

)
, Dt =

( h
1/2
1t 0 0

0 h
1/2
2t 0

0 0 h
1/2
3t

)
,

and

{h1t = 0.008 + 0.2x2
1t−1,

h2t = 0.02 + 0.02x2
2t−1 + 0.4h2t−1,

h3t = 0.01 + 0.4x2
3t−1 + 0.1h3t−1.

Example 4. Σu is a sparse matrix, and Σx(t) = DtΓDt, where

Γ =

( 1 0.1 0

0.1 1 0.3

0 0.3 1

)
,Dt =

( h
1/2
1t 0 0

0 h
1/2
2t 0

0 0 h
1/2
3t

)
,

and

{h1t = 0.008 + 0.01x2
1t−1 + 0.4h1t−1,

h2t = 0.002 + 0.2x2
2t−1 + 0.4h2t−1,

h3t = 0.001 + 0.1x2
3t−1 + 0.2h3t−1.

The above examples are different mainly in two aspects: In Examples 1 and 2, Σx(t) is

diagonal, i.e. {xt}Tt=1 are combined by K conditional independent sub-series, and each sub-series

has univariate GARCH structure; Whereas {xt}Tt=1 is a CCC-GARCH process in Examples 3 and

4, i.e. Σx(t) = DtΓDt. On the other hand, the components of ut are independent corresponding

to different j in Examples 1 and 3, but they have cross-sectional correlation in Examples 2 and 4.
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To describe the convergence of Σ̂y(t) to Σy(t), we give the results on averages and standard

deviations of sup1≤t≤T Σ̂y(t) − Σy(t) under the entropy-loss norm ‖ · ‖Σ and the element-wise

norm ‖ · ‖max, and over N = 200 replications. We also give the averages and standard deviations

of sup1≤t≤T Σ̂
−1

y (t)−Σ−1
y (t) under the operator norm.

Results. Tables 2-5 present the averages (in boldface) and standard deviations (in parenthe-

ses) of different errors of Examples 1-4. Based on the simulation results, we obtain the following

observations:

(1). The standard deviations of the norms are relatively small when compared to their corre-

sponding averages.

(2). Under the entropy-norm, the results of all examples are perfect. It can be seen that Exam-

ples 1 and 2 outperform Examples 3 and 4 respectively, and this is reasonable because the former

two examples have simpler GARCH structures. The results are in line with Theorem 2, showing

our method works well.

(3). Under the infinity norm, the means and standard deviations are generally larger than those

based on entropy norm. This is due to the fact that thresholding affects mainly the elements of the

conditional covariance matrix that are closest to 0, and the infinity norm depicts the magnitude

of the largest element-wise absolute error. Such similar results are also obtained in Fan, Liao and

Mincheva[8]. Moreover, Examples 2 and 4 perform better than Examples 1 and 3 respectively,

implying the performances under infinity norm are also influenced by the complexity of Σx(t).

(4). Under the operator norm, it is seen that the means of error are slightly increased but the

standard deviations are decreased in all examples. It is acceptable, as we are considering the

estimate errors of Σ̂
−1

y (t), where extra approximation or computation is needed. These conclu-

sions are in consistent with Theorem 2, and similar conclusions are also given in Fan, Liao and

Mincheva[8]. It is also found in Example 4 that the performance under operator norm is influenced

by the complexity of Σx(t).

In conclusion, the simulation results are in line with the asymptotic results obtained in Section

2, which indicates that our approach works well.
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Table 4: Mean and SD of the estimate errors in Example 3

T = 500 ‖Σ̂y(t)−Σy(t)‖Σ ‖Σ̂y(t)−Σy(t)‖max ‖Σ̂
−1

y (t)−Σ−1
y (t)‖

p = 40 0.475(0.188) 0.830(0.377) 0.785(0.216)

p = 100 0.525(0.162) 1.100(0.407) 1.058(0.191)

p = 300 0.583(0.196) 1.306(0.500) 1.255(0.113)

p = 540 0.697(0.304) 1.527(0.712) 1.405(0.112)

Table 5: Mean and SD of the estimate errors in Example 4

T = 500 ‖Σ̂y(t)−Σy(t)‖Σ ‖Σ̂y(t)−Σy(t)‖max ‖Σ̂
−1

y (t)−Σ−1
y (t)‖

p = 40 0.237(0.045) 0.425(0.136) 0.975(0.205)

p = 100 0.320(0.050) 0.514(0.135) 1.668(0.238)

p = 300 0.480(0.049) 0.677(0.181) 3.589(0.262)

p = 540 0.607(0.048) 0.746(0.166) 6.450(0.671)

6 A real data example

In this section, we apply our model to analyze the real data in American stock market. We con-

sider the data of daily returns of 30 Industrial Portfolios, which are available at Data-set (2021)

(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html). The data series s-

pan from January 3rd, 2007 to December 31st, 2010 with a total of 1008 observations. Figure 1

depicts the time plots of the three factors (Rm-Rf, SMB and HML), denoted by x1, x2 and x3,

respectively. And let {xt}Tt=1 be the vector time series consisted of these three factors. The plots

in Figure 1 show clearly that there exist periods of large volatility during the 2008-2009 financial

crisis. First, we use ADF (augmented Dickey Fuller) test method to test whether the time series

is stationary. And the results are reported in Table 6. It is seen that all the series pass the sta-

tionary test. Then, we use the four statistics in Tsay[25] to test the conditional heteroscedasticity

of {xt}Tt=1, and the results are presented in Table 7. It is shown that all the tests suggest the

presence of conditional heteroscedasticity in the data.

Hence, we use the CCC-GARCH model to fit the common factor xt, and the lag order in the
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Figure 1: The time plot of the three factors (Rm-Rf, SMB and HML).

Table 6: Stationary test results

Variable x1 x2 x3

t-statistic -9.8586*** -9.3702*** -9.6581***

p-value 0 0 0
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Table 7: Test the conditional heteroscedasticity

Method Test statistic p-value

Q(m) of squared series(LM test) 1688.444 0.000

Qk(m) of squared series 2453.326 0.000

Robust Test (5% trimming) 1476.106 0.000

Rank-based Test 1778.974 0.000

GARCH model is decided by BIC rule. The estimated model is given as followed:

Σ̂x(t) = D̂tΓ̂D̂t,

where

Γ̂ =

( 1 0.1798 0.4736

0.1798 1 −0.0280

0.4736 −0.0280 1

)
,

and D̂t = diag1/2{ĥ1t, ĥ2t, ĥ3t},

{ ĥ1t = 0.0522 + 0.1060
(0.0002)

x2
1t−1 + 0.8693

(0.0000)
ĥ1t−1,

ĥ2t = 0.0159 + 0.1440
(0.0000)

x2
2t−1 + 0.8230

(0.0000)
ĥ2t−1,

ĥ3t = 0.0140 + 0.1921
(0.0000)

x2
3t−1 + 0.7847

(0.0000)
ĥ3t−1.

