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Of all the causes of accidents to ships, 14% pertains to damage due to ship equipment. Accordingly, the maritime industry is currently 
considering state-of-the-art maintenance and inspection processes, an example of which is Condition-Based Maintenance (CBM). This 
is a strategy that hinges on the condition monitoring of assets. Condition Monitoring (CM) has proven to increase efficiency, reliability, 
profitability, and performance of vessel. To enable this maintenance strategy, sensors need to be installed along the most critical ship 
components and around the environment where these assets are operating through the application of Internet of Ships (IoS). IoS has 
demonstrated to be effective for collecting data in real time as well as performing diagnosis and prognosis to assess the current and 
future health of machinery to assist instant decision-making. The employment of IoS presents several challenges, an example of which is 
the imputation of missing values. Data imputation is a compelling pre-processing step, the aim of this is to estimate identified missing 
values to avoid under-utilisation of data. This data preparation step has gained popularity over the last few years due to its importance 
when dealing with Industrial Internet of Things (IIoT) sensor data. Although some articles presented new methodologies to impute 
missing values from sensor data of marine machinery based on machine learning methodologies, deep learning models have not yet been 
considered. For this reason, variational autoencoders for imputing missing values from sensor data of marine systems are analysed in 
this paper. To assess the performance of variational autoencoders as imputation methods, a comparative study is performed with widely 
implemented imputation techniques. Mean imputation, Forward Fill and Backward Fill, and k-Nearest Neighbors are considered. To 
that end, a case study on marine machinery system parameters obtained from sensors installed on a diesel generator of a tanker ship is 
performed. Results demonstrate the applicability of variational autoencoders when dealing with missing values of marine machinery 
systems sensor data, achieving a coefficient of determination of 0.99 when imputing missing values of the diesel generator power 
parameter. 
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INTRODUCTION 
The utilisation of data provides greater opportunities regarding 
predictive maintenance in order to anticipate forthcoming failures 
in marine machinery. As such, costs can be diminished by 
averting random preventive maintenance and crisis-related 
reactive maintenance. Due to the prosperity of Condition-Based 
Maintenance (CBM) within the maritime industry, the volume of 
data accessible to implement instant data-driven decision-making 
strategies for enhancing operations and maintenance activities is 
growing exponentially. Accordingly, analysis can empower 
predictive maintenance by implementing Maintenance Analytics 
(MA). As outlined by Karim et al. (2016), and Jasiulewicz-
Kaczmarek and Gola (2019), MA is constituted by four 
interconnected time-line phases (maintenance descriptive, 
maintenance diagnostic analytics, maintenance predictive 
analytics, and maintenance prescriptive analytics), the aim of 
which is the promotion of maintenance actions by improving the 
understanding of data and information. 
 
Maintenance descriptive analytics summarises the data collected 
from various maintenance sources to provide measures and 
visualisations. For instance, based on fault data, measures in 
relation to the number of failures per components and/or per 
period can be obtained, as well as their respective graphical 
representations. If the outcome of this stage is combined with 
reliability data, the next maturity phase is achieved. Maintenance 
Diagnostic Analytics is constituted by fault detection (detection 
of faults and malfunctions), fault isolation (root cause analysis 
implementation), and fault identification (description of the fault 
type and its nature). Once the current health of marine machinery 
is determined, maintenance predictive analytics can be employed 
to approximate future outcomes, such as either predicting the 
likelihood of marine machinery operating without a failure up to 
certain times or estimating the Remaining Useful Life (RUL) 
before a failure may occur. This is achieved by considering 
current marine machinery conditions concurrently with past 
operation profiles. Finally, the higher level of maturity is 
maintenance prescriptive analytics, which transforms the 
outcomes obtained in the preceding phases into actions to 
optimise, among other aspects, spare parts inventory lists, capital 
invested in condition monitoring equipment, contractors’ 
employment, degradation performance minimisation, Operation 
and Maintenance (O&M) activities, and generated operational 
income. 
 
