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Abstract Traditional approaches tend to cause classier bias in the imbalanced
data set, resulting in poor classification performance for minority classes. In
particular, there are many imbalanced data in financial fraud, network intru-
sion, and fault detection, where recognition rate of minority classes is perti-
nent than the classification performance of majority classes. Therefore, there
is pressure on developing efficient algorithms to solve the class imbalance prob-
lem. To this end, this article presents a novel hybrid algorithm Negative Bi-
nary General (NBG), to improve the performance of imbalanced classifica-
tions by combining oversampling and a feature selection algorithm. A novel
oversampling algorithm, Negative-positive Synthetic Minority Oversampling
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Technique (NPSMOTE), improves sample generation’s practicability while the
Binary Ant Lion Optimizer (BALO) algorithm extracts the most significant
features to improve the classification performance. Simulation experiments car-
ried out using seven benchmark imbalanced data sets demonstrate that, the
proposed NBG algorithm significantly outperforms the classification of imbal-
anced small-sample data sets compared to nine other existing and six recently
published algorithms.

Keywords Imbalanced data · Oversampling · Feature selection · General
Vector Machine

1 Introduction

The class imbalance problem has emerged in the fields of medical diagnosis
[79], financial fraud detection, network intrusion detection [42, 7,37,75,84], IoT
security [92], spam filtering, biological engineering [52,71], customer retention
[6], among several other segments of the society [62,53]. The number of samples
in different categories varies significantly on an imbalanced data set [54]. That
is, the class with far more samples belongs to the majority class, while the
class with a relatively small number of samples belongs to the minority class.
In this article, the majority class is called the negative class, while the minority
class is called the positive class.

Different quantities of samples signify providing different quantities of in-
formation to the classifier. Therefore, traditional machine learning-based clas-
sification algorithm’s performance is commonly inferior in the minority class
of the class imbalance problem, while the positive class often more important
than the negative class in the class imbalance problem. For example, in can-
cer diagnosis, the entire data set is supposed to contain 100 samples. Among
that 99 samples belong to the negative class (class 1), and 1 sample belongs
to the positive class (class 2). If 1% of classification errors is that the cancer
patient is classified as normal, this incident can cause a cancer patient’s death.
Furthermore, it is not easy to achieve 99% accuracy in practice, so thus, the
misclassification rate of the positive class is considerably excessive.

Traditional machine learning based classification algorithms are unsuited
to the class imbalance problem [87], mainly due to the following aspects: 1) the
positive class samples are very few, traditional machine learning based clas-
sification algorithms are challenging to learn the characteristics of the data,
2) the data sets contain many noises. The influence of noises on both positive
class and negative class is unsymmetrical. It makes imbalanced learning more
difficult, and 3) The data sets from two classes are always overlapped. The
importance of class imbalance problem and the limitation of traditional ma-
chine learning based classification algorithms motivate researchers to develop
efficient algorithms to solve the class as mentioned above imbalance problem.
Therefore, this article mainly improves the classification performance of mi-
nority class samples.
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In recent decades, many algorithms have been developed to deal with the
class imbalance problem, primarily based on resampling algorithm, feature se-
lection, and exaction algorithm, cost-sensitive learning algorithm, and ensem-
ble algorithm. Among them, the resampling algorithm is composed of over-
sampling algorithm, undersampling algorithm. The oversampling algorithm
balances the class distribution by generating new minority class samples. In
contrast, the undersampling algorithm balances the class distribution by re-
moving the intrinsic samples in the majority class, although these algorithms
may lead to the loss of important information [48,64]. The feature selection
algorithm is to select the significant features. In the class imbalance problem,
minority class samples are easily treated as noises, which can be reduced by
feature selection [85]. Also, feature selection can make the classifier achieve
optimal performance [30]. The feature extraction algorithm is the transforma-
tion of features from high-dimensional to low-dimensional, generally creating
new features [30]. A cost-sensitive learning algorithm means that negative class
samples’ misclassification is assigned a higher costs for positive class samples.
However, it is challenging to set cost matrices [43]. Ensemble algorithms can
improve a single classifier’s performance by combining a variety of base clas-
sifiers [49].

In this article, a novel algorithm called NBG is proposed, from the com-
bination of NPSMOTE, BALO, and GVM algorithms. It can not only pro-
duce effective positive class sample by using an improved SMOTE algorithm
NPSMOTE, but also the classification performance of imbalanced classifica-
tion is improved by exploiting the state-of-the-art BALO as a feature selection
of more significant features and the recently proposed GVM in classification.
The main contributions of this paper are as follows:

(1)A hybrid algorithm NBG is proposed to solve the imbalanced Small-
sample data classification problems. It compromises the merits of over-sampling
and feature selection,

(2)A new over-sampling algorithm, namely NPSMOTE, is proposed to gen-
erate new positive class samples. Unlike the SMOTE algorithm,the NPSMOTE
generates a positive class sample between a positive class sample and negative
class sample. In this algorithm, the purpose of generating synthetic samples
is to improve the performance of the classifier. The algorithm is to find the
samples with learning difficulties and synthesize them. In the MWMOTE algo-
rithm, the importance of minority class sample is measured by the Euclidean
distance between minority class sample, and its the nearest neighbor majority
class sample. The importance of minority class sample represents the difficulty
of learning minority class sample [10]. Therefore, we think that the direction
of learning the difficulties of minority class sample should be the direction of
connection with the nearest neighbor majority class sample,

(3)The state-of-the-art BALO algorithm is explored to be used as a fea-
ture selection algorithm. The BALO is a relatively new heuristic algorithm.
It contains adaptive boundary shrinking mechanism and elitism, and has the
advantage of high development and fast convergence speed. Furthermore, the
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feature selection algorithm can improve the classification performance of the
algorithm,

(4)A recently proposed GVM is explored as the machine learning classifica-
tion algorithm. Note that there is no any available recent research that applies
the GVM in the class imbalance problem. The GVM has the advantage of
strong generalization ability.

Among references in imbalanced classification [51,17,68,72,39], hybrid al-
gorithms are usually better than single ones. This study’s primary motivation
is that resampling algorithm, feature selection algorithm, and the novel classifi-
cation algorithm have different advantages, and there have certain limitations.
Once identified and isolated their characteristics, the proposed hybrid algo-
rithm merged their advantages to obtain a better classification performance
than each of them isolated. Besides, BALO and GVM are rarely used in im-
balanced classification, while NPSMOTE, BALO and GVM have their own
advantages, so thus, NBG is proposed under the combination of SMOTE,
BALO and GVM.

The rest of this article is organized as follows. Section 2 reviews the relevant
researches related to the class imbalance problem, the proposed algorithm
described in Section 3, the experimental results for verifying the proposed
algorithm are given in Section 4, and finally, concluding remarks and future
work directions are given in Section 5.

2 Related work

There are four primary algorithms to solve the class imbalance problem: re-
sampling algorithm, feature selection and exaction algorithm, cost-sensitive
learning algorithm and ensemble algorithm. In addition, there are also some
hybrid algorithms. In this section we mainly describe the related work of these
algorithms. He et al. give the research development about class-imbalance
learning, which include the foundation of imbalanced learning, the unique
technologies, and the main application fields in their book Imbalanced Learn-
ing Foundations, Algorithms, and Applications [35]. Alberto et al. provide a
formal description of the imbalanced learning problem and focuses on its main
features and the related solution in their book Learning from Imbalanced Data
Sets [26].