(17)

For each sub-series of {xt}Tt=1, we use the Wald test introduced in Francq and Zaköıan[11] to

test the significance of the coefficients, and the values in the parentheses in (17) are the p-values

for related coefficients. It is found that all the parameter estimates in (17) are significant at 1%

level, implying the estimated model (17) is suitable for the sub-series of xt.

Then, we apply the LSE method to estimate B. Further, we obtain the residuals vector

ût = yt − B̂xt and the estimated residual covariance matrix Σ̂u = 1
T

∑T
t=1 ûtû

τ
t . We also give

the heat map of the residual covariance matrix Σ̂u in Figure 2 and it can be seen that a large

number of Σ̂u’s off-diagonal entries are zeros or close to zero. Similarly, the heat map of the error

correlation matrix of ût is depicted in Figure 3, showing that many pairs of the cross-sectional

units become weakly correlated. Hence, it can be concluded that Σ̂u exists sparsity. And it is
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reasonable to use the thresholding method to estimate Σu and denote the corresponding estimator

as Σ̂
T
u . Finally, the conditional volatility of yt can be estimated by

Σ̂y(t) = B̂Σ̂x(t)B̂
τ

+ Σ̂
T
u .

Figure 2: Heat map of residual covariance matrix 1
T

∑T
t=1 ûtû

τ
t .

Figure 3: Heat map of the error correlation matrix of ut.

In addition, in order to find how well the proposed procedure works, we compare the three

portfolio allocations based on our method, Fan, Fan and Lv[7] and Fan, Liao and Mincheva[8],
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denoted by FGM (Factor-GARCH model), Fan2008 and Fan2011, respectively, and the portfolio

allocations are constructed month by month from January 2010 to December 2010. We trade on

approximately T = 21 trading days per month. Assume that all possible portfolio allocations are

attainable and no transaction costs, and allow for short selling. In this trading strategy, we form

a portfolio allocation ŵ at the end of the trading day and hold it until the end of the next trading

day. Between day t− 1 and t, we calculate the realized return as follows:

Rt(ŵ) = ŵτyt,

where ŵ is calculated based on (xt−i,yt−i), i = 1, · · · , n, for some look-back integer n, and

t = 1, · · · , T . Then, we can obtain the monthly Sharpe ratio

SR(ŵ) =
R̄(ŵ)

sd(ŵ)

√
T ,

where

R̄(ŵ) =
1

T

T∑
t=1

[Rt(ŵ)−Rft], sd(R) =

{
1

T

T∑
t=1

[Rt(ŵ)−Rft − R̄(ŵ)]2
}
,

and Rft is the risk-free rate on day t. We calculate the monthly Sharpe ratios at the end of

the final trading day of each month for each trading strategy, and repeat this by using n = 100

and n = 500. From the monthly Sharpe ratios depicted in Figures 4 and 5, it is clear that our

model outperforms the other two models in the majority of the observations in the period of

post-financial crisis, i.e. in 2010. However, our model is not overwhelming, as the loading factor

matrix estimated in the proposed paper is in the same way as Fan, Fan and Lv[7] and Fan, Liao

and Mincheva[8]. But it provides us a potential direction to improve.

7 Conclusions

In this paper, we investigate the problem of estimating conditional volatilities of high dimensional

data. In order to achieve this goal, a factor-GARCH model is proposed, where the approxi-

mate factor models is adopted for dimension reduction and multivariate GARCH process is used

to describe the dynamics of the conditional volatility. The novelty of our article is: under the

framework of the proposed model, the high dimensional conditional volatility is divided into two

parts which can be computed based on the estimable factor loading, low dimensional conditional

volatility for factor and the covariance matrix of the idiosyncratic error, by using LSE method

19

A factor-GARCH model for high dimensional volatilities



Figure 4: Monthly Sharpe ratio (n = 100).

Figure 5: Monthly Sharpe ratio (n = 500).
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for factor loading, QMLE method for multivariate GARCH and thresholding method for residual

covariance matrix. Large sample properties of the estimator are proved under certain assump-

tions and their performances are examined through simulation studies. Given empirical example

presents our model works well with real data.

On the basis of this paper, several questions are worth of further studying. In our study, we

just consider the case that the common factors are observable and K is known. However, the

common factors may be unobservable and K could be unknown in practice. Hence it makes sense

to extend the proposed model to more general cases and we leave these for future studies.

Appendix: Proofs for Section 3

Lemma A.1.Under Assumption 4(c), the components of {xt}Tt=1 satisfy the exponential tail

condition, i.e. there exist ν3 > 0 with 3ν−1
3 + ν−1

2 > 1, and b3 > 0 such that for any y > 0 and

i ≤ K,

P
(
|xit| > y

)
≤ exp(−(y/b3)ν3).

Proof: By the proof of Theorem 10.8 of Francq and Zaköıan[11], and under Assumption 4, there

exists a constant M1 such that E‖Σx(t)‖ς ≤M1 <∞ for some ς > 0. And

‖xt‖ =
∥∥Σ 1

2
x (t)ηt

∥∥ =

∥∥∥∥(Σ 1
2
x (t)− E{Σ

1
2
x (t)}+ E{Σ

1
2
x (t)}

)
ηt

∥∥∥∥
≤
(∥∥Σ 1

2
x (t)− E{Σ

1
2
x (t)}

∥∥+
∥∥E{Σ

1
2
x (t)}

∥∥)∥∥ηt∥∥
≤M‖ηt‖,

where M is a constant, and there exists a small constant ν, such that

P
{
‖xt‖ > y

}
≤ P

{
M‖ηt‖ > y

}
≤ K max

1≤k≤K
P

{
η2
kt >

1

K

( y
M

)2}
≤ K exp

(
−
( y√

KMb

)ν)
,

as K is fixed and small, and we can choose ν3 ∈ (0, ν) satisfying 3ν−1
3 +ν−1

2 > 1, and b3 >
√
KMb,

such that

K exp

(
−
( y√

KMb

)ν) ≤ exp
(
− (y/b3)ν3

)
.
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Then, we obtain the result.