However, as Internet of Ships is in its infancy, there is a lack of 
data quality due to unreliable outcomes caused by certain 
anomalies and missing values that are originating from device 
failure, network collapse, and human error (Balakrishnan and 
Sangaiah, 2018; Izonin et al., 2019; Noor et al., 2014). 
Accordingly, the adequate implementation of data pre-processing 
steps, such as data synchronization and data imputation, is 

essential to guarantee reliable data-driven models. Various 
studies have been performed in relation to data imputation 
methodologies in industries in which the utilisation of sensors is 
highly expanded. Liu et al. (2020) proposed a univariate data 
imputation method to recover large gaps of missing values from 
Industrial IoT manufacturing sensor data. Hadeed et al. (2020) 
implemented an evaluation process to assess both univariate and 
multivariate imputation techniques. Predictive Mean Matching, 
Random Markov, and Kalman Filter were some of the approaches 
assessed by the latter. The proposed methodology was applied in 
the environmental sector. Although the suggested studies 
presented promising imputation results in their respective sector, 
further application and elaboration on the respective results need 
to be performed to determine if such frameworks are robust to the 
challenges to be addressed in the maritime sector. An example of 
these is the consideration of different states (e.g., operational, and 
non-operational conditions) and abrupt adjustments that refer to 
small changes applied due to the contractual agreements between 
the charterer and the ship owner in relation to the vessel speed 
and the fuel oil consumption per day (Velasco-Gallego and 
Lazakis, 2020). 
 
Therefore, although data imputation is a compelling pre-
processing step that has gained popularity recently, there is a lack 
of formalisation and analysis thus far within the maritime 
industry (Velasco-Gallego and Lazakis, 2020; Cheliotis et al., 
2019). This indicates that the deployment of such methodologies 
within the maritime domain is also yet to be adequately 
formalised, thus needing further research in this field. 
 
To that end, the present paper addresses the above issue by 
introducing a methodology that analyses variational autoencoders 
for imputing missing values from sensor data of marine systems. 
Deep learning has demonstrated their capability to automatically 
adapt to different typologies and complex datasets, and the 
provision of accurate predictions. Furthermore, feature 
engineering and data labelling, which are concepts especially 
complex to address in the maritime industry, are not required. 
Thus, such methodologies are assessed to determine if they also 
perform accurately when dealing with missing values, and 
subsequently lead to a bias reduction in further steps of the data-
driven models. Moreover, future work guidelines are also 
indicated to deal with some of the challenges that deep learning 
methodologies present, such as the lack of transparency and the 
computational resources that are required. 
 
The rest of the paper is structured as follows. Section 2 presents 
the current literature on data imputation methods within the 
maritime industry. Section 3 describes the proposed 
methodology. Section 4 reflects on the results obtained after 
implementing the proposed methodology through a case study. 
Finally, in Section 5 the conclusions of this paper are presented. 
 
LITERATURE REVIEW 
A total of three articles have been identified that present data 
imputation methodologies to deal with missing data collected 
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from marine machinery. Cheliotis et al. (2019) developed a data 
imputation framework by combining both k-Nearest Neighbors 
(k-NN) and Multiple Imputation by Chained Equations (MICE) 
techniques. To highlight the accurate performance of the hybrid 
imputation method a case study was presented. Specifically, data 
collected from a total of 8 sensors coupled to the turbocharger and 
to the main engine of a chemical tanker were analysed. The 
proposed hybrid methodology was compared to k-NN and MICE 
methods to demonstrate the enhanced results of the proposed 
methodology. 
 
Velasco-Gallego and Lazakis (2020) implemented a comparative 
study to examine the real-time imputation performance of a total 
of 20 machine learning and time series forecasting algorithms. 
Examples of these are the mean imputation, k-NN, Neural 
Networks (NNs) with 1, 2, and 3 hidden layers, and 
Autoregressive Integrated Moving Average (ARIMA). A case 
study was also implemented on a total of 7 machinery parameters, 
such as the main engine rotational speed, the lubrication oil inlet 
pressure, and the jacket water cooling system inlet pressure, 
obtained from sensors installed on a cargo vessel to assess their 
performance, suggesting that ARIMA outperformed the 
remaining imputation models in terms of accuracy and 
computational cost. 
 
Velasco-Gallego and Lazakis (2021) developed a Data 
Assessment Imputation Framework (DAIF) to assess the 
accuracy of any imputation model. Specifically, the Kernel Ridge 
Regression and the GA-ARIMA models were evaluated by the 
proposed methodology as multivariate and univariate imputation 
techniques, respectively. This was done to demonstrate the 
applicability of the suggested framework in the case of marine 
machinery systems. Additionally, the Exponentially Weighted 
Moving Average (EWMA) model was also assessed as a 
denoising method, and a real-time imputation tool based on an 
open-source stack was also put forward. A case study based on 
the analysis of time-series data collected from a main propulsion 
engine of a cargo vessel was presented. Results demonstrated the 
importance of: 1) applying denoising when time series data 
contain high noise and the model applied is sensitive to it, 2) 
preventing failures that lead to the collection of either incorrect 
or missing values, 3) the influence of an effective data dashboard 
on the prevention of sensor failure, 4) the necessity to implement 
data assessment imputation frameworks, as there is not a unique 
model that outperforms the remaining imputation techniques for 
all possible characteristics and contexts described in the maritime 
industry. 
 