2.1 Resampling

The oversampling algorithm balances the class discribution by generating new
minority class samples, while the undersampling algorithm balances the class
distribution by removing the intrinsic samples in the majority class. However,
the undersampling algorithm is easy to lose useful information [48,64]. Fur-
thermore, the most frequently used oversampling algorithm is the SMOTE
algorithm [16] in which new minority class samples are created by interpo-
lating the randomly selected two minority class samples. The disadvantages
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Table 1 Summary of articles employing resampling algorithms

Category Strategy Articles

oversampling Distance based [16], [31] , [36], [10], [33], [10],[2]
Cluster based [20]
Density based [15]
Smooth bootstrap form [55]
security levels [14]
Smooth bootstrap form [55]

undersamping random based [11]
Tmek link pair based [77]
Condensed Nearest Neighbor
rule

[32]

KNN based [44]
Neighborhood cleaning rule [45]

of SMOTE include over-generalization, which is likely due to enlarging the
overlapped areas between the majority and minority class [83]. Han et al. pro-
posed Borderline-Smote [31] that creates new minority class samples by the
boundary minority class samples, as the performance of this method depends
on the choice of the number of the nearest neighbors. If the number of nearest
neighbors is too small, a part of minority class samples was mistaken as noises
and cannot synthesize the new sample.

Cohen et al. proposed AHC [20] that balance the dataset through cluster
that undersamples the majority examples by the K-means algorithm and over-
samples the minority examples by the agglomerative hierarchical clustering.
Hu et al. proposed the MSMOTE [36], which considers the distribution of the
minority class and removes noises. However, when the class imbalance and the
class overlap problem happen simultaneously, it may lead to the problem that
the production instances may be distributed in the majority class regions [10].
Bunkhumpornpat et al. proposed DBSMOTE [15] based on the concept of
density cluster that produces the minority samples by the boundary minority
class samples. He et al. proposed ADASYN [33] that produces the number
of minority samples dependent on the number of the adjacent majority class
samples, where the noise also increases in multiples [18]. Menardi et al. pre-
sented the ROSE [55] that oversampling the minority examples based on a
smoothed bootstrap form.

Barua et al. proposed the MWMOTE based on the proposed two-stage
process, where the weight is assigned [10] to the minority class samples based
on the Euclidean distance between the candidate minority class and the can-
didate majority class first, then the minority class with large weights have
higher oversampling opportunities. This algorithm cannot detect the relevant
minority class samples with far away from the majority class samples [59].
Bunkhumpornpat et al. proposed the safeLevel-SMOTE [14] based on secu-
rity levels that produce the new minority samples by selecting the two minority
class samples with a high-security level. Abdi et al. presented the MDO [2] to
balance the data that integrates the Mahalanobis distance-based over-sampling
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and boosting technologies. The above algorithms are the most well-known ex-
tended algorithms of SMOTE. Alberto et al. reviewed a state-of-the-art of
SMOTE algorithm in its 15th year anniversary [25].

Random Under-Sampling (RUS) removes a part of the majority samples by
the random sample algorithm [11]. Since the characteristics of randomness and
contingency, this algorithm might lose some vital information on the majority
samples [58]. Tomek proposed the TomekLinks [77] based on the idea of Tmek
link pair that remove the noise and boundary majority sample. P E Hart
proposed the CNN [32]– an algorithm that removes the majority sample far
away from the boundary. Kubat et al. proposed the OSS [44] based on the
KNN that deletes the majority sample, which is different from the nearest
neighbor classes. Finally, Jorma et al. proposed the Neighborhood Cleaning
Rule (NCL) [45] based on the ENN [82]. These resampling algorithms have
been summarized in Table 1.

2.2 Feature selection and exaction

Table 2 Summary of articles employing feature selection and exaction algorithms

Category Strategy Articles

Filter relies on the general statisti-
cal features of the training data
without using any learning al-
gorithm

[81], [47], [8] ,[5]

Wrapper Evolutionary based [12], [3]
Embedded the process of learning classi-

fier and feature selection are
carried out simultaneously

[3]

Feature extraction transforms data into a low-
dimensional space

[73], [57]

Feature selection is to select some of the most representative features from the
original features. There are three main types of feature selection: Filter, Wrap-
per and Embedded. The filter feature selection mainly relies on the general
statistical features of the training data without using any learning algorithm.
Wei et al. [81] proposed a new model based on the feature selection that exacts
the crucial attributes related to the Total Hip Arthroplasty (THA) information
to help make the decision. Lima and Pereira et al. [47] built a fraud detection
model that use the undersampling strategy in the feature selection step, in
which results showed that this model could efficiently improve the company’s
financial situation. Bae and Yoon et al. [8] proposed an ensemble framework
for detecting polyp through the data sampling-based boosting algorithm and
Partial Least Square (PLS) feature learning algorithm [70]. PLS is a wide
class of methods for modeling relations between sets of observed variables by
means of latent variables [70]. Finally, Alibeigi et al. [5] proposed an algorithm
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namely the DBFS to cope with high dimensional imbalanced data using the
feature ranking algorithms. The Wrapper feature selection algorithm uses an
evolutionary strategy to guide search. Beyan and Fisher et al. [12] proposed a
hierarchical decomposition algorithm to deal with the class imbalance problem
that integrates the clustering and outlier detection technologies. Al-Ghraibah
et al. [3] proposed a new feature exaction method based on a sub-sampled clas-
sification framework to predict flare activity. The embedded feature selection
algorithm means that the process of learning classifier and feature selection
are carried out simultaneously. Dubey et al. [21] studied an ensemble system
using the feature selection and data sampling to analyze various sampling algo-
rithms, which showed that the proposed ensemble model could achieve stable
and promising results.

Feature extraction transforms data into a low-dimensional space [80]. It is
noted that the selected features and the original features are separated in dif-
ferent space. Song et al. designed a new predictor based on a suitable feature
exaction algorithm called the nDNA-Prot that improves the identification of
the DNA-binding proteins [73]. Moepya et al. [57] demonstrated the effective-
ness of a cost-sensitive classifier for financial fraud detection problem. Also,
this paper removed the redundant features through PCA and FA. These fea-
ture selection and extraction algorithms have been summarized in Table 2.

2.3 Cost-sensitive learning

Table 3 Summary of articles employing cost-sensitive learning

Category Strategy Articles

Cost-sensitive
learning

Modifying the decision thresh-
olds

[93]

compensation strategy [86]
the cost-sensitive margin mean
and the cost-sensitive penalty

[19]

the fuzzy rough set theory [78]
using a weighting strategy [61],[4]

The main idea of the cost-sensitive learning is as follows. When training the
classification model, the least squares error of the samples is no longer min-
imized as a training algorithm, but the pursuit of the overall misclassifica-
tion cost is minimized [22]. Compared to the resampling algorithm, the cost-
sensitive learning algorithm is relatively rare. The reasons are as follows: 1)
it is difficult to determine the optical value of the cost matrices, 2) the clas-
sification algorithm often needs to be adjusted in the cost-sensitive learning
algorithm. The adjustment of the method requires a certain amount of ex-
pert knowledge and practical experience [29]. Zou et al. [93] proposed a novel
framework that improves the classification performance in the class imbalance
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problem by finding the best classification threshold. Yu et al. [86] proposed
a novel algorithm to deal with the imbalance class problem based on a com-
pensation strategy and ELM. Cheng et al. proposed a new algorithm namely
the CS-LDM that introduces the cost-sensitive margin mean and the cost-
sensitive penalty [19]. A new ensemble algorithm based on the cost-sensitive
decision trees and the evolutionary algorithm is proposed by Krawczyk et al.
[43]. Vluymans et al. [78] proposed a new type of classifier to deal with the
multi-instance class imbalance problem based on the fuzzy rough set theory.
Oh et al. [61] proposed a new error function that enlarges the update weights
of the minority class and reduces the update weights of the majority class in
which the results showed that such method could be efficiently applied to the
class imbalance problem. Finally, Ali et al. proposed the Can-CSC-GBE [4]
that integrates the CSL, GentleBoost, AdaBoostM1 and Bagging, which the
results showed that such a system improves the classification performance on
the breast cancer data set. These cost-sensitive learning algorithms have been
summarized in Table 3.