Lemma A.2.Under Assumptions of Theorem 2, there exists C ′ > 0 such that:

(i)

P

(
max
i,j≤K

∣∣∣ 1

T

T∑
t=1

xitxjt − Exitxjt
∣∣∣ > C ′

√
log T

T

)
= O

(
1

T 2

)
,

(ii)

P

(
max

k≤K,i≤p

∣∣∣ 1

T

T∑
t=1

xktuit

∣∣∣ > C ′
√

log p

T

)
= O

(
1

T 2
+

1

p2

)
.

Proof:

Let F0
−∞ and F∞T denote the σ-algebras generated by {(xt,ut) : −∞ ≤ t ≤ 0} and {(xt,ut) :

T ≤ t ≤ ∞}, respectively. We define the mixing coefficient

α(T ) = sup
A∈F0

−∞,B∈F∞T
|P (A)(B)− P (AB)|.

Under Assumption 4, {xkt}Tt=1 are strictly stationary and α-mixing with geometric rate (see

Lindner[19]); Meanwhile, by Assumption 1, xt and ut are independent, and ut are α-mixing with

geometric rate, so there exist positive constants ν2 and c, such that for all t ∈ Z+

α(t) ≤ exp(−ctν2),

and by Lemma A.1 and Assumption 2, xt and ut both have exponential tails. Therefore, the

conditions of Lemma B.1 of Fan et al.[8] are satisfied. By using similar arguments of this Lemma,

we obtain the results of Lemma A.2.

Lemma A.3.Under the assumptions of Theorem 1 and Lemma A.2, there exist C ′1 > 0 and

C ′2 > 0, such that:

(i)

P

(
max
k≤K

∥∥θ̂T − θ0

∥∥ > C ′1

√
log T

T

)
= O

(
1

T 1+ε

)
,

(ii)

P

(∥∥B̂ −B∥∥2

F
>
C ′2p log p

T

)
= O

(
1

T 2
+

1

p2

)
.

Proof:

(i) Define the negative quasi log-likelihood function

L̃T (θ) =
1

T

T∑
t=1

l̃t(θ), l̃t = xτt (D̃tΓ̃D̃t)
−1xt + log |D̃tΓ̃D̃t|.
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First, we consider the consistency of θ̂T . Recall that the observed negative quasi log-likelihood

function

LT (θ) =
1

T

T∑
t=1

lt(θ), lt = xτt (DtΓDt)
−1xt + log |DtΓDt|.

By the proof of Theorem 10.7 in Francq and Zaköıan[11],

θ̂T → θ0, almost surely as T →∞.

Now, we consider the convergence rate of ‖θ̂T − θ0‖.

The proof of this part is based on a standard Taylor expansion of LT (θ) at θ0. Since θ̂T

converges to θ0, which lies in the interior of the parameter space, we thus have

0 =
1

T

T∑
t=1

∂lt(θ̂T )

∂θ

=
1

T

T∑
t=1

∂lt(θ0)

∂θ
+

(
1

T

T∑
t=1

∂2lt(θ
∗)

∂θ∂θτ

)
(θ̂T − θ0),

where θ∗ is between θ̂T and θ0. Suppose we have shown that there exist two positive constants

c1 and c2 such that

P

{∥∥ 1

T

T∑
t=1

∂lt(θ0)

∂θ

∥∥ > c1%T

}
= O

(
1

T 1+ε

)
, (A.1)

where %T =
√

log T
T , and

P

{
inf

θ∈V (θ0)
λmin

( 1

T

T∑
t=1

∂2lt(θ)

∂θ∂θτ

)
≤ c2

}
= O

(
1

T 1+ε

)
, (A.2)

where V (θ0) is a neighbourhood of θ0. Denote

AT =

{
inf

θ∈V (θ0)
λmin

( 1

T

T∑
t=1

∂2lt(θ)

∂θ∂θτ

)
> c2

}
,

where c2 is defined in (A.2). Then, for each x > 0,

P

{∥∥∥θ̂T − θ0

∥∥∥ > x

}
≤ P

{∥∥∥ 1

T

T∑
t=1

∂lt(θ0)

∂θ

∥∥∥ > c2x

}
+ P

(
ACT
)
,

Take x = c1%T /c2 and the proof of part (i) follows immediately from (A.1) and (A.2).

Now we prove (A.1) and (A.2). To establish (A.1) and (A.2), it suffices to prove the following

four parts:
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(b1) There exists a constant c > 0 such that

P

{∥∥∥ 1

T

T∑
t=1

∂l̃t(θ0)

∂θ

∥∥∥ > c%T

}
= o(1),

(b2) There exists a constant c > 0 such that

P

{∥∥∥ T∑
t=1

∂lt(θ0)

∂θ
−

T∑
t=1

∂l̃t(θ0)

∂θ

∥∥∥ > cT%T

}
= O

(
1

T 1+ε

)
,

(b3) There exists a constant c > 0 such that

P

{
λmin

( 1

T

T∑
t=1

∂2 l̃t(θ0)

∂θ∂θτ

)
≤ c
}

= O

(
1

T 1+ε

)
,

(b4) For any c > 0, we have

P

{
sup

θ∈V (θ0)

∥∥∥ T∑
t=1

∂2lt(θ)

∂θ∂θτ
−

T∑
t=1

∂2 l̃t(θ)

∂θ∂θτ

∥∥∥ > Tc

}
= O

(
1

T 1+ε

)
.

It can be seen that (A.1) can be proved from (b1) and (b2), and (A.2) follows from (b3) and (b4).

Now we prove them separately.

Note that, for simplicity, we denote DtΓDt by H, and H̃ is its counterpart.

For (b1), following the proof of Theorem 10.7 in Francq and Zaköıan[11], it is easy to show

that

∂l̃t(θ0)

∂θi
= Tr

{
− H̃

−1

t (θ0)xtx
τ
t H̃
−1

t (θ0)
∂H̃t(θ0)

∂θi
+ H̃

−1

t (θ0)
∂H̃t(θ0)

∂θi

}
(A.3)

=
∂vecτH̃t(θ0)

∂θi

{
H̃
− 1

2

′

t (θ0)⊗ H̃
− 1

2

′

t (θ0)vec
{
IK − ηtητt

}}
,

where H
− 1

2

′

t = (H
1
2
t )−1, A⊗B is the Kronecker product of matrices A and B, and

E
∥∥∥∂l̃t(θ0)

∂θi

∥∥∥κ <∞.
Note that {xt}Tt=1 are strictly stationary and α-mixing with geometric rate (Also see Lindner[19]).

It follows from Theorem 2(ii) of Liu, Xiao and Wu[20] that, there exist positive constants c′1, c′2

and c′3 such that for all x > 0

P

{∥∥∥ 1

T

T∑
t=1

∂l̃t(θ0)

∂θ

∥∥∥ > x

}
≤ c′1T

(Tx)κ
+ c′2 exp

(
− c′3Tx2

)
.