With regards to data pre-processing approaches, Dalheim and 
Steen (2020) developed a data preparation toolbox for analysis of 
time series data. The methodology was constituted by feature 
selection, synchronization, outlier detection, validation, and 
extraction. Karagiannidis and Themelis (2021) performed the 
following pre-processing steps: “imputation” algorithm, outliers’ 
identification, data smoothing, data quality control, and feature 
engineering. The imputation algorithm assumes that past values 
do not change drastically in the future when an adequate short 

time window is considered, the performance of which may 
decrease if the data contain large gaps of missing values. Perera 
and Mo (2016) implemented Gaussian Mixture Models (GMMs) 
with an Expectation Maximization (EM) algorithm to identify 
marine engine operating regions. Additionally, Principal 
Component Analysis (PCA) was utilised for structure 
understanding of each GMM in relation to ship and navigation 
performance. Gkerekos and Lazakis (2020) performed engine 
transients’ rejection, recording anomalies rejection, weather 
forecast imputation, and feature engineering. Multivariate 
Imputation by Chained Equations (MICE) algorithm was applied 
as an imputation approach. Although all the above papers 
considered pre-processing steps, none of them analysed 
comprehensively the data imputation phase, despite the fact it has 
been perceived that datasets of marine machinery systems usually 
contain from 4.4% to 26% missing values (Cheliotis et al., 2019). 
 
In addition to the above, several studies have been conducted in 
relation to deep learning methodologies within the maritime 
industry for the implementation of fault diagnosis and Remaining 
Useful Life (RUL) prediction (Senemmar and Zhang, 2021; Han 
et al., 2021; Wang et al., 2020; Ellefsen et al., 2019). However, 
to the best of the authors’ knowledge, there is no evidence that 
such methodologies have been performed to implement data 
imputation, except for the analysis of multilayer perceptron, as 
indicated in preceding paragraphs. Deep learning methodologies 
have demonstrated their capability to automatically adapt to 
different typologies and complex datasets, and the provision of 
accurate predictions. Furthermore, feature engineering and data 
labelling, which are concepts especially complex to address in the 
maritime industry due to the identification of stationary parts of 
in-service measurement data (Dalheim and Steen, 2020), for 
instance, are not required. Despite of the previous studies 
undeniable results, various challenges are yet to be addressed, 
such as the need for large volumes of data, the lack of flexibility, 
the risks of obtaining an overfitted model, and the consideration 
of such methodologies as “black-box” models due to their lack of 
transparency. Therefore, it is expected that further research will 
encompass strategies that address such challenges and ensure the 
further implementation of deep learning methodologies within 
the maintenance analytics context. In an effort to further promote 
and enhance the application of smart maintenance methodologies 
within the maritime industry, the present study suggests a novel 
framework for the analysis of variational autoencoders for 
regression modified by adding Long Short-Term Memory 
(LSTM) layers in both the encoder and decoder to consider the 
characteristics of time series data. 
 
METHODOLOGY 
The proposed methodology is graphically represented in (Fig. 1). 
The first phase refers to data pre-processing, which is essential to 
be implemented prior to model training due to the characteristics 
of the data. For instance, data may contain idle states that need to 
be excluded from the analysis. Subsequently, the LSTM-VAE-
based regressor analysed in this study is introduced. To assess the 
imputation performance of such an approach, several contexts 
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and metrics are considered. Finally, to evaluate if the analysed 
methodology can enhance other imputation techniques widely 
implemented within the maritime industry, a comparative study 
is introduced. 
 

 

 
Fig.1. Graphical representation of the proposed methodology. 

 
Data pre-processing 
Prior to the implementation of this section, data understanding 
needs to be performed to determine the steps to apply within this 
section. The usual pre-processing steps that need to be addressed 
when dealing with sensor data of marine systems are data 
synchronization, data resampling, non-operational states 
detection, data understanding, data denoising, outliers’ detection, 
data imputation, data transformation, feature engineering, non-
stationarity assessment, and multicollinearity identification. 
 
All parameters may have been either recorded at different 
timestamps or present delays due to communication issues. 
Therefore, the parameters need to be synchronised prior to the 
implementation of the data imputation model. To that end, data is 
resampled to ensure that all features’ timestamps are aligned. 
Additionally, downsampling may be required to reduce the noise 
that time series data contain when dealing with high-frequency 
data. Interpolation is applied to address this matter. 
 