2.4 Ensemble

Table 4 Summary of articles employing ensemble algorithms

Category Strategy Articles

Ensemble individual penalty parameters
and the weighted exponential
error function

[91]

combining the principles of
boosting and the construction
of supervised projections

[27]

novel undersampling [9]
novel oversampling [69]
active learning [76]
Stochastic-Ensemble [13]

As known, the ensemble algorithm has better classification performance than
a single classifier. Therefore, some researchers have solved the class imbalance
problem by using the ensemble algorithm in recent years. Zieba et al. pro-
posed the boosted SVM to predict the post-operative life expectancy in lung
cancer patients, where individual penalty parameters are introduced and the
weighted exponential error function is minimized [91]. Garćıa-Pedrajas and
Garćıa-Osorio proposed a new ensemble algorithm, where a supervised pro-
jection of the original data into a new space is obtained first, then used to
train the classier [27]. Bao et al. proposed a new undersampling ensemble al-
gorithm, namely the BNU-SVM based on the SVM and boosted Near-miss
under-sampling algorithm [9], from which results showed that such a algo-
rithm is a effective solution to concept detection with large-scale imbalanced
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data sets. Ren et al [69]proposed different ensemble classifiers to detect the
Microaneurysms (MAs) based the adaptive over-sampling algorithm. The ex-
periments have shown that these algorithms effectively improve the classifi-
cation performance of the minority class. Zieba and Tomczak [76] proposed
a novel training algorithm to predict the short-term loans repayment based
on an active learning strategy and boosting SVM. Lusa et al. proposed the
Stochastic-Ensemble to deal with the high-dimensional data with rare events
[13], in which the results showed that this method could achieve excellent
performance on high-dimensional data with rare events. These ensemble algo-
rithms have been summarized in Table 4.

2.5 Hybrid algorithm

Table 5 Summary of articles employing hybrid algorithms

Category Strategy Articles

Hybrid combined resampling with fea-
ture selection

[51]

combined resampling with en-
semble algorithm

[17], [68], [72], [39]

In addition to the above four algorithms, some algorithms combine with the
above algorithms to reach better performance. Taghi et al [51] combined resam-
pling with feature selection algorithm to alleviate the class imbalance prob-
lem, which results showed that the combined algorithm can obtain better
classification performance than single algorithm in software defect prediction.
Chawla et al [17] proposed SMOTEBoost based on resampling and ensemble
algorithm, where indirectly changing the update weights and modifying for
skewed distributions. Experiments shown that SMOTEBoost could effectively
improve the rare class classification performance if compared to SMOTE and
Boosting. Rayhan et al [68] proposed CUSBoost that combined undersam-
pling with boosting algorithm, which results showed that CUSBoost could
efficiently be applied to classify highly imbalanced datasets. Chris et al [72]
proposed RUSBoost that introduce RUS into the AdaBoost algorithm, which
results showed that RUSBoost runs faster and has better classification per-
formance than SMOTEBoost. Zhao et al [39] proposed WHMBoost based on
two resampling algorithms and two base classifiers. They considered that re-
sampling algorithm and single base classifier might have specific limitations.
The hybrid algorithm based on resampling and base classifer can complement
each other. Experiments have shown that WHMBoost achieves better AUC, F-
Measure, and Geometric Mean than other algorithms as AdaBoost, RUSBoost,
RBBoost, RHSBoost, SMPTEBoost, CUSBoost, MeBoost on 40 imbalanced
datasets.These hybrid algorithms have been summarized in Table 5.
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3 Proposed algorithm

Original imbalanced 

dataset

Training

 dataset

Testing

dataset

Minority class 

samples

Majority class 
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NPSMOTE
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Balanced training 

dataset

BALO 

feature selection

Obtain the optimal 

feature subset

GVM classification

 algorithm

Classifier model

Feature 
reduction

The processed 

testing dataset

Predict result

Fig. 1 The complete workflow of the proposed NBG
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In this section, the complete workflow of the proposed NBG is given, as
shown in Fig. 1. First, the complete imbalance data set (two-class) is divided
into a training data set and testing data set by using the stratified random
sampling method. A stratified random sample method is a random sample in
which members of the population are first divided into strata, then are ran-
domly selected to be a part of the sample. Next, to adopt the oversampling
algorithm, the training data set is divided into the minority class subset and
the majority class subset. The synthetic minority class samples produce the
third step by applying the proposed oversampling algorithm NPSMOTE. From
this, a balanced training set is obtained. To enhance the class performance,
the optimal feature subset in the balanced training set by the state-of-the-art
BALO method is selected in the fourth step, so then the processed training
set is used to train the machine learning classifier. A recently proposed GVM
algorithm is applied as the machine learning classification algorithm in this
research. The testing data set’s dimension is reduced by the optimal feature
subset before the processed testing data set is presented to the classifier model.
Lastly, the predicted result after the testing is obtained. In the following sub-
section, the NPSMOTE, BALO, and GVM are described.

As overall, a novel algorithm called NBG is proposed in which the SMOTE,
BALO and GVM are combined. It can produce an effective positive class sam-
ple by using an improved SMOTE algorithm NPSMOTE. However, the clas-
sification performance of imbalanced classification is improved by exploiting
the state-of-the-art BALO as a feature selection of more significant features
and the recently proposed GVM in classification. As a note, the NPSMOTE
generates a positive class sample between a positive class sample and negative
class sample. In this algorithm, the purpose of generating synthetic samples
is to improve the performance of the classifier. The algorithm is to find the
samples with learning difficulties and synthesize them. The importance of mi-
nority class sample represents the difficulty of learning minority class sample
[10]. Therefore, we believe that learning the difficulties of learning minority
class sample should be the direction of connection with the nearest neighbor
majority class sample. Therefore, the NPSMOTE algorithm can generate more
valuable samples for classification. In the class imbalance problem, minority
class samples are quickly treated as noises, which can be reduced by feature se-
lection [85]. Furthermore, the BALO algorithm can adaptively search the space
of features optimally and be converging to an optimal optimal solution better
than well-known feature selection methods Particle Swarm Optimizer (PSO),
Genetic Algorithms (GAs), Ant Lion Optimizer (ALO), and Binary Bat Al-
gorithm (BBA) on 21 data sets [23]. Therefore, the state-of-the-art BALO
algorithm is explored to be used as a feature selection algorithm. Lastly, the
GVM has the advantage of solid generalization ability, so then the proposed
GVM is explored as the machine learning classification algorithm.
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Fig. 2 Minority class sample O is surrounded
by outer minority class sample E

E

O

Fig. 3 Minority class sample E and O are
clamped by majority class sample

E

O

Fig. 4 Minority class samples are enclosed in
an arc, E and O are sandwiched with majority
class samples
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Fig. 5 The synthetic sample S generated by
the MWMOTE falls in majority class

E

O

S

B

Fig. 6 The synthetic sample S produced by
the NPSMOTE falls between E and B

E

O

S

B

Fig. 7 The synthetic sample S generated by
the MWMOTE falls in majority class

3.1 NPSMOTE

In this subsection, the shortcomings of the existing oversampling algorithms
are introduced, and the motivation of the NPSMOTE algorithm is given, fol-
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E