Hence, by taking x = c%T , for a large constant c > 0 and κ > 4. We obtain that

P

{∥∥∥ 1

T

T∑
t=1

∂l̃t(θ0)

∂θ

∥∥∥ > c%T

}
≤ c′1T

1−κ/2

cκ(log T )κ/2
+ c′2 exp

(
− c′3c2 log T

)
≤ O

(
1

T 1+ε

)
.
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For (b2), by the proof of Theorem 10.9 of Francq and Zaköıan[11],

sup
θ∈Θ

∥∥∥∥∂H̃t

∂θi
− ∂Ht

∂θi

∥∥∥∥ ≤ Kρt{ sup
θ∈Θ
‖D̃t‖+ sup

θ∈Θ

∥∥∥∂D̃t

∂θi

∥∥∥+ 1

}
.

Note that (A.3) continues to hold when l̃t(θ) and H̃t(θ) are replaced by lt(θ) and Ht(θ), respec-

tively. Therefore,

∂l̃t(θ)

∂θi
− ∂lt(θ)

∂θi
= Tr(I + II),

where

I =
(
IK − H̃

−1

t xtx
τ
t

)(
H̃
−1

t −H−1
t

)∂H̃t

∂θi
−
(
H̃
−1

t −H−1
t

)
xtx

τ
tH
−1
t

∂Ht

∂θi
,

II =
(
IK − H̃

−1

t xtx
τ
t

)
H−1

t

(∂H̃t

∂θi
− ∂Ht

∂θi

)
.

In Theorem 10.9 of Francq and Zaköıan[11], it has been shown that Tr(I + II) ≤ Kρtzt, where zt

is a random variable such that supt E|zt|ς <∞ for some small ς ∈ (0, 1). Then it follows that,

T∑
t=1

∣∣∣∂lt(θ)

∂θi
− ∂l̃t(θ)

∂θi

∣∣∣ ≤ T∑
t=1

Kρtzt.

By Markov inequality for martingale, we claim that there exists a constant c′ > 0 such that

P

{ T∑
t=1

Kρt|zt| > c′T 1/2

}
= O

( 1

T 1+ε

)
.

Hence, if follows that there exists a constant c > 0 such that

P

{
1

T

T∑
t=1

∣∣∣∂lt(θ0)

∂θi
− ∂l̃t(θ0)

∂θi

∣∣∣ ≥ c%T} = O

(
1

T 1+ε

)
,

and the conclusion of this part follows.

For (b3), T−1
∑T

t=1
∂2 l̃t
∂θ∂θτ can be expressed as

1

T

T∑
t=1

∂2 l̃t
∂θ∂θτ

=
1

T

T∑
t=1

{
∂2 l̃t
∂θ∂θτ

− E
( ∂2 l̃t
∂θ∂θτ

)}
+ E

{
∂2 l̃t
∂θ∂θτ

}
.

Note that E
{

∂2 l̃t
∂θ∂θτ

}
is positive definite, and there exists a constant c > 0, such that λminE

{
∂2 l̃t
∂θ∂θτ

}
>

c. Differentiating (A.3), we have

∂2

∂θi∂θj
l̃t(θ) =

5∑
t=1

c̃i(θ), (A.4)
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with

c̃1(θ) = xτt H̃
−1

t (θ)
∂H̃t(θ)

∂θi
H̃
−1

t (θ)
∂H̃t(θ)

∂θj
H̃
−1

t (θ)xt,

c̃2(θ) = xτt H̃
−1

t (θ)
∂H̃t(θ)

∂θj
H̃
−1

t (θ)
∂H̃t(θ)

∂θi
H̃
−1

t (θ)xt,

c̃3(θ) = −xτt H̃
−1

t (θ)
∂2H̃t(θ)

∂θi∂θj
H̃
−1

t (θ)xt,

c̃4(θ) = −Tr

(
∂H̃t(θ)

∂θi
H̃
−1

t (θ)
∂H̃t(θ)

∂θj
H̃
−1

t (θ)

)
,

c̃5(θ) = Tr

(
H̃
−1

t (θ)
∂2H̃t(θ)

∂θi∂θj

)
.

Similar to (b1), we claim that there exist three positive constants c′1, c′2 and c′3 such that

P

{
1

T

∥∥∥ T∑
t=1

{ ∂2 l̃t
∂θ∂θτ

− E
( ∂2 l̃t
∂θ∂θτ

)}∥∥∥ > c

}
≤ c′1

T

(Tc)κ
+ c′2 exp

(
− c′3Tc2

)
= O

( 1

T 1+ε

)
,

so

P

{
λmin

( 1

T

T∑
t=1

∂2 l̃t
∂θ∂θτ

)
< c

}
= O

( 1

T 1+ε

)
,

then, part (b3) follows.

For (b4), note that (A.4) continues to hold when l̃t(θ) and H̃t(θ) are replaced by lt(θ) and

Ht(θ). Therefore, similar to (b2), we can prove that there exists a constant c > 0 such that

P

{
sup

θ∈V (θ0)

1

T

∥∥∥ T∑
t=1

{ ∂2lt
∂θ∂θτ

− ∂2 l̃t
∂θ∂θτ

}∥∥∥ > c

}
= O

( 1

T 1+ε

)
.

Moreover,

sup
θ∈V (θ0)

1

T

T∑
t=1

∂2lt
∂θ∂θτ

= sup
θ∈V (θ0)

1

T

T∑
t=1

{
∂2lt
∂θ∂θτ

− ∂2 l̃t
∂θ∂θτ

}

+ sup
θ∈V (θ0)

1

T

T∑
t=1

{
∂2 l̃t
∂θ∂θτ

− E
( ∂2 l̃t
∂θ∂θτ

)}
+ sup
θ∈V (θ0)

E

{
∂2 l̃t
∂θ∂θτ

}
.

Together with the proof of (b3), (A.2) follows.

(ii) Let CT ≡ B̂ −B = UXτ (XXτ )−1. By Lemma A.2(ii), there exists C ′2 > 0 such that

P

(
max
k,i

∣∣∣ 1

T

T∑
t=1

xktuit

∣∣∣ > C ′2

√
log p

T

)
= O

(
1

T 2
+

1

p2

)
.

Under the event

A =

{
max
k,i

∣∣∣ 1

T

T∑
t=1

xktuit

∣∣∣ ≤ C ′2√ log p

T

}
∩
{
λmin(T−1XXτ ) ≥ 0.5λmin(Extx

τ
t )

}
,
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‖Cτ
T ‖2F ≤ 4λ−2

min(Extx
τ
t )C ′22 pK log p/T , which proves the result since λmin(Extx

τ
t ) is bounded

away from zero and P (A) ≥ 1−O
(

1
T 2 + 1

p2

)
.

