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Abstract—A single-axis Microelectromechanical system
gravimeter has recently been developed at the University
of Glasgow. The sensitivity and stability of this device was
demonstrated by measuring the Earth tides. The success
of this device was enabled in part by its extremely low
resonant frequency. This low frequency was achieved with a
geometric anti-spring design, fabricated using well-established
photolithography and dry etch techniques. Analytical models
can be used to calculate the results of these non-linear oscillating
systems, but the power of finite element analysis has not been
fully utilised to explore the parameter space before now. In
this article finite element models are used to investigate the
behaviour of geometric anti-springs. These computer models
provide the ability to investigate the effect of the fabrication
material of the device: anisotropic <100> crystalline silicon.
This is a parameter that is difficult to investigate analytically,
but finite element modelling is used to take anisotropy into
account. The finite element models are then used to demonstrate
the design of a three-axis gravimeter enabling the gravity tensor
to be measured - a significantly more powerful tool than the
original single-axis device.

Index Terms—MEMS, Gravimeter, Geophysics, Intertial Nav-
igation

I. INTRODUCTION

Gravimeters have applications in air and land-based oil and
gas exploration [1], [2], sinkhole analysis [3], the detection of
subterranean tunnels and cavities [4], CO2 sequestration [5],
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geothermal reservoir monitoring [6], archaeology [7], hydrol-
ogy [8], and volcanology [9]–[12]. Commercial gravimeters
are all expensive ( $100,000 USD) and use a range of differ-
ent technologies for different applications. The commercially
available gravimeters all require levelling, and this is carried
out manually or be incorporating additional components to
automate this process.

In previous work [14]–[16], the development of a low
frequency microelectromechanical system (MEMS) gravime-
ter with a sensitivity of 4×10−7 ms−2/

√
Hz was discussed.

This device has since been miniaturised and undergone field-
testing [17]–[19]. A series of sensors are currently being
built for integration within the NEWTON-g volcano gravity
imager at Mt Etna, Sicily [20]. The device is capable of high
acceleration sensitivity in part because of its extremely low
resonant frequency MEMS resonator. This resonant frequency
was achieved via the use of a geometric anti-spring design for
the mass-on-spring system. A low resonant frequency means
that the ratio is minimised between the spring constant, k, and
the mass of the proof mass, m, giving a larger displacement for
a given acceleration, and thus greater potential sensitivity for
the gravimeter. An anti-spring can be characterised as having
a negative or at least partially negative restoring force. As
an anti-spring is extended, the spring constant decreases. One
way to design an anti-spring is by using curved monolithic
cantilevers, connected at a central point to constrain the motion
vertically [21]. With the aim of achieving a high acceleration
sensitivity for the MEMS gravimeter a monolithic geometric
anti-spring configuration was chosen. A monolithic geometry
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Fig. 1. The geometries of the springs used in the ANSYS finite element
models. a) A simplified 1-dimensional analytical schematic diagram of the
geometric anti-spring. b) The single spring model with boundary conditions
applied to the free end to fix the displacement and rotation. A point mass of
8×10−6 kg is applied to the free end of the spring. This system is modelled
using beam elements. c) The same model as a), but with two symmetric
springs and a point mass of 1.6 × 10−5 kg. In this model the boundary
conditions on the free end are removed. d) The same design as 1c but with
solid elements. In all cases a load step of 1 is equal to applying an acceleration
of 9.8066 m/s2. e) The final design of the 4-spring geometric anti-spring
MEMS sensor, as modelled in ANSYS. The results of models conducted
with this geometry would only converge if a dense mesh density was utilised
over the springs.

was important because this allowed for the device to be
fabricated from a single silicon chip.

II. METHOD AND RESULTS

A. Model Development

In order to verify the FE models of the MEMS based
geometric anti-spring, a simple analytical model – based on the
work of Cella et.al. [22] – was created. A schematic diagram
of this model is displayed in figure 1a. The model outlines the
parameters of a single geometric anti-spring blade. Such blades
are never used individually; the proof mass is suspended from
two or more symmetric blades, constraining it to move along
a vertical axis; thus reducing the analytical problem to one
dimension. The spring is clamped at the base with a launch
angle of θ0 and is constrained at the proof mass, or spring
tip, by an angle θL. This results in a boundary value problem
that can be conveniently solved in MATLAB with the bvp4c
algorithm [24].