O

S

B

Fig. 8 The synthetic sample S produced by the NPSMOTE falls between E and B

lowed by a detailed presentation of the NPSMOTE algorithm. The Borderline-
SMOTE mainly performs the SMOTE operations on the border-line samples.
However, this algorithm may miss the relevant border-line samples as given
in Fig. 2, where the stars represent the minority class samples, and the cir-
culars represent the majority class samples. Suppose that the whole data
set is S, the majority class is NS and the minority class is PS. mins and
majs represents the number of minority and majority class samples. For ev-
ery xi(i = 1, 2, ..,mins) in the minority class PS, we calculate its K nearest
neighbors from the whole data set S, The number of majority class samples
among the K nearest neighbors is denoted by M . In the Borderline-SMOTE
algorithm, if K > M ≥ K/2, namely the number of xi’s majority nearest
neigbors is larger than the number of its minority ones, xi is defined as a
border-line sample. In this case, if K=5, the M values of the samples E and O
are both 0, which is not satisfied K > M ≥ K/2, the samples E and O are not
defined as the border-line samples. In fact, there are the border-line samples.
The similarity between the ADASYN algorithm and the Borderline-SMOTE
algorithm lies in that it also pays attention to the minority class samples on
the boundary, but it uses the density distribution of samples to assign the
different weights to each minority class sample and determines the probability
of each minority sample as the primary sample according to the weight. How-
ever, the ADASYN algorithm may have an inappropriate weight assignment,
as shown in Fig. 2 this phenomenon. In the ADASYN algorithm, the weight

wi of the sample is defined as: wi = M/K
Z , where Z is a normalization factor.

In this case, if K=5, the M values of the samples E and O are both 0, then
the weight wi of the samples E and O are both 0. In fact, the samples E and
O are the key samples.

The MWMOTE algorithm does not consider the differences between the
minority and majority class samples and so the synthetic samples generated
by the MWMOTE algorithm are mostly to be misclassified by a classifier.
Figs. 3 and 4 shows two examples. As shown in Fig. 3, there are six majority
class samples are sandwiched between minority class samples E and O. They
are relatively close to the minority class sample and are easyily misjudeged
as a cluster. In this way, it is possible to obtain the majority class samples
by using the interpolation method of the minority class samples E and O.
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The synthetic sample may the bad sample, which will have a negative impact
on our classification. In the MWMOTE algorithm, the generated sample is
randomly selected from clusters. As shown in Fig. 4, if the selected generated
samples are E and O, the generate samples may be in the majority class, which
will have a negative impact on classification.

The Borderline-SMOTE and AYASYN algorithm generate synthetic sam-
ples based on the idea of KNN. The Borderline-SMOTE algorithm may miss
the key bound-line samples, and the AYASYN algorithm may allocate the
incorporate weights to the samples. Furthermore, to address how to choose
the value of K is a challenging problem in these two algorithms. The MW-
MOTE algorithm generates synthetic samples based on the idea of clustering.
It does not take into account the difference between the minority and majority
class samples and also not use special conditions to select the two samples for
interpolation.

Algorithm 1 NPSMOTE
Input: Data set S={(xi, yi),i=1,2,...,N, yi ∈ {maj,min}}, The number of majority sam-

ple Nmaj ,The number of minority sample Nmin, Nmaj+Nmin=N , Nearest neighbor
parameter K.

Output: The oversampled data set Snew2 = {(xi, yi), i = 1, 2, ..., N+(Nmaj−Nmin)}, yi ∈
{maj,min}}

1: Separate data sets Saccording to different categories, majority sample set Smajand
minority sample set Smin

2: Initialize Snew as an empty set
3: Delete the noise data in the data set S, and get the new data set SD, the new minority

data set PS
′
, and the new majority data set NS

′
. The number of new minority class

samples is minsand the number of new majority class samples is majs

4: Find the K-nearest majority class sample of xi ∈ PS
′
for each minority class, and unify

the K-nearest majority class samples for each minority class, and place them in the set
SBi

5: Calculate the Euclidean distance of r between xi and its nearest majority sample classes,
With xi as the center of the circle and ras the radius of the circle, the number of samples
of minority classes in the circle is calculated as Op. With the nearest sample of majority
classes zi as the center of the circle, ras the radius of the circle, the number of samples
of majority classes in the circle is calculated as On

6: for i = 1 to mins do
7: The weight of minority class sample according to the formula: wi = On+1

Op+1
, xi ∈ PS

′

8: The limited distance of minority class sample according to the formula: limdi =
On+1

Op+On+2
,xi ∈ PS

′

9: end for
10: for i = 1 to mins do
11: According to the formula Newni = fracwi

∑
i=1 minswi ∗ (majs−mins), the num-

ber of synthetic samples needed to be generated for each minority class sample is calcu-
lated as Newni, and the new sample is xp

i = xi + d ∗ di ∗ (zi−xrani), rand is a random
number between 0 and 1

12: Add xp
i to Snew2

13: end for
14: Get the oversampled data set Snew2 = S ∪ Snew2
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The above algorithms are all based on the SMOTE algorithm, though there
have some problems. The NPSMOTE algorithm is used to solve the issues
mentioned above and based on the following considerations: 1) To avoid the
expansion of noises, it is necessary to remove the noisy sample at the start. For
every xi(i = 1, 2, ..,mins) in the minority class PS, we calculate its K nearest
neighbors from the whole data set S, The number of majority class samples
among the K nearest neighbors is denoted by M . If K = M , xi is defined as
the noise sample [31,67], 2) For different minority class samples, different cost
weights need to be allocated according to their distribution density and the
location relationship of the majority class samples. The weight represents the
importance of the minority class samples, and decides how many samples are
synthesized based on this minority class sample, 3) The purpose of generating
the synthetic samples is to improve the classifier’s performance. Therefore,
we focus on the hard-to-learn minority class samples, 4) The generation of
synthetic samples should be limited by distance di. Suppose that the direction
of learning the difficulties of minority class sample should be the direction of
connection with the nearest neighbor majority class sample. If the synthetic
sample is generated by between each minority class sample and its nearest
neighbor majority class sample, this sample can easily change the boundary of
the classifier for minoirty class. The closer the location of the synthetic sample
distribution to the samples of majority class, the more decision boundaries
that may widen minority class.

The NPSMOTE algorithm is shown in Algorithm 1 and mainly divided
into three stages. The first stage mainly removes the noise samples in the

minority class set, then we can get the new minority data set PS
′
, and the

new majority data set NS
′
. Steps 1 to 3 belong to the first stage. The sec-

ond stage, each minority class example xi ∈ PS
′

is assigned the weight wi

and the distinct limit limitdi. The setting of weights wi mainly considers the
following points: (1) Minority class samples near the boundary should be as-
signed higher weights than minority class samples away from the boundary,
because minority class samples near the boundary can provide more decision
information; (2) The sparse minority class samples are more important than
the dense class minority samples, because the sparse minority class samples
are the important samples that affect the classifier’s performance, and more
synthetic samples are needed to balance different types of samples; (3)It is
more important for minority class samples nearby the majority class samples
with denser distribution than for minority class samples nearby the majority
class samples with sparse distribution. Because the former has a greater im-
pact on the classifier’s performance, we should give it a higher weight. The
setting of the distance limitdi mainly considers the following two points: (1)
The distance between the minority samples with the sparse distribution and
the synthetic samples generated by them should be farther than the distance
between the minority samples with the dense distribution and the synthetic
samples generated by them, because the former needs to generate more wider
distance limitdi to improve the classifier’s performance; (2) It is more impor-
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tant for minority class samples nearby the majority class samples with denser
distribution than for minority class samples nearby the majority class samples
with sparse distribution, the former should be assigned more wider distance
limitdi. Step 4 to 9 belong to the second stage. The third stage, the number
of the synthetic samples generated by interpolating the minority class sample

xi ∈ PS
′

and the nearest neighbor majority class sample. Step 10 to 14 belong
to the third stage.