Proof of Theorem 1.

For ∥∥∥Γ̂− Γ
∥∥∥ ≤ K2 max

i,j≤K

∣∣∣γ̂ij − γij∣∣∣,
following Lemma A.3(i) and K is a constant, it is easy to prove that

P

{∥∥∥Γ̂− Γ
∥∥∥ ≥ C√ log T

T

}
= O

( 1

T 1+ε

)
.

And for ∥∥∥D̂t −Dt

∥∥∥ ≤ K max
k≤K

∣∣∣ĥkt − hkt∣∣∣,
as hkt and ĥkt are measurable functions of θ0 and θ̂T , respectively, then∣∣∣ĥkt − hkt∣∣∣ = Op

(
θ̂T − θ0

)
,

so following Lemma A.3(i), we obtain

P

{∥∥∥D̂t −Dt

∥∥∥ > C

√
log T

T

}
= O

( 1

T 1+ε

)
.

Denote

GT = D̂tΓ̂D̂t −DtΓDt

=(D̂t −Dt)Γ̂D̂t +Dt(Γ̂− Γ)D̂t +DtΓ(D̂t −Dt)

=(D̂t −Dt)(Γ̂− Γ)D̂t + (D̂t −Dt)Γ(D̂t −Dt) + (D̂t −Dt)ΓDt

+Dt(Γ̂− Γ)(D̂t −Dt) +Dt(Γ̂− Γ)Dt +DtΓ(D̂t −Dt)

=(D̂t −Dt)(Γ̂− Γ)(D̂t −Dt) + (D̂t −Dt)(Γ̂− Γ)Dt + (D̂t −Dt)Γ(D̂t −Dt)

+ (D̂t −Dt)ΓDt +Dt(Γ̂− Γ)(D̂t −Dt) +Dt(Γ̂− Γ)Dt +DtΓ(D̂t −Dt),

and we have∥∥∥GT

∥∥∥
F
≤
∥∥∥(D̂t −Dt)(Γ̂− Γ)(D̂t −Dt)

∥∥∥
F

+ 2
∥∥∥(D̂t −Dt)(Γ̂− Γ)Dt

∥∥∥
F

+
∥∥∥(D̂t −Dt)Γ(D̂t −Dt)

∥∥∥
F

+ 2
∥∥∥DtΓ(D̂t −Dt)

∥∥∥
F

+
∥∥∥Dt(Γ̂− Γ)Dt

∥∥∥
F

=Op

(
‖D̂t −Dt‖F

)
+Op

(
‖Γ̂− Γ‖F

)
.
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We shall repeatedly use the fact that, for a K ×K matrix A

‖A‖ ≤ ‖A‖F ≤
√
K‖A‖,

then, we have

P

(∥∥∥GT

∥∥∥2

F
>
C log T

T

)
= O

( 1

T 1+ε

)
.

This completes the proof of Theorem 1.

In order to prove Theorem 2, we need the following extra Lemmas A.4 - A.7. First, define

CT = B̂ −B.

Lemma A.4.Under the same assumptions of Lemmas A.2 and A.3, there exists C ′3 > 0 such

that:

(i)

P

(∥∥BGTB
τ
∥∥2

Σ
+
∥∥BΣ̂x(t)Cτ

T

∥∥2

Σ
>
C ′3 log T

Tp
+
C ′3 log p

T

)
= O

( 1

T 1+ε
+

1

p1+ε

)
;

(ii)

P

(∥∥CT Σ̂x(t)Cτ
T

∥∥2

Σ
>
C ′3p(log p)2

T 2

)
= O

( 1

T 1+ε
+

1

p1+ε

)
;

Proof:

(i) Like the argument in proof of Theorem 2 in Fan, Fan and Lv[7], by the Sherman-Morrison-

Woodbury formula:

Σ−1
y (t) = Σ−1

u −Σ−1
u B[Σ−1

x (t) +BτΣ−1
u B]−1BτΣ−1

u ,

further,

BτΣ−1
y (t)B = BτΣ−1

u B −BτΣ−1
u B[Σ−1

x (t) +BτΣ−1
u B]BτΣ−1

u B

= BτΣ−1
u B[Σ−1

x (t) +BτΣ−1
u B]−1

{
[Σ−1

x (t) +BτΣ−1
u B]−BτΣ−1

u B
}

= BτΣ−1
u B[Σ−1

x (t) +BτΣ−1
u B]−1Σ−1

x (t)

= [Σ−1
x (t) +BτΣ−1

u B −Σ−1
x (t)][Σ−1

x (t) +BτΣ−1
u B]−1Σ−1

x (t)

= Σ−1
x (t)−Σ−1

x (t)[Σ−1
x (t) +BτΣ−1

u B]−1Σ−1
x (t).
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As Σ−1
x (t) is positive definite, and BτΣ−1

u B is positive semi-definite. Then, we have

Σ−1
x (t) +BτΣ−1

u B ≥ Σ−1
x (t),

so

[Σ−1
x (t) +BτΣ−1

u B]−1 ≤ Σx(t).

It means that

Σ−1
x (t)[Σ−1

x (t) +BτΣ−1
u B]−1Σ−1

x (t) ≤ Σ−1
x (t)Σx(t)Σ−1

x (t) = Σ−1
x (t),

and∥∥BτΣ−1
y (t)B

∥∥ ≤ ∥∥Σ−1
x (t)

∥∥+
∥∥Σ−1

x (t)[Σ−1
x (t) +BτΣ−1

u B]−1Σ−1
x (t)

∥∥ ≤ 2
∥∥Σ−1

x (t)
∥∥ = Op(1).

Hence ∥∥∥BGTB
τ
∥∥∥2

Σ
= p−1tr

(
Σ−1/2
y (t)BGTB

τΣ−1
y (t)BGTB

τΣ−1/2
y (t)

)
= p−1tr

(
GTB

τΣ−1
y (t)BGTB

τΣ−1
y (t)B

)
≤ p−1‖GTB

τΣ−1
y (t)B‖2F

≤ O(p−1)‖GT ‖2F

= Op

(C ′3 log T

pT

)
.