As mentioned above, the tip of the geometric anti-spring is
constrained to move along a vertical line. This is equivalent
to requiring that the horizontal position of the tip always
maintains a constant value. This constraint is defined via the
compression ratio xcom = xtip/L. As the vertical displacement
and/or compression ratio increases, the 2nd spring provides
the force Gx, which introduces the negative component of
the spring constant (the 2nd spring is not displayed in figure
1a, but it is symmetrically mirrored in the vertical plane that
intersects the spring tip). This is the reason why the term

“geometric anti-spring” is used; the anti-spring nature comes
from geometry alone.

To assess characteristics of the spring that could not be in-
vestigated using the analytical model, a series of simple spring
systems were built using ANSYS workbench v17 software.
The geometric parameters (launch angle etc.) of the springs
in each model were identical to those presented in figure 1a.
Three initial FE simulations were performed to verify that the
ANSYS model could correctly determine the displacement-
force curves of the geometric anti-spring system. First a single
spring with a point-mass was tested (see figure 1B), and then a
more realistic two-spring system. This system was built using
both beam elements (figure 1c) and solid elements (figure 1d).
Excellent agreement was observed between the analytical and
FE models. This confirmation meant that the simple analytical
model could be utilised to test and optimise new geometries.
Conversely, the full FE model would be useful for determining
the effect of varying spring geometries caused by non-ideal
etching tolerances; in addition to exploring the stress in the
springs and the effect of crystalline silicon. Since silicon is a
crystalline material and thus exhibits a Young’s modulus that
depends on the orientation of the crystal axis to the etched
device. It is particularly important to utilise the correct Young’s
modulus in FE simulations in order to accurately predict the
ultimate displacement/resonant frequency of the MEMS device
since the moduli can vary by up to 45% [25] depending on
the axis. The modulus tensor provided by Hopcroft et. al. [25]
was utilised.

For gravimetry applications there is a desire to develop low
frequency resonators that provide stable behaviour. It would
therefore be beneficial to have a simple means of tuning the
resonant frequency for a fixed proof mass. This is generally
achieved by reducing the compression ratio of the spring
system xcom = xtip/L. For MEMS systems, however, in which
the springs are etched, there is no capability to actually change
the horizontal compression ratio as this is just set by the
initial geometry of the MEMS mask. As mentioned earlier, a
convenient way to alter the frequency is to change the launch
angle of the spring. This has the effect of increasing the arc
length of the spring, L, which in-turn reduces the compression
ratio for a given xtip. It was observed that as the launch angle
increases the resonant frequencies drops (see figure 2). An
additional means of tuning the system is to alter the ratio of
k/m. It was found that by altering the spring thickness, the
level of loading at which the oscillator reaches its minimum
frequency can be changed (see figure 3). It was also observed
that changing the thickness of the spring (whilst keeping the
mass constant) does not change the minimum frequency of
the system substantially (compared to the change that can be
induced by altering the launch angle). The following protocol
could therefore be followed in order to tune the design of a
MEMS geometric anti-spring. First, the launch angle could be
chosen to determine the minimum frequency. With this launch
angle fixed, the thickness of the springs could then be altered
in order to set the loading at which this minimum frequency
is achieved. For situations in which changes in vertical gravity
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Fig. 2. Launch Angle Comparison. The greater the launch angle, the lower
the resonant frequency.
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Fig. 3. Spring Thickness Comparison. The level of loading at which the
frequency minimum occurs can be tuned by altering the thickness of the
spring.

need to be measured, it would be necessary for the frequency
minimum to occur at full loading (i.e. suspended vertically in
the Earth’s gravitational field). It is not always the case that
gravimeters would be operated in such a vertical configuration,
as will be discussed in Triaxial MEMS Gravimeter section.

The next stage of the investigation was to model a full
MEMS gravimeter. Such a device requires four springs to
support a central mass (see figure 1e). With only two springs
the system would only be stable when vertical: if rotated
sideways torsional stresses would break the springs. Four
springs are utilised so that the system is self-supporting in
any orientation.