As shown in Fig.2, if the K value of the nearest neighbor isn’t appropri-
ate, the Borderline-SMOTE and ADASYN algorithm have no majority class
samples in the K-nearest neighborhood samples of the minority class sample.
In comparison, the NPSMOTE algorithm is to find the nearest K majority
class samples, rather than finding the majority class samples from the nearest
neighborhood samples. The nearest K majority class samples are always be
found, so the NPSMOTE algorithm does not appear the above problem. As
shown in Figs .5, and 7, the generated synthetic sample S generated from E
and O may fall into the majority class by the MWMOTE. In the NPSMOTE
algorithm, as shown in Figs.6, and 8, the synthetic sample S is generated from
E and the nearest majority class sample B. Notably, the generated sample
meets the requirements.

3.2 BALO

Algorithm 2 BALO
Input: m1 number of ants, m2 number of antlions, epochs number of epchos
Output: pbest the best antlion position, fbest the best antlion fitness value .
1: All of antlions’ and ants’ position are randomly initialize as 0 or 1.
2: Calculate the fitness value of all antlions and ants.
3: Sort all of the antlions’ fitness value to obtain the best antlion position pbest.
4: while the end condition is not satisfied do
5: Calculate the mutation rate r by Eqs. (4)
6: for each ant do
7: Select an antlion using Roulette wheel
8: Perform mutation operation on the selected antlion by Eqs. (3), called CW1.
9: Perform mutation operation on the best fitness antlion by Eqs. (3), called CW2.

10: Perform crossover operation between CW1 and CW2 by Eqs. (2), then we get
the new position of ant.

11: end for
12: Calculate the fitness of all ants.
13: Set an antlion as its corresponding ant it if the corresponding ant fitness becomes

fitter than antlion fitness
14: Adjust elite if an antlion becomes fitter than the elite
15: end while
16: Reture the best antlion position pbest and its fitness value fbest.

The ALO algorithm is a swarm intelligence optimization algorithm. Proposed
by Mirjalili in 2015, it mainly simulates the process of antlions catching ants
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[56]. In the process of hunting, the antlion first digs a conical pit in the sand,
moves the sand through a circular path and throws it out, which becomes a
pit trap. Next, the larva ant lion hides at the bottom of the pit below and
waits for the prey to fall into the trap. If the edge of the pit is sharp, the prey
is more natural to fall into the trap. As the ant lion realizes that its prey has
fallen into the trap, it tries to prevent the prey from escaping and trying to
catch the prey. At the same time, after the prey falls into the trap, it also
tries to escape the trap. The ant lion keeps throwing sand out so that the prey
could fall further into the bottom of the pit. When the prey falls entirely into
the bottom of the pit, the antlion will eat the prey. Then the antlion rebuilds
the trap and continues to wait for the next prey.

The ALO algorithm mainly includes the following steps: defining random
walk ants, establishing the trap by the antlion, ant falling into traps, ant being
caught by antlion, rebuilding the trap by the antlion. The ALO algorithm
includes the adaptive boundary shrinking mechanism and elitism, it has high
development and fast convergence speed [56]. The adaptive boundary shrinking
mechanism refers to the fact that when an ant is found to falling into a trap,
the antlion quickly throws sand out to prevent the ants from escaping. In the
ALO algorithm, it is represented by the adaptive reduction of the radius of
the ant’s random walk. Elitism means that after each iteration, the antlion
with the best fitness is preserved. The location of ants is influenced by the
elite antlion and the antlion selected by the roulette, so the location of the ant
depends on the average value of the elite antlion and the antlion selected by
the roulette.

The BALO algorithm is developed based on the ALO. It mainly limits
the initial position of the ALO algorithm to discrete the value which is used
to solve the constraint problem of the discrete space [23]. It is equivalent to
the binary ALO algorithm. The pseudo code of the NPSMOTE algorithm is
shown in Algorithm 2. In the ALO algorithm, each ant updates its position
by an average of two positions, one of which is obtained by the elite antlion
through the appropriate random walk step size, and one of which is obtained
by the selected antlion through the appropriate random walk step size. In the
BALO algorithm, the same search method is used, but the average operator
is changed to cross operation. The cross formula is as shown in Eq. (1):

Antt+1
i = Crossover(RW1, RW2) (1)

Among them, Crossover(x; y) represents the crossover operation between
x and y, RW1 and RW2 represent the carrier of the elite antlion and randomly
selected antlion. The average run character in the ALO algorithm represents
the operation of attracting ants into the antlion trap. A crossover operator
replaces the BALO algorithm. The crossover used here is a simple random
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crossover, and the probability between its two input vectors is the same as
given in Eq. (2) below.

xd =

{
xd1 if(rand) ≥ 0.5

xd2 otherwise
(2)

RW1 represents the attraction of elite antlions to ants, and represented by
the random walk of elite antlions with appropriate steps. It can be expressed
by the random variation around the selected antlion. The Eq. (3) express
the mutation rate of the binary elite antlions in the BALO algorithm. RW2
represents the attraction of the selected antlion to ants by the roulette using
random mutations.

xdout =

{
xdin if(rand1) ≥ r
rand2 otherwise

(3)

r = 0.9 +
−0.9 ∗ (i− 1)

IterMax− 1
(4)

xdout represents the d-th dimension of the transformed output vector. xdin
represents the input vectors that are crossed. rand1, rand2 are two random
numbers between 0 and 1. r is the mutation rate. The value of r is linearly
decreasing from 0.9 to 0 with the number of iterations. The formula for r
is as shown in Eq. (4), where r represents the i-th iteration’s mutation rate,
and IterMax represents the total number of iterations to retrieve the optimal
value.

3.3 GVM

As proposed in 2016, the GVM algorithm is mainly composed of three essential
layers of neural networks, namely input layer, hidden layer and output layer
[88]. The difference between the GVM and the traditional neural networks lies
in the introduction of the Monte Carlo training algorithm and the Design Risk
Minimization principle. The core idea of the Monte Carlo training algorithm
is the random variation and optimal selection. The Design Risk Minimization
principle is as follows. Within the same parameter range, different parameters
follow different paths, and the variance of output results is the smallest. That
is, the same results can be achieved through different paths so that we can
pay more attention to the essence of data. The GVM has a strong generaliza-
tion ability and can obtain excellent performance in the small data sets, and
successfully applied in Android malware detection, phishing detection and the
groundwater status prediction [90,24,89].
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Table 6 Data descriptions used in the experiment

Name Minority Majority Features Sample
size

Minority
size

Majority
size

Imbalance
rate(IR)

Source

breast tissue “car”
and
“fad”

All
other

9 106 36 70 1.94 UCI

bupa “1” “2” 6 345 145 200 1.38 UCI
cleveland positive negative 12 303 35 268 7.66 Keel
ecoli01VS235positive negative 7 244 24 220 9.17 Keel
glass4 containers ALL

other
9 244 13 201 15.47 UCI

Wisconsin Malignant Benign 9 683 239 444 1.86 UCI
glass6 headlamps ALL

other
9 244 29 185 6.38 Keel

4 Experimental results and analysis

4.1 Data sets and experimental environment

As shown in Table 6, seven class-imbalanced data sets are used in the ex-
periments performed, i.e., Bupa, glass4, Breast tissue and Wisconsin from
the UCI machine learning repository [66] data sets, and cleveland, glass6 and
ecoli01V S235 from Keel [1] data sets. Details of the data sets mainly include
minority categories, majority categories, the number of the features, the total
number of samples, the sample size of the minority and majority classes, and
the source of the data sets. Bupa, cleveland, ecoli01V S235, Wisconsin are
two-class data sets, while breast tissue, glass4, glass6 are converted into two
categories in the experimentation.