Subsequently, non-operational states need to be adequately 
identified and discarded. Original Equipment Manufacturers 
(OEMs) of the systems being analysed are usually consulted to 
address this matter. However, the expert knowledge obtained 
from the original engine/equipment manufacturers’ manuals are 
complemented with data-driven models to evaluate if the 
accuracy of identifying such states increases. Accordingly, 
Gaussian Mixture Models (GMMs) with Expectation-
Maximization (EM) algorithm implementation for fitting the 
model is applied. This probabilistic model considers that data are 
generated from a mixture of a finite number of Gaussian 

distributions with unknown parameters. EM is utilised for fitting 
the models and Bayesian information Criterion to evaluate the 
possible number of clusters. This step is performed by the 
application of the scikit-learn Python library (Pedregosa et al., 
2011). 
 
Prior to the implementation of the data imputation model, data 
transformation is also implemented. Normalization is applied so 
that the parameters lie between 0 and 1 values. To adequately 
assess the performance of the data imputation approach, the 
remaining steps identified within this section, such as data 
denoising and feature engineering, are not implemented within 
this methodology, as they could interfere with the imputation 
performance. However, the implementation of such approaches 
is highly recommended, as they have been proven to enhance the 
imputation performance of the analysed models (Velasco-
Gallego and Lazakis, 2021). 
 
In relation to exploratory data analysis, correlation analysis is 
performed by the estimation of both the Pearson’s correlation 
coefficient and Spearman’s rank correlation coefficient to 
identify linear and non-linear relationships between features. To 
finalise the pre-processing step, the data are split into training 
(80% of the entire dataset), validation (20% of the training 
dataset), and test (20% of the entire dataset) sets to avoid model 
overfitting. 
 
LSTM-VAE-based regressor analysis 
 
The deep learning model implemented as a data imputation 
technique in this study is the variational autoencoder for 
regression. As the name indicates, this is a type of autoencoder 
that learns the parameters of a probability distribution, which 
enables the model to be generative. The model is constituted by 
an autoencoder, the aim of which is to learn both how to reduce 
the input dimensions and compress the inputs into an encoded 
representation. This compressed state, a.k.a latent space 
representation, presents the lowest possible dimensions of the 
inputs. Subsequently, the decoder is utilised to learn how to 
reconstruct the data contained in the latent space representation 
to reproduce the inputs as analogously as possible. To achieve the 
variational autoencoder neural network, the training process for 
such autoencoder is regularised by encoding the input as a 
distribution over the latent space (Fig. 2). 
 
The methodology proposed by Zhao et al. (2019) is modified to 
enable the model to impute time-series data. Such methodology 
is constituted by an encoder with 2 intermediate layers of 
dimension (128, 32) with tanh as activation function. The 
resulting output is independently connected to two layers, the 
dimension of which is 8, to determine both the mean and the 
standard deviation of the latent representation. The regressor, 
which shared the intermediate layers of the encoder, is utilised to 
determine the mean and standard deviation for the predicted 
feature. Finally, the model is also constituted by the decoder. By 
utilising the latent representation as the input, the reconstruction 
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is accomplished. Therefore, the architecture proposed considers a 
feedforward artificial neural network. Specifically, a multilayer 
perceptron, which does not deal with sequentiality, and thus does 
not consider the characteristics of time series data. Accordingly, 
the variational autoencoder based regression model is adapted to 
learn temporal dynamic behaviour by the implementation of Long 
Short-Term Memory Network (LSTM), which is a type of 
recurrent neural network introduced by Hochreiter and 
Schmidhuber (1997). Fig. 3 presents a diagram of the VAE-based 
regression model highlighting the modification of both the 
encoder and decoder by the addition of LSTM layers. 
Specifically, the encoder is formed by 2 layers (128, 64) and tanh 
activation function. Analogously, the decoder is constituted by 2 
layers (64, 128) and tanh activation function. The ratio of 
validation set has been set to 0.20. Adam optimizer has been 
applied to compile such a model. Subsequently, the model has 
been trained, setting the number of epochs to 100 and the batch 
size to 32. The prior hyperparameters have been defined based on 
prior experience and heuristic evaluation. This step is performed 
by the implementation of the Python libraries Tensorflow and 
Keras. 
 

 
Fig. 2. Variational autoencoder 

 
 
 

 
Fig. 3. Diagram of the VAE-based regression model modified to 

include LSTM layers in both encoder and decoder. 
 