Under Assumption 4, ‖Σx(t)‖ = Op(1). And by Theorem 1, P (‖Σ̂x(t)‖ > C ′3) = O( 1
T 1+ε ), for

some C ′3 > 0. Hence, Lemma A.3(ii) implies∥∥∥BΣ̂x(t)Cτ
T

∥∥∥2

Σ
= p−1

∥∥∥Σ− 1
2

y (t)BΣ̂x(t)Cτ
TΣ
− 1

2
y (t)

∥∥∥2

F

= p−1tr
{

Σ̂x(t)Cτ
TΣ−1

y (t)CT Σ̂x(t)BτΣ−1
y (t)B

}
≤ p−1‖Σ̂x(t)‖2F ‖CT ‖2F ‖Σ−1

y (t)‖F ‖BτΣ−1
y (t)B‖2F

= Op

(C ′3 log p

T

)
.

(ii). Straightforward calculation yields

p
∥∥∥CT Σ̂x(t)Cτ

T

∥∥∥2

Σ
= tr

{
CT Σ̂x(t)Cτ

TΣ−1
y (t)CT Σ̂x(t)Cτ

TΣ−1
y (t)

}
≤
∥∥∥CT Σ̂x(t)Cτ

TΣ−1
y (t)

∥∥∥2

F

≤ λ2
max(Σ−1

y (t))λ2
max(Σ̂x(t))‖CT ‖4F

= Op

{(C ′3p log p

T

)2
}
,
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since ‖Σx(t)‖ = Op(1), and by Theorem 1, λ2
max(Σ̂x(t)) is bounded with probability at least

1−O
(

1
T 1+ε

)
. The result again follows from Lemma A.3(ii).

Lemma A.5.Suppose (log p)2 = o(T ) and (log p)2/ν−1 = o(T ). Then under Assumptions 1-4,

there exists C ′4 > 0, such that:

(i)

P

(
max
i≤p

∥∥∥b̂i − bi∥∥∥ > C ′4

√
log p

T

)
= O

( 1

T 2
+

1

p2

)
.

Proof: This part can be proved in a similar fashion to part (i) of Lemma 3.1 in Fan, Liao and

Mincheva[8].

Proof of Theorem 2, part (i).

We have ∥∥∥Σ̂y(t)−Σy(t)
∥∥∥2

Σ
≤
∥∥∥∥(B̂Σ̂x(t)B̂

τ
−BΣx(t)Bτ

)
+
(
Σ̂
T
u −Σu

)∥∥∥∥2

Σ

≤
(∥∥∥B̂Σ̂x(t)B̂ −BΣx(t)Bτ

∥∥∥
Σ

+
∥∥∥Σ̂Tu −Σu

∥∥∥
Σ

)2

≤ 2
∥∥∥B̂Σ̂x(t)B̂

τ
−BΣx(t)Bτ

∥∥∥2

Σ
+ 2
∥∥∥Σ̂Tu −Σu

∥∥∥2

Σ
,

and ∥∥∥B̂Σ̂x(t)B̂
τ
−BΣx(t)Bτ

∥∥∥2

Σ
=
∥∥∥(B̂ −B)Σ̂x(t)B̂

τ
+BΣ̂x(t)B̂

τ
−BΣx(t)Bτ

∥∥∥2

Σ

=
∥∥∥(B̂ −B)Σ̂x(t)(B̂ −B)τ + (B̂ −B)Σ̂x(t)Bτ

+BΣ̂x(t)(B̂ −B)τ +BΣ̂x(t)Bτ −BΣx(t)Bτ
∥∥∥2

Σ

=
∥∥∥CT Σ̂x(t)Cτ

T +BGTB
τ +BΣ̂x(t)CT +CT Σ̂x(t)Bτ

∥∥∥2

Σ

≤4
∥∥∥CT Σ̂x(t)Cτ

T

∥∥∥2

Σ
+ 4
∥∥∥BGTB

τ
∥∥∥2

Σ
+ 8
∥∥∥BΣ̂x(t)Cτ

T

∥∥∥2

Σ
.

So ∥∥∥Σ̂y(t)−Σy(t)
∥∥∥2

Σ
≤8
∥∥∥CT Σ̂x(t)Cτ

T

∥∥∥2

Σ
+ 8
∥∥∥BGTB

τ
∥∥∥2

Σ

+ 16
∥∥∥BΣ̂x(t)Cτ

T

∥∥∥2

Σ
+ 2
∥∥∥Σ̂Tu −Σu

∥∥∥2

Σ
.

(a) We have ∥∥∥Σ̂Tu −Σu

∥∥∥
Σ

= p−1/2
∥∥∥Σ−1/2

y (t)(Σ̂
T
u −Σu)Σ−1/2

y (t)
∥∥∥
F

≤
∥∥∥Σ−1/2

y (t)(Σ̂
T
u −Σu)Σ−1/2

y (t)
∥∥∥

≤
∥∥∥Σ̂Tu −Σu

∥∥∥ · λmax(Σ−1
y (t)).
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Therefore, Lemma 2 and Lemma A.4 yield the following result.∥∥∥Σ̂y(t)−Σy(t)
∥∥∥2

Σ
≤8
∥∥∥CT Σ̂x(t)Cτ

T

∥∥∥2

Σ
+ 8
∥∥∥BGTB

τ
∥∥∥2

Σ

+ 16
∥∥∥BΣ̂x(t)Cτ

T

∥∥∥2

Σ
+ 2
∥∥∥Σ̂Tu −Σu

∥∥∥2

Σ

=Op

(p(log p)2

T 2

)
+Op

( log p

T

)
+Op

( log T

Tp

)
+Op

(m2
p log p

T

)
=Op

(p(log p)2

T 2
+
m2
p log p

T

)
.

(b). For the infinity norm, it is straightforward to find that∥∥∥Σ̂y(t)−Σy(t)
∥∥∥

max
=

∥∥∥∥(B̂Σ̂x(t)B̂
τ
−BΣx(t)Bτ

)
+ (Σ̂

T
u −Σu)

∥∥∥∥
max

≤
∥∥∥B̂Σ̂x(t)B̂

τ
−BΣx(t)Bτ

∥∥∥
max

+
∥∥∥Σ̂Tu −Σu

∥∥∥
max

≤2
∥∥∥CTΣx(t)Bτ

∥∥∥
max

+
∥∥∥BGTB

τ
∥∥∥

max
+
∥∥∥CTΣx(t)Cτ

T

∥∥∥
max

+ 2
∥∥∥BGTC

τ
T

∥∥∥
max

+
∥∥∥CTGTC

τ
T

∥∥∥
max

+
∥∥∥Σ̂Tu −Σu

∥∥∥
max

.

Under Assumptions 3 and 4, both ‖B‖max and ‖Σx(t)‖max are bounded uniformly in (p, T ).