The experiments in this study are performed in a PC with Intel core i5
7500 3.4GHz CPU, 8MB SmartCache, 8GB memory, Windows 10 64-bit OS,
running in MATLAB R2017a environment. The final results presented are
average result of 20 runs.

4.2 Evaluation metric and function

As in [46,34,28,60], Accuracy, True-positive rate (TPR), False-positive rate
(FPR), AUC, F -measure, G-mean are the most commonly used evaluation
metrics. We also adopt these evaluation metrics to compare the performance
of different algorithms, and corresponding formulas are as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

TPR =
TP

TP + FN
(6)
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FPR =
FP

TN + FP
(7)

Precision =
TP

TP + FP
(8)

Recall = TPR =
TP

TP + FN
(9)

F-measure =
2 ∗ Recall ∗ Precision
Recall + Precision

(10)

G-mean =

√
TP

TP + TN
∗ TN

TN + FP
(11)

where True positive (TP ) is the number of positive class correctly classified
as positive class, True negative (TN) the number of negative class correctly
classified as negative class. False positive (FP ) the number of negative class
mistakenly classified as positive class, False negative (FN) the number of
positive class mistakenly classified as negative class, Accuracy the ratio of the
number of correctly predicted samples to the number of all the predicted sam-
ples, and TPR the ratio of the number of positive classes that are correctly
predicted to be positive classes to the actual number of positive classes. The
larger the index, the better. FPR represents the ratio of the number of nega-
tive classes that are mistakenly predicted to be positive classes to the number
of actual negative classes: the smaller the indicator, the better. F -measure is
a comprehensive indicator whose value is closer to 1, representing the better
performance of the classifier, and G-mean is also a comprehensive indicator-
the closer to 1, the better. When the data is imbalanced, this indicator is very
valuable. AUC stands for the area under the ROC curve- the bigger, the bet-
ter. In this article, the minority class is a positive class, while the majority
class is a negative class.

The NBG algorithm’s evaluation function seeks a balance between the error
rate and the number of features. As shown in Eq.(12), Accuracy represents
the overall recognition rate, S represents the number of features of the selected
feature subset. T represents the total number of features, and α+β = 1, where
α and β are used to weigh the weight relationship between the error rate and
the number of features.

fitness = α(1−Accuracy) + β
S

T
(12)
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Table 7 Description of Contrast Algorithms

Algorithm Detailed description

GVM GVM classification algorithm

BM BALO is used as feature selection algorithm and GVM is used
as classification algorithm

NG NPSMOTE is used as oversampling algorithm and GVM is used
as classification algorithm

ABM AYASYN is used as oversampling algorithm, BALO is used as
feature selection algorithm and GVM is used as classification
algorithm

SBM SMOTE is used as oversampling algorithm, BALO is used as
feature selection algorithm and GVM is used as classification
algorithm

BBM Borderline SMOTE is used as oversampling algorithm, BALO
is used as feature selection algorithm and GVM is used as clas-
sification algorithm

MSBM MSNOTE is used as oversampling algorithm, BALO is used as
feature selection algorithm and GVM is used as classification
algorithm

MWBM MWNOTE is used as oversampling algorithm, BALO is used
as feature selection algorithm and GVM is used as classification
algorithm

NBM NPSMOTE is used as oversampling algorithm, BPSO is used
as feature selection algorithm and GVM is used as classification
algorithm

NBG NPSMOTE is used as oversampling algorithm, BALO is used
as feature selection algorithm and GVM is used as classification
algorithm

4.3 Comparison of the NBG algorithm and other algorithms

To verify the proposed algorithm’s performance and effectiveness, comparisons
to similar algorithms are shown in Table 7. In all oversampling algorithms, we
stop sampling as the number of minority class samples is the same as the
majority class samples by the oversampling algorithm. All the algorithms are
tested by the random stratified sampling, where 80% of which are the training
sets and 20% are the testing sets. The parameters of the BALO algorithm
and the GVM algorithm are the same in the same data set. Among them,
the population number of BALO algorithm in breast tissue, ecoli01V S235,
glass6, glass4 and WBCD is set as 5, and the number of iterations is set as
4. The BALO algorithm’s population number in bupa and cleveland is set as
5, and the number of iterations is set as 10. The number of nearest neighbors
in the oversampling algorithms of NG, NBM, ABM, SBM, BBM, MSBM and
NBG is set as 5, while the number of K1 in the oversampling algorithms of
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Table 8 Experimental results of NBG and nine similar algorithms on the testing data set

Data set Method Accuracy TPR FPR AUC G-mean F-measure
Breast tissue GVM 0.7273 0.375 0.0714 0.6518 0.59 0.5

BM 0.7727 0.5 0.0714 0.7143 0.6814 0.6154
NG 0.7727 0.75 0.2143 0.7679 0.7676 0.7059
ABM 0.8182 0.625 0.0714 0.7768 0.7618 0.7143
SBM 0.8636 1 0.2143 0.8929 0.8864 0.8421
BBM 0.9091 0.875 0.0714 0.9018 0.9014 0.875
MSBM 0.9091 1 0.1429 0.9286 0.9258 0.8889
MWBM 0.8182 1 0.2857 0.8571 0.8452 0.8
NBM 0.8636 1 0.2143 0.8929 0.8864 0.8421
NBG 0.9545 1 0.0714 0.9643 0.9636 0.9412

bupa GVM 0.6812 0.5862 0.25 0.6681 0.6631 0.6071
BM 0.6957 0.5172 0.175 0.6711 0.6532 0.5882
NG 0.6957 0.6897 0.3 0.6948 0.6948 0.6557
ABM 0.7107 0.5172 0.15 0.6836 0.6631 0.6
SBM 0.7101 0.6552 0.25 0.7026 0.701 0.6552
BBM 0.7107 0.5517 0.175 0.6884 0.6747 0.6154
MSBM 0.6812 0.6207 0.275 0.6728 0.6708 0.6707
MWBM 0.6812 0.6897 0.325 0.6823 0.6823 0.6452
NBM 0.6232 0.7586 0.475 0.6418 0.6311 0.6286
NBG 0.6957 0.7586 0.35 0.7043 0.7022 0.6769

cleveland GVM 0.9143 0.3333 0.0313 0.651 0.5683 0.4
BM 0.9714 0.6667 0 0.8333 0.8165 0.8
NG 0.8517 0.6667 0.125 0.7708 0.7638 0.4444
ABM 0.9143 1 0.0938 0.9531 0.952 0.6667
SBM 0.8571 0.6667 0.125 0.7708 0.7638 0.444
BBM 0.9714 0.6667 0 0.8333 0.8165 0.8
MSBM 0.8571 1 0.1563 0.9219 0.9186 0.5455
MWBM 0.9143 1 0.0938 0.9531 0.952 0.6667
NBM 0.8 1 0.2188 0.8906 0.8839 0.4615
NBG 0.9429 1 0.0625 0.9688 0.9682 0.7

ecoli01VS235 GVM 0.9714 0.72 0 0.86 0.8465 0.8333
BM 0.9755 0.8 0.0045 0.8977 0.8924 0.8711
NG 0.9796 0.8 0 0.9 0.8944 0.8889
ABM 0.9470 0.92 0.05 0.935 0.9333 0.7847
SBM 0.9470 0.88 0.0455 0.9173 0.9155 0.7788
BBM 0.9837 0.88 0.0045 0.9377 0.9346 0.9156
MSBM 0.9592 0.84 0.0273 0.9063 0.903 0.8129
MWBM 0.9755 0.84 0.0091 0.9155 0.9109 0.8778
NBM 0.9796 0.8 0 0.9 0.8944 0.8889
NBG 0.9918 0.96 0.0045 0.9777 0.9766 0.9596

glass4 GVM 0.9545 0.6667 0.0244 0.8211 0.8065 0.6667
BM 0.9773 0.6667 0 0.8333 0.8165 0.8
NG 0.7727 1 0.2439 0.878 0.8695 0.375
ABM 0.9318 1 0.0732 0.9634 0.9627 0.6667
SBM 0.9091 1 0.0976 0.9512 0.95 0.6
BBM 0.9773 0.6667 0 0.8333 0.8165 0.8
MSBM 0.9773 0.6667 0 0.8333 0.8165 0.8
MWBM 0.8636 1 0.1463 0.9268 0.9239 0.5
NBM 0.9318 1 0.0732 0.9634 0.9627 0.6667
NBG 0.9773 1 0.0244 0.9878 0.9877 0.8571