Evaluation 
To analyse if the LSTM-VAE-based regression model can be 
implemented as an imputation model, different contexts need to 
be analysed. Generally, a total of three different missingness of 
data mechanisms are considered. The first mechanism, Missing 
Completely at Random (MCAR), involves those situations in 
which the missingness is independent of the data. An example of 
which is a random failure produced in the fuel flowmeter 
(Cheliotis et al. 2019). The second mechanism is the Missing at 
Random (RAM). In this case the missingness is dependent on 
another feature (e.g., if a component of a main engine fails, the 
operating condition of dependent components may be altered). 
The third mechanism is identified as Missing Not at Random 
(MNAR), which refers to those scenarios in which the 
missingness is related to the feature itself. The evaluation of the 
imputation performance of this model has been implemented by 
the Data Assessment Imputation Framework (DAIF) presented 
by Velasco-Gallego and Lazakis (2021). Specifically, the first 
mechanism, MCAR, is employed presented in this study, as it has 
been identified as the most common mechanism when dealing 
with data collected from marine systems. The procedure of which 
is described hereunder. 

• All the sequences of the target value obtained from the 
original dataset are considered as the input of the DAIF. 
The remaining features are considered as explanatory 
variables. 

• n samples with different missing ratios (r1, r2, …, rm) are 
generated. Each sequence contains values missing 
completely at random. 

• The missing values are initially either masked or 
imputed to fit the VAE-regression model. 

• The missing values are imputed by implementing the 
VAE-regression model. 

 
Additionally, six metrics are estimated to determine the 
imputation performance of the imputation approach (Root Mean 
Square Error (RMSE), Mean Squared Error (MSE), Median 
Absolute Error (MedAE), Mean Absolute Error (MAE), Max. 
Error, and coefficient of determination (R2)). 
 
Comparative study 
To compare the imputation performance of the LSTM-VAE-
regression model with data imputation methodologies widely 
implemented by both industry and academia a total of three 
models are utilised to perform a comparative study. 
 
The first method considered is the mean imputation, which is a 
simple forecasting method widely used to impute missing values 
by estimating the mean of the sample. It is usually implemented 
as it is easy to interpret, easy to apply, and the execution time is 
low. The second method is employed by Makridis et al. (2020). 
This method consists of applying Forward Fill and, subsequently, 
Backward Fill algorithms. Finally, to also consider a multivariate 
imputation approach, k-NN is also utilised, which was analysed 
by Cheliotis et al (2019), and Velasco-Gallego and Lazakis 
(2020). 
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RESULTS 
Having explored the methodology being analysed as a data 
imputation technique, a case study is introduced to assess its 
imputation performance. Specifically, a total of 14 parameters 
(see Table 1) collected from a diesel generator of a tanker ship 
are considered. 
 
Table 1. Parameters of the diesel generator considered for the case 
study. 
 

Id Parameter 

P1 Power 

P2 Exhaust gas outlet temperature of cylinder 6 

P3 Exhaust gas outlet temperature of cylinder 5 

P4 Exhaust gas outlet temperature of cylinder 4 

P5 Exhaust gas outlet temperature of cylinder 3 

P6 Exhaust gas outlet temperature of cylinder 2 

P7 Exhaust gas outlet temperature of cylinder 1 

P8 Winding temperature T phase 

P9 Winding temperature S phase 

P10 Winding temperature R phase 

P11 Turbocharger exhaust gas outlet temperature 

P12 Cooling air temperature 

P13 Lube oil inlet temperature  

P14 Cylinder exhaust gas outlet temperature (average) 
 
In order to apply the methodology described in the previous 
section of this paper, the target variable is defined, and the main 
outcomes obtained after performing the pre-processing phase 
with regards to non-operational states identification are 
presented. Furthermore, the descriptive statistics, the histograms, 
and the correlation analysis for each parameter are also shown for 
a better understanding of the introduced case study. 
Subsequently, the missing ratios analysed are presented. Then, 
the results obtained in the comparative study phase are introduced 
and comprehensively discussed. Finally, elements for future work 
are presented to conclude this section. 

 
The parameter P1 is considered as the target variable. The 
remaining features are considered as the explanatory variables. 
These data have been collected in a 1-minute frequency and 
include a total of 66207 instances. Fig. 4 represents graphically 
the time series data of such a parameter. As observed, there are 
several idle states that need to be excluded from the analysis. 
Furthermore, adjustments introduced due to either contractual 
agreements between the charterer and the shipowner or weather 
conditions can be also perceived. To identify those idle states, 
GMMs with EM is applied, the minimum of mixture components 
analysed being 1 and the maximum 10. Four different types of 
covariance are also assessed (full, tied, diagonal, and spherical). 
As indicated in Fig. 5, a total of 2 components and the spherical 
covariance type have been selected as the parameters to train the 
model. Once the model has been fitted, the idle states have been 
removed, thus obtaining a total of 33745 instances. Therefore, 
more than 49% of the dataset refers to idle states. 
 