And by Lemma A.5, P
(

max
i≤p
‖b̂i − bi‖ > C ′4

√
log p
T

)
= O

(
1
p2

+ 1
T 2

)
. In addition, let ei be a p-

dimensional column vector whose ith component is one with the remaining components being zeros.

Then under the events ‖GT ‖max ≤ c′4
√

log T
T , ‖Σ̂x(t)‖ ≤ c′4, and max

j≤p
‖b̂i − bi‖ ≤ c′4

√
log p/T , for

some c′4 > 0, we have several results as follows:

2
∥∥∥CTΣx(t)Bτ

∥∥∥
max
≤ 2 max

i,j≤p

∥∥∥eτiCTΣx(t)Bτej

∥∥∥ (A.5)

≤ 2 max
i≤p

∥∥b̂i − bi∥∥ · ∥∥Σx(t)
∥∥ ·max

j≤p

∥∥bj∥∥
≤ Op

(√ log p

T

)
·Op(1) ·max

j

√√√√ K∑
i=1

b2ji

= Op

(√ log p

T

)
,

∥∥CT

∥∥
max
≤ max

i,j≤p

∣∣∣eτi 1

T
UXτ (

1

T
XXτ )−1ej

∣∣∣ (A.6)

≤ max
i≤p

∥∥∥eτi 1

T
UXτ

∥∥∥ · ∥∥∥(
1

T
XXτ )−1

∥∥∥
≤
√
K max

i≤K,j≤p

∣∣∣ 1

T

T∑
t=1

xitujt

∣∣∣ · ∥∥∥(
1

T
XXτ )−1

∥∥∥
= Op

(√ log p

T

)
,

31

A factor-GARCH model for high dimensional volatilities



‖BGTB
τ‖max ≤ K2‖B‖2max‖GT ‖max = Op

(√ log T

T

)
, (A.7)

‖CTΣx(t)Cτ
T ‖max ≤ max

i,j
‖eτiCTΣx(t)Cτ

Tej‖ (A.8)

≤ max
i≤p
‖eτiCT ‖2‖Σx(t)‖

≤ max
i≤p
‖b̂i − bi‖2 · ‖Σx(t)‖

= Op

( log p

T

)
,

‖2BGTC
τ
T ‖max ≤ 2K2‖B‖max‖GT ‖max‖CT ‖max (A.9)

≤ C ′K2Op

(√ log T

T

)
Op

(√
K

log p

T

)
= op

(√ log T

T

)
,

and ∥∥CTGTC
τ
T

∥∥
max
≤ K2

∥∥GT

∥∥
max

∥∥Cτ
T

∥∥2

max
= op

(√ log T

T

)
. (A.10)

Moreover, the (i, j)th entry of Σ̂
T
u −Σu is given by

σ̂u,ijI
(
|σ̂u,ij | ≥ ωT

√
ϑ̂u,ij

)
− σu,ij =

{
−σu,ij , if |σ̂u,ij | < ωT

√
ϑ̂u,ij ,

σ̂u,ij − σu,ij , o.w.
.

Hence, ∥∥∥Σ̂Tu −Σu

∥∥∥
max
≤ max

i,j≤p

∣∣∣σ̂u,ij − σu,ij∣∣∣+ ωT max
i,j≤p

√
ϑ̂u,ij ,

where ωT = C1

√
log p
T , and by Lemma A.3 and Lemma A.4 of Fan, Liao and Mincheva[8], we can

obtain the following inequality with probability at least 1 −O(p−2 + T−2)∥∥∥Σ̂Tu −Σu

∥∥∥
max
≤ C2

√
log p

T
.

Then, combining Equations (A.5)-(A.10), we have∥∥∥Σ̂y(t)−Σy(t)
∥∥∥

max
≤2
∥∥∥CTΣx(t)Bτ

∥∥∥
max

+
∥∥∥BGTB

τ
∥∥∥

max
+
∥∥∥CTΣx(t)Cτ

T

∥∥∥
max

+ 2
∥∥∥BGTC

τ
T

∥∥∥
max

+
∥∥∥CTGTC

τ
T

∥∥∥
max

+
∥∥∥Σ̂Tu −Σu

∥∥∥
max

=Op

(√ log p

T

)
+Op

(√ log T

T

)
+Op

( log p

T

)
+ op

(√ log T

T

)
+ op

(√ log T

T

)
+Op

(√ log p

T

)
=Op

(√ log p

T

)
+Op

(√ log T

T

)
.
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Hence, we obtain the second equation of part (i) in Theorem 2.

To complete the proof of part (ii) in Theorem 2, we first prove two technical lemmas.

Lemma A.6.Under the Assumptions 2-3,

(i) λmin(BτΣ−1
u B) ≥ c′′p for some c′′ > 0.

(ii) ‖[Σ−1
x (t) +BτΣ−1

u B]−1‖ = Op(p
−1).

Proof:

(i) The proof is the same as the Lemma B.4(i) of Fan, Liao and Mincheva[8].

(ii) Note that Σx(t) is positive definite. Then, it follows immediately from

λmin(Σ−1
x (t) +BτΣ−1

u B) ≥ λmin(BτΣ−1
u B).

Lemma A.7.Under Assumptions 1-4, there exists C ′5 > 0 such that

(i)

P

(∥∥∥B̂τ
(Σ̂
T
u )−1B̂ −BτΣ−1

u B
∥∥∥ > C ′5pmp

√
log p

T

)
= O

( 1

p1+ε
+

1

T 1+ε

)
;

(ii)

P

(∥∥∥[Σ̂
−1

x (t) + B̂
τ
(Σ̂
T
u )−1B̂]−1

∥∥∥ > C ′5
p

)
= O

( 1

p1+ε
+

1

T 1+ε

)
;

(iii) for Â
−1

= [Σ̂x(t) + B̂
τ
(Σ̂
T
u )−1B̂]−1,

P

(∥∥∥B̂Â−1
B̂
τ
(Σ̂
T
u )−1

∥∥∥ > C ′5

)
= O

( 1

p1+ε
+

1

T 1+ε

)
.

Proof:

(i) Let L =
∥∥∥B̂τ

(Σ̂
T
u )−1B̂ −BτΣ−1

u B
∥∥∥. Then,

L ≤2
∥∥∥Cτ

TΣ−1
u B

∥∥∥+ 2
∥∥∥Cτ

T

(
(Σ̂
T
u )−1 −Σ−1

u

)
B
∥∥∥

+
∥∥∥Bτ

(
(Σ̂
T
u )−1 −Σ−1

u

)
B
∥∥∥+

∥∥∥Cτ
TΣ−1

u CT

∥∥∥
+
∥∥∥Cτ

T

(
(Σ̂
T
u )−1 −Σ−1

u

)
CT

∥∥∥.
Therefore, by Assumption 2(b), Lemma 2 and Lemma A.3(ii), it is straightforward to verify the

result.