Wisconsin GVM 0.9562 0.9583 0.0449 0.9567 0.9567 0.9388
BM 0.9635 0.9792 0.0449 0.9671 0.967 0.9495
NG 0.9562 0.9792 0.0562 0.9615 0.9613 0.94
ABM 0.9708 0.9792 0.0337 0.9727 0.9727 0.9592
SBM 0.9708 0.9375 0.0112 0.9631 0.9628 0.9574
BBM 0.9562 0.9167 0.0225 0.9471 0.9466 0.9362
MSBM 0.9635 0.9583 0.0337 0.9623 0.9623 0.9485
MWBM 0.9635 0.9792 0.0449 0.9671 0.967 0.9495
NBM 0.9708 0.9792 0.0337 0.9727 0.9727 0.9592
NBG 0.9781 1 0.0337 0.9831 0.983 0.9697

glass6 GVM 0.9535 0.6667 0 0.8333 0.8165 0.8
BM 0.9535 0.6667 0 0.8333 0.8165 0.8
NG 0.9767 1 0.027 0.9865 0.9864 0.9231
ABM 0.9767 0.8333 0 0.9167 0.9129 0.9091
SBM 1 1 0 1 1 1
BBM 1 1 0 1 1 1
MSBM 1 1 0 1 1 1
MWBM 1 1 0 1 1 1
NBM 0.9767 1 0.027 0.9865 0.9864 0.9231
NBG 1 1 0 1 1 1
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the MWBM is set as 5, K2 and K3 are set as 5 in the oversampling algo-
rithm MWBM. The particle swarm optimization (PSO) algorithm is a kind
of simulation optimization algorithm to simulate the birds’ predation, which
is proposed by Dr. Kennedy [40], and the binary PSO algorithm, BPSO algo-
rithm, is proposed two years later [41]. The C1 and C2 of the BPSO algorithm
are set as 1.49445 [85]. The number of iterations in the BPSO is set to 10, the
population size to 10, while the maximum and minimum speeds are set to 1.

As shown in Table 8, the experimental results of the comparison among
the proposed NBG and other similar algorithms can be concluded that the
proposed NBG algorithm has notable advantages over other comparison algo-
rithms on all the data sets. The specific analysis is as follows:

(1)The proposed algorithm NBG outperforms the single classification al-
gorithm GVM, this result indicates that the NBG can improve the recognition
rate of the minority classes and alleviate the negative impact of the class im-
balance compared with the traditional classification algorithm. In contrast to
the GVM, the NBG can obtain has obvious advantages in terms of Accuracy,
TPR, AUC, G-mean, F -measure in all seven data sets. Especially, the GVM
fall behind the NBG by 62.5%, 17.24%, 66.67%, 24%, 33.33%, 4.17%, 33.33%
using TPR metrics in data set breast tissue, bupa, cleveland, ecoli01V S235,
glass4, Wisconsin and glass6, respectively.

(2)Compare with NBG and BM, it indicates that the resampling algorithm
NPASMOTE can further improve the classification performance based on the
feature selection algorithm BM. We observe that the NBG outperforms the
BM on TPR, AUC, G-mean metrics in all seven data sets. In respect of TPR,
the NBG outperforms BM 50%, 24.14%, 33.33%, 33.33%, 16%, 2.08%, 33.33%
in data set Breast tissue, bupa, cleveland, glass4, ecoli01V S235, Wisconsin
and glass6, respectively. In particular, the NBG achieved the AUC of 0.9643,
which improves 25% compared with the BM in data set Breast tissue.

(3)By comparing NBG and NG, it can be found that the feature selection
algorithm BALO further improves the classification performance of the imbal-
anced classification based on the oversampling algorithm. Compared with the
NG, the NBG shows the better results with respect to Accuracy, TPR, AUC,
G-mean, F -measure for all data sets. In particular, the NBG has a significant
improvement over the NG in terms of AUC, G-mean, F -measure.

(4)Comparing the results of the ABM, SBM, BBM, MSBM,MWBM and
NBG, It indicates that the oversampling algorithm NPSMOTE is more effec-
tive than the AYASYN, SMOTE, Borderline SMOTE, MSNOTE and MWNOTE
in generating minority class samples. One type is the oversampling hybrid
group, which is a combination of the oversampling and feature selection algo-
rithm BALO and includes ABM, SBM, BBM, MSBM, MWBM and NBG. The
TPR, AUC, G-mean, F -measure of the NBG are the highest among these
six hybrid algorithms in all seven data sets.

(5)Compare with NBM and NBG, it is evident that BALO is better than
BPSO as the feature selection algorithm in the class imbalance problem. Com-
paring the results of the NBM and the NBG, the NBG obtains the better re-
sults in all seven data sets on Accuracy, AUC, G-mean and F -mean metrics.
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The NBM fall behind the NBG by 16%, 2.08% using TPR metrics in data set
ecoli01V S235, Wisconsin, respectively. The TPR of the NBM is the same as
the NBG in other five data sets.

(6)By Comparing NG and GVM, it shows that the recognition rate of
the minority classes is noticeable improved by the oversampling algorithm
NPSMOTE. The NG is significantly better than the GVM in terms of TPR,
FPR, AUC, G-mean in all seven data sets.The NG improves the GVM by
37.5%, 10.35%, 33.34%, 8%, 33.33%, 20.9%, 33.33% in terms of TPR in data
set Breast tissue, bupa, cleveland, ecoli01V S235, glass4, Wisconsin and
glass6, respectively. In respect of F -measure, the GVM fall behind the NG
by 20.59%, 4.86%, 4.44%, 5.56%, 0.12%, 12.31% in data set Breast tissue,
bupa, cleveland, ecoli01V S235, Wisconsin and glass6, respectively.

(7)Compare with GVM and BM, this reflected the fact that the feature
selection algorithm BALO can significantly improve the classification perfor-
mance of the imbalanced classification based on GVM algorithm. In compari-
son with the GVM, the BM obtains significantly better performance on TPR,
AUC, G-mean, F -measure metrics in data set Breast tissue, cleveland,
ecoli01V S235, glass4, Wisconsin and glass6.The BM outperforms the GVM
by 4.54%, 1.45%, 5.71%, 0.41%, 2.28%, 0.73% using Accuracy metrics in data
set Breast tissue, bupa, cleveland, ecoli01V S235, glass4 and Wisconsin, re-
spectively.