 
Fig. 5. Parameters’ selection of the GMMs. 
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Fig. 4. Time series plot of the diesel generator power. 

 
 
 
 
 
 
 

Table 2. Descriptive statistics of the monitored features. 
 P1 P2 P3 P4 P5 P6 P7 

Count 33745 33745 33745 33745 33745 33745 33745 
Mean 296.93 370.61 349.95 386.52 382.16 384.43 354.64 
Std. 81.09 20.95 18.31 22.79 22.43 18.91 19.12 
Min. 150.19 222.7 213.5 226.5 219.9 251.9 209.4 
25% 236.97 355.6 338.9 371.6 368.2 372.1 341.6 
50% 270.94 369.3 350.8 386 383.1 383.1 354.9 
75% 356.14 385.8 362.2 404.1 397.5 399.5 371.6 
Max. 555.93 438.7 421.1 453.1 448.1 448.5 411.7 

 
 P8 P9 P10 P11 P12 P13 P14 
Count 33745 33745 33745 33745 33745 33745 33745 
Mean 51.30 52.89 51.06 444.82 44.59 62.00 371.39 
Std. 4.612 4.79 4.67 28.64 2.72 0.84 19.36 
Min. 30.2 33.2 30.7 213.7 29.9 45.6 223.9 
25% 48.1 49.5 47.8 429.1 42.6 61.7 359.66 
50% 50.3 51.9 50 443.5 44.5 62.1 371.06 
75% 54.3 55.9 54.2 469.1 46.7 62.5 388.16 
Max. 67.7 68.8 69.6 510.1 52.6 65.2 434.55 
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Fig. 6. Histograms of the monitored features (P1-P14). 

 
 
Subsequently, exploratory data analysis is performed. The 
descriptive statistics are presented in Table 2, the histograms are 
represented in Fig. 6., and the Pearson’s correlation coefficients 
are described in Table 3. As indicated, all parameters present a 
strong correlation with the P1, except for the parameter P13 
 
To assess the imputation performance of the fitted model, a total 
of five ratios of missing values have been analysed (0.05, 0.15, 
0.25, 0.5, 0.8). Therefore, three contexts of missing values are 
evaluated (small, medium, and large). Results for the four models 
being analysed (LSTM-VAE-based regressor, mean imputation, 
application of Forward Fill and, subsequently, Backward Fill 
algorithms, and k-NN) are presented in Tables 4-7. The numbers 
of neighbours selected for the k-NN imputer is estimated by the 
square root of the number of instances of the sample, thus 
avoiding overfitting. 
 
Table 3. Pearson’s correlation coefficient (absolute values). 
 

Parameter coefficient 

P2 0.88 

P3 0.82 

P4 0.87 

P5 0.80 

P6 0.84 

P7 0.81 

P8 0.86 

P9 0.87 

P10 0.86 

P11 0.88 

P12 0.77 

P13 0.51 

P14 0.89 
 
Results demonstrated that LSTM-VAE-based regressor 
outperforms the remaining analysed models. However, it can be 
perceived that, when data contain small numbers of missing 
values, the difference is not significant. For instance, if a missing 
ratio of 0.05 is considered, it can be observed that the RMSE of 
the LSTM-VAE-based regressor is 8.91 kW (Table 4), while the 
value of this metric is 9.1 kW if the Forward Fill and Backward 
Fill (FF-BF) algorithms are applied. By contrast, when a large 
rate is considered (missing ratio of 0.8) the RMSE of the LSTM-
VAE-based regressor and FF-BF are 12.20 kW and 22.00 kW, 
respectively. This indicates that the LSTM-VAE-based regressor 
is more robust than the FF-BF model, which only presents an 
analogous performance when the dataset contains small numbers 
of missing values, as such an approach imputes the missing values 
based on the prior and subsequent observations. Thus, further 
analysis with regards to the implication of noise and abnormal 
values in the observations considered by FF-BF in each instance 
needs to be made. In relation to the performance of the k-NN 
imputer, it can be perceived that the imputations are more robust 
than when FF-BB is applied for medium and large gaps of 
missing values. However, several limitations need to be 
highlighted with regards to such an approach. Examples of which 
are the performance degradation when the sample contains large 
gaps of missing values and when both dimensions and number of 
instances are high. Additionally, the number of neighbours need 
to be optimally selected. In this study it has been selected by 
estimating the square root of the number of instances of the 
sample to avoid overfitting, although more sophisticated 
approaches may need to be applied to enhance its imputation 
performance. The worst results are achieved when the mean 
imputation is applied, accomplishing the maximum RMSE 
perceived when the missing ratio is 0.8 (108.07 kW). The 
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variability of the data and the different operational states 
identified within the dataset may be the cause of such results. 
Furthermore, when the mean imputation is applied it can be 
perceived that the parameter distribution is distorted, which may 
lead to a disruption of the relationship between features. As 
results did not vary significantly when applying this 
methodology, this has not been included in the analysis described 
in Fig. 7. However, an example to observe the distortion of the 
parameter is expressed in Fig. 8. The study of performing mean 
imputation in each operational state can be implemented instead 
of estimating the mean for the entire dataset, thus determining if 
the bias and the limitations of such an approach still occur. 