(ii) Since ‖GT ‖F ≥ ‖GT ‖, according to Theorem 1, there exists C > 0 such that with probability
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at least 1 − O( 1
T 1+ε ), ‖GT ‖ ≤ C

√
log T
T . Thus by Lemma A.1 of Fan, Liao and Mincheva[8], for

some c′′ > 0

P

(∥∥∥Σ̂−1

x (t)−Σ−1
x (t)

∥∥∥ < c′′‖GT ‖
)
≥ P

(
‖GT ‖ < C

√
log T

T

)
≥ 1−O

( 1

T 1+ε

)
,

which implies

P

(∥∥∥Σ̂−1

x (t)−Σ−1
x (t)

∥∥∥ < Cc′′
√

log T

T

)
≥ 1−O

( 1

T 1+ε

)
. (A.11)

Now let Â = Σ̂
−1

x (t) + B̂
τ
(Σ̂
T
u )−1B̂, and A = Σ−1

x (t) +Bτ (ΣTu )−1B. Then part(i) and (A.11)

imply that

P

(∥∥∥Â−A∥∥∥ < Cc′′
√

log T

T
+ C3pmp

√
log p

T

)
≥ 1−O

( 1

p1+ε
+

1

T 1+ε

)
.

In addition, mp

√
log p/T = o(1). Hence by Lemma A.1 in Fan, Liao and Mincheva[8] and A.6(ii),

for some C ′5 > 0,

P
(
λmin(Â) ≥ C ′5p

)
≥ P

(
‖Â−A‖ < C ′5p

)
≥ 1−O

( 1

p1+ε
+

1

T 1+ε

)
,

which implies the desired result.

(iii) By the triangular inequality, ‖B̂‖F ≤ ‖CT ‖ + Op(
√
p). Hence Lemma A.3(ii) implies, for

some c′5 > 0,

P

(∥∥∥B̂∥∥∥
F
≤ √p

)
≥ 1−O

( 1

T 1+ε
+

1

p1+ε

)
.

In addition, since ‖Σ−1
u ‖ is bounded, it then follows from Lemma 2 that ‖(Σ̂

T
u )−1‖ is bounded

with probability at least 1 −O(p−2 + T−2). The result then follows from the fact that

P

(∥∥∥Â−1
∥∥∥ > c′5p

−1

)
= O

( 1

p1+ε
+

1

T 1+ε

)
,

which is shown in part (ii).

Proof of Theorem 2, part (ii). We follow similar arguments as in Fan, Fan and Lv[7].

Using the Sherman-Morrison-Woodbury formula, and denote Â
−1

= [Σ̂
−1

x (t) + B̂
τ
(Σ̂
T
u )−1B̂]−1,
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A−1 = [Σ−1
x (t) +BτΣ−1

u B]−1. We then have∥∥∥Σ̂−1

y (t)−Σ−1
y (t)

∥∥∥ ≤∥∥∥(Σ̂
T
u )−1 −Σ−1

u

∥∥∥+
∥∥∥[(Σ̂

T
u )−1 −Σ−1

u ]B̂Â
−1
B̂
τ
(Σ̂
T
u )−1

∥∥∥
+
∥∥∥Σ−1

u B̂Â
−1
B̂
τ
[(Σ̂
T
u )−1 −Σ−1

u ]
∥∥∥+

∥∥∥Σ−1
u (B̂ −B)Â

−1
B̂
τ
Σ−1
u |
∥∥∥

+
∥∥∥Σ−1

u BÂ
−1

(B̂
τ
−B)Σ−1

u

∥∥∥+
∥∥∥Σ−1

u B(Â
−1
−A−1)BτΣ−1

u

∥∥∥
≡l1 + l2 + l3 + l4 + l5 + l6.

The bound of l1 is given in Lemma 2. And

l2 ≤
∥∥∥(Σ̂

T
u )−1 −Σ−1

u

∥∥∥ · ∥∥∥B̂Â−1
B̂
τ
(Σ̂
T
u )−1

∥∥∥.
It follows from Lemma 2, and Lemma A.7(iii) that

P
(
l2 ≤ c′6mp

√
log p

T

)
≥ 1−O

( 1

p1+ε
+

1

T 1+ε

)
,

and

l3 =

∥∥∥∥[(Σ̂Tu )−1 −Σ−1
u

]
B̂Â

−1
B̂
τ
Σ−1
u

∥∥∥∥ ≤ ∥∥(Σ̂
T
u )−1 −Σ−1

u

∥∥ · ∥∥B̂∥∥2 ·
∥∥Â−1∥∥ · ∥∥Σ−1

u

∥∥.
Then

P
(
l3 ≤ c′6mp

√
log p

T

)
≥ 1−O

( 1

p1+ε
+

1

T 1+ε

)
,

and

l4 =
∥∥Σ−1

u (B̂ −B)Â
−1
B̂
τ
Σ−1
u

∥∥ ≤ ∥∥Σ−1
u

∥∥ · ∥∥B̂ −B∥∥ · ∥∥Â−1∥∥ · ∥∥B̂τ∥∥ · ∥∥Σ−1
u

∥∥.
Consequently,

P
(
l4 ≤ c′6

√
log p

T

)
≥ 1−O

( 1

p1+ε
+

1

T 1+ε

)
.

The same bound also applies to l5. Finally,

l6 =
∥∥∥Σ−1

u B(Â
−1
−A−1)BτΣ−1

u

∥∥∥
≤
∥∥Σ−1

u

∥∥ · ∥∥B∥∥2 ·
∥∥Â−1

−A−1
∥∥ · ∥∥Σ−1

u

∥∥
≤
∥∥Σ−1

u

∥∥2 ·
∥∥B∥∥2 ·

∥∥Â−A∥∥ · ∥∥Â−1∥∥ · ∥∥A−1
∥∥.

Lemma A.7(ii) implies P
(
‖Â
−1
‖ > c′6p

−1
)

= O
(

1
p1+ε

+ 1
T 1+ε

)
. We obtain

P
(
l6 ≤ c′6mp

√
log p

T

)
≥ 1−O

( 1

p1+ε
+

1

T 1+ε

)
.
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The proof is completed by combining l1, . . . , l6:

P

(∥∥∥Σ̂−1

y (t)−Σy(t)
∥∥∥ ≤ c′6mp

√
log p

T

)
≥ 1−O

( 1

T 1+ε
+

1

p1+ε

)
.
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