In this model a minimum element size of 4.25×10−6 m
was utilised. This system has a minimum resonant frequency
when vertical of around 5 Hz and a maximum equivalent
stress in the spring of 200 MPa. From our previous studies,
and measurements of the breaking stress in in thin silicon
suspension beams [26] this seems an appropriate level of stress
to provide a robust device. A very dense mesh is required
across the springs of the model, especially where the springs
meet the frame and the proof mass. This is where most of
the motion and therefore most of the stress is concentrated.
Tests were carried out on the mesh density to confirm that the
model converges. This model was then used to consider the
design characteristics of a tri-axial gravity sensor.

Fig. 4. A Future Gravimeter Design. A computer generated image of a three-
axis MEMS gravimeter in a Galperin configuration [23].

B. The Design of Future Triaxial MEMS Gravimeters

After the behaviour of the anisotropic silicon anti-spring
was understood, more complex designs of gravimeters could
be considered. All previous works on this topic by the authors
have concentrated on gravimeters that operate in a vertical
configuration. These cannot be used to measure variations in
acceleration other than those in the vertical, z, component of
gravity. It is possible, however, to design a gravimeter that
has sensitivity to the x, y, and z components of gravity, not
just z. Such a gravimeter has the advantage that providing the
orientation of the device is known, the levelling requirements
are not as stringent as those for a one dimensional gravimeter
measuring only the z-component. Making such a device is
only possible if the angle at which the minimum frequency
(where the optimum acceleration sensitivity occurs) is tunable.
As already discussed it is possible to tune both the minimum
frequency, and the loading at which this frequency occurs.
Since the angle of the device is just a proxy for loading (along
with spring thickness, and the mass value), one could easily
design a device that would reach its minimum frequency at
a specific angle. In such a device three tuned MEMS devices
could be placed in the Galperin configuration [23] at an angle
of θ = 54.7◦ from the horizontal, and separated azimuthally
from each other at an angle of 120◦ (see Fig. 4). The Galperin
configuration was designed to allow three identical sensors
to measure gravity (or seismic activity) in three dimensions.
Conversely, if one wanted to mount three sensors parallel to
x, y and z, then two different sensor geometries would be
required. This is because the sensors in x and y would be
perpendicular to the 1 g field, and the sensor in z would be
parallel to it. The devices in x and y would consequently
experience different forces to the device in z.

For a triaxial device such as that presented in figure 4,
the acceleration in each of the three axes would be given by
equations 1, 2 and 3:

gz =
(g1 + g2 + g3) sin θ

3
(1)
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Fig. 5. Tilt Susceptibility Comparison. A comparison between the tilt
susceptibility of a single vertical sensor, and that of three devices placed
in a triaxial configuration.

gx = ((g1 + g2) cosα) cos θ − g3 cos θ (2)

gy = ((g1 − g2) sinα) cos θ (3)

To test the susceptibility of such a triaxial model to tilt, a
geometry was tuned so that its minimum frequency would
occur at the Galperin angle. Three identical models of this kind
were then set up to match the configuration detailed in figure
4. The acceleration vectors of these models were then varied
to simulate the effect of a tilting base plate. The displacement
and resonant frequencies of each of the proof masses were
measured, and a value of gravitational acceleration calculated
using gi = ω2x (where gi is the output of one of the individual
sensors). The total parasitic acceleration in gz (see eq. 1) due
to tilt was then plotted to ascertain whether tilt susceptibility
was better in this configuration than for a single MEMS chip
oriented vertically in a gravitational field. Figure 5 shows the
results of this test. It can be seen that the triaxial configuration
is less sensitive to tilt than a single vertical sensor.

III. CONCLUSION

Since the triaxial system offers multi-axis sensitivity, as well
as a reduced tilt susceptibility, it is clear that this design would
provide practical benefits in the many industries that utilise
microgravity surveys. Crucially, however, tensor measurement
of the gravitational field is an essential characteristic of an
inertial navigation device. The use of MEMS devices for
inertial navigation has become a possibility in recent years
[13]. Any MEMS device, however, will suffer from drift –
so long-term navigation would be susceptible to errors that
increase with time. Whilst MEMS devices have been utilised
for inertial navigation, to the knowledge of the authors, no
MEMS device has yet been developed that has both triaxial
sensitivity and the temporal stability of the sensors developed
by the authors [14].
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