 
If results are analysed generally, it can be observed that the 
imputation performance is reduced when the missing ratio 
increases; as less observed data can be utilised to train the 
different models. Therefore, this indicates that the prevention of 
errors that yield either corrupted or missing values is of 
paramount importance when building a data-driven model. In 
addition, should an imputation method need to be applied due to 
the impossibility of preventing these errors, a comprehensive 
analysis needs to be performed to avoid adding bias estimates that 
may lead to an inaccurate model that could ultimately be utilised 
for decision-making strategies. 
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Table 4. Imputation results of the LSTM-VAE-based regressor. 
Missing ratio RMSE (kW) MSE (kW2) Max. Error (kW) MedAE (kW) MAE (kW) R2 
0.05 8.91 79.47 41.48 5.33 6.69 0.99 
0.15 9.80 96.12 196.66 4.72 6.48 0.98 
0.25 10.10 102.13 144.23 4.98 6.86 0.99 
0.5 10.74 115.39 153.57 5.06 7.23 0.98 
0.8 12.20 148.88 196.06 7.29 8.87 0.98 

 
Table 5. Imputation results of the k-NN imputer. 

Missing ratio RMSE (kW) MSE (kW2) Max. Error (kW) MedAE (kW) MAE (kW) R2 
0.05 14.68 215.51 69.41 7.97 10.92 0.97 
0.15 15.26 232.89 70.68 8.51 11.44 0.97 
0.25 15.89 252.56 151.11 8.64 11.6 0.96 
0.5 16.22 262.96 149.24 8.88 11.97 0.96 
0.8 18.31 335.37 150.91 10.87 13.72 0.95 

 
Table 6. Imputation results of the application of Forward Fill and, subsequently, Backward Fill algorithms. 

Missing ratio RMSE (kW) MSE (kW2) Max. Error (kW) MedAE (kW) MAE (kW) R2 
0.05 9.1 82.9 42.61 4.68 6.53 0.99 
0.15 10.89 118.69 107.46 4.99 7.28 0.98 
0.25 12.2 148.72 107.46 5.27 7.91 0.98 
0.5 16.89 285.18 221.99 6.24 9.58 0.96 
0.8 22.00 484.29 262.13 8.52 13.59 0.94 

 
Table 7. Imputation results of the mean imputation technique. 

Missing ratio RMSE (kW) MSE (kW2) Max. Error (kW) MedAE (kW) MAE (kW) R2 
0.05 107.87 11635.41 180.1 113.53 100.16 0 
0.15 107.68 11595.06 181.68 113.63 99.95 0 
0.25 107.89 11641.99 181.68 113.44 100.39 0 
0.5 108.47 11764.97 189.86 113.75 101.14 0 
0.8 108.07 11679.65 189.42 112.89 100.66 0 
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Fig. 7. Comparison between observed values and imputed values of the diesel generator power.
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Fig. 8. Comparison between observed values and imputed 

values of the diesel generator power when the mean imputation 
is applied, and the missing ratio is 0.15. 

 
Although the LSTM-VAE-based regression model has 
demonstrated an accurate imputation performance, it presents 
several limitations that need to be addressed. The first major 
limitation of this approach is the dependency on the volume of 
data utilised for training purposes. In addition, its computational 
cost is higher than other methodologies that presented analogous 
imputation results in specific contexts. Thus, the application of 
other methodologies may need to be utilised as imputation 
techniques instead when there are insufficient resources to deal 
with such models and when a low execution time is also required. 
Other limitations are the lack of transparency, lack of flexibility, 
and risk of obtaining overfitting models. These matters may 
generate a lack of trust towards these models within the industry 
if they are not adequately addressed. Therefore, further research 
needs to be implemented. Some of the aspects that are in the 
research agenda in relation to deep learning and data imputation 
analyses are listed hereunder. 
 

• Perform a comprehensive analysis of other deep 
learning models to assess their imputation performance. 

• Analyse the implication of corrupted data in the 
imputation performance of the analysed models. 

• In this study only non-operational states were identified 
and discarded from the analysis. However, there are 
other states that could not be determined with the current 
approach that may negatively impact the imputation 
performance. Accordingly, further research needs to be 
performed to identify in a more accurate manner these 
transitions so that the implication of such states in the 
imputation performance can be assessed. 

• Study of implementing deep learning models for real-
time data imputation. 

• The analysis performed in this study presented as a 
target variable a feature that was highly correlated with 
the explanatory variables. Thus, there is a need of 
studying and introduce modifications to the current 
model to determine possible enhancements in the 
architecture of the neural network and obtain a more 
robust model while considering the data imputation 

performance and the resources needed to adequately 
implement it. This also includes the analysis of 
optimisation techniques to adequately select the 
architecture of the deep neural network and determine 
the hyperparameters of the applied models, as this study 
selected the hyperparameters based on different tested 
architectures. 

• Apply other data pre-processing steps that have not been 
implemented to evaluate if the imputation performance 
increases. Examples of these are feature selection, 
feature extraction, and time-series denoising. Moreover, 
this analysis has demonstrated the presence of 
collinearity between independent variables. To deal with 
such a collinearity, a proper analysis in the data pre-
processing step needs to be performed by implementing 
a more comprehensive correlation analysis and by 
estimating relevant metrics, such as Variance Inflation 
Factor (VIF). Then, based on whether collinearity is 
identified or not, it is possible that some features may 
need to be removed from the analysis or techniques such 
as Principal Component Analysis (PCA) and Partial 
Least Squares (PLS) may need to be further analysed 
and implemented accordingly. 

• Introduce explainable intelligence models to deal with 
the current scepticism towards “black-box” models 
within the maritime industry. 

• Perform more validations with other available datasets 
and parameters. 

 
CONCLUSIONS 
Data accessibility in the maritime industry is already a fact, which 
has led to an exponential increase in data-driven applications to 
assist decision-making strategies. However, there are several 
challenges that need to be addressed. An example of which is the 
existence of either corrupted or missing values due to diverse 
typology errors, including device failure and inadequate data 
manipulation. The inappropriate treatment of such values may 
lead obtaining of unreliable models.  
 
Accordingly, data imputation needs to be implemented in these 
conditions. This pre-processing step is not yet formalised, 
however, within the maritime industry. An indicator of this is the 
application of imputation techniques that lack robustness as 
shown in various studies. Consequently, further research in 
relation to this matter is required within the maritime industry, as 
it has been noted that marine machinery sensor datasets usually 
contain from 4.4% to 26% missing values. 
 
This deals with missing values from marine systems data by 
analysing the possible application of deep learning 
methodologies as data imputation techniques. Specifically, 
variational autoencoders for regression are evaluated. To that end, 
a data imputation assessment framework is utilised to simulate 
various missing contexts, thus enabling the analysis of their 
imputation performance. To complement the analysis, a 
comparative study is considered by implementing other data 
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imputation techniques currently applied within this industrial 
sector. Mean imputation, Forward Fill and Backward Fill, and k-
NN imputers were considered. A case study on a diesel generator 
of a tanker ship was introduced to evaluate the performance of the 
proposed data imputation methodology. Specifically, the power 
parameter was considered as a target variable. Results 
demonstrated that the imputation performance is enhanced when 
variational autoencoders for regression are implemented. 
However, it presents analogous results to Forward Fill and 
Backward Fill when leading with small missing ratios. However, 
the latter may not be appropriate if the dataset contains either 
other missing scenarios (e.g., large gaps or large ratios of missing 
values) or unexpected behaviours, which indicates its lack of 
robustness. The worse results were achieved when mean 
imputation was applied, as it both distorts the parameter 
distribution and disrupts the relationship between features when 
considering parameters of analogous characteristics from the one 
presented in this study. 
 
Consequently, variational autoencoders for regression are 
considered the most adequate models to perform data imputation 
tasks. Their suitability notwithstanding, the limitations cannot be 
avoided, such as their lack of transparency and the need of large 
volumes of data. Meanwhile, future work guidelines, including 
the utilisation of explainable artificial intelligence models and the 
development of a comprehensive comparative study of deep 
learning methodologies for data imputation, have been indicated 
accordingly to advance with the formalisation of data imputation 
within the maritime industry. 
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