Fig. 9 Display of Accuracy value for the dif-
ferent algorithm on seven data sets

Fig. 10 Display of TPR value for the differ-
ent algorithm on seven data sets

As it can be seen from Fig. 10, the TPR of the NBG is the highest among
the ten algorithms in all seven data sets. It is depicted in Fig. 12 the AUC
for ten algorithms in all seven data sets, and could observe that the AUC
of the NBG is the highest. Additionally, Fig. 13 shows the G-mean for ten
algorithms over the seven testing data sets, and identified that the G-mean
of the NBG is the highest among the ten algorithms. From Fig. 14, we can
observe that the NBG achieves the highest F -measure value among the ten
algorithms in six out of the seven data sets. Fig. 9 shows the Accuracy of the
NBG and the other nine algorithms on the seven data sets. We can see that
the NBG achieves the highest Accuracy in five out of the seven testing data
sets. Next, it is depicted in Fig. 11 the FPR of ten algorithms, and the NBG is
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Fig. 11 Display of FPR value for the differ-
ent algorithm on seven data sets

Fig. 12 Display of AUC value for the differ-
ent algorithm on seven data sets

Fig. 13 Display of G − mean value for the
different algorithm on seven data sets

Fig. 14 Display of F −measure value for the
different algorithm on seven data sets

the lowest among the ten algorithms in two out of seven testing data sets. The
representative value of column type that does not appear is 0. In summary,
the proposed algorithm NBG significantly improves the recognition rate of the
minority class in all data sets with respect to other nine similar algorithms.

Compared with the six advanced algorithms recently published, it verifies
the NBG’s effectiveness in the imbalanced classification. The experimental re-
sults are shown in Table 9 and 10. The best results for each indicator are
highlighted. The data partitioning algorithm is the same as the algorithm in
the comparative paper. In the data set Breast tissue, we applied 4-fold cross
validation. In other six data sets, we applied 5-fold cross validation. Table
9 and Table 10 shows the comparisons between the NBG and previous algo-
rithms, mainly including A-SUWO [59], SMOTE-IPF [74], CHC [83], SMOTE-
ENN+LCMine+CAEP [50], NCL+LCMine+CAEP [50] and Incremetal-SVD
[65]. ”-” means that information is not available. They can be shown that the
NBG outperforms all the other algorithms in all data sets. Therefore, the NBG
can be better applied in the imbalanced data classification problem.

Besides, the proposed algorithm’s time complexity is evaluated with the
training running time averaged from 20 runs. The training running time using
the comparison methods in Table 7 are shown in Table 11. We can see that
the running time of the proposed method is acceptable. To further optimize
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Table 9 Experimental results of NBG and other rencently published algorithms on the
Breast tissue, bupa, cleveland, glass4, ecoli01V S235 data set

Data set Method AUC G-mean F-measure
Breast tissue A-SUWO+SVM 0.86 0.748 0.685

A-SUWO+KNN 0.845 0.779 0.71
A-SUWO+LR 0.89 0.824 0.764
A-SUWO+LDA 0.897 0.773 0.719
NBG 0.9362 0.9353 0.9165

bupa C4.5 0.644 - -
SMOTE+C4.5 0.6688 - -
SMOTE-ENN+C4.5 0.6146 - -
SMOTE-TL+C4.5 0.6018 - -
SL-SMOTE+C4.5 0.6684 - -
B1-SMOTE+C4.5 0.686 - -
B2-SMOTE+C4.5 0.6361 - -
SMOTE-IPF+C4.5 0.6753 - -
NBG 0.7821 0.7762 0.7496

cleveland C4.5 0.5258 - -
SMOTE+C4.5 0.5485 - -
SMOTEENN+C4.5 0.5722 - -
SMOTE TL+C4.5 0.6433 - -
SLSMOTE+C4.5 0.6007 - -
B1-SMOTE+C4.5 0.5475 - -
B2SMOTE+C4.5 0.5666 - -
SMOTEIPF+C4.5 0.6282 - -
NBG 0.9688 0.9628 0.75

glass4 SVM 0.9092 - 0.856
SMOTE+SVM 0.9148 - 0.6633
AYASYN+SVM 0.9176 - 0.6565
sTL+SVM 0.9113 - 0.659
sSafe+SVM 0.9143 - 0.6613
sRST+SVM 0.9163 - 0.6463
sCHC+SVM 0.9333 - 0.819
EUSCHC+SVM 0.9251 - 0.7164
AHC+SVM 0.935 - 0.8471
FRB+CHC+SVM 0.923 - 0.7273
FRB+SVM 0.8942 - 0.7197
NBG 0.9878 0.9877 0.8571

ecoli01VS235 SVM 0.4955 - 0
SMOTE+SVM 0.6606 - 0.4325
AYASYN+SVM 0.5377 - 0.1648
sTL+SVM 0.6628 - 0.4396
sSafe+SVM 0.6598 - 0.4352
sRST+SVM 0.6616 - 0.4264
sCHC+SVM 0.6758 - 0.4844
EUSCHC+SVM 0.7423 - 0.5691
AHC+SVM 0.5405 - 0.1385
FRB+CHC+SVM 0.7866 - 0.4224
FRB+SVM 0.8659 - 0.5536
Base+LCMine+CAEP 0.8377 - -
SMOTE+LCMine+CAEP 0.8023 - -
SMOTE-
ENN+LCMine+CAEP

0.8632 - -

SMOTE-TL+LCMine+CAEP 0.8605 - -
AYASYN+LCMine+CAEP 0.8223 - -
Borderline
SMOTE+LCMine+CAEP

0.7514 - -

SafeLevel
SMOTE+LCMine+CAEP

0.8477 - -

ROS+LCMine+CAEP 0.8091 - -
ADOMS+LCMine+CAEP 0.8473 - -
SPIDER+LCMine+CAEP 0.8268 - -
AHC+LCMine+CAEP 0.8155 - -
SPIDER2+LCMine+CAEP 0.8132 - -
SMOTE-RSB+LCMine+CAEP 0.8227 - -
TL+LCMine+CAEP 0.7777 - -
CNN+LCMine+CAEP 0.7709 - -
RUS+LCMine+CAEP 0.8623 - -
OSS+LCMine+CAEP 0.7623 - -
CNNTL+LCMine+CAEP 0.8577 - -
NCL+LCMine+CAEP 0.8 - -
SBC+LCMine+CAEP 0.6682 - -
CPM+LCMine+CAEP 0.7641 - -
NBG 0.9409 0.9384 0.8667
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Table 10 Experimental results of the NBG and other rencently published algorithms on
the Wisconsin, glass6 data set

Data set Method AUC G-mean F-measure
Wisconsin Base+LCMine+CAEP 0.9594 - -

SMOTE+LCMine+CAEP 0.9666 - -
SMOTE-
ENN+LCMine+CAEP

0.9708 - -

SMOTE-TL+LCMine+CAEP 0.9791 - -
AYASYN+LCMine+CAEP 0.9737 - -
Borderline
SMOTE+LCMine+CAEP

0.9666 - -

SafeLevel
SMOTE+LCMine+CAEP

0.9696 - -

ROS+LCMine+CAEP 0.9605 - -
ADOMS+LCMine+CAEP 0.9622 - -
SPIDER+LCMine+CAEP 0.9666 - -
AHC+LCMine+CAEP 0.9593 - -
SPIDER2+LCMine+CAEP 0.9729 - -
SMOTE-RSB+LCMine+CAEP 0.9645 - -
TL+LCMine+CAEP 0.9739 - -
CNN+LCMine+CAEP 0.9706 - -
RUS+LCMine+CAEP 0.9656 - -
OSS+LCMine+CAEP 0.9671 - -
CNNTL+LCMine+CAEP 0.9688 - -
NCL+LCMine+CAEP 0.9791 - -
SBC+LCMine+CAEP 0.5 - -
CPM+LCMine+CAEP 0.9384 - -
NBG 0.9842 0.984 0.9733

glass6 Base+LCMine+CAEP 0.9052 - -
SMOTE+LCMine+CAEP 0.9365 - -
SMOTE-
ENN+LCMine+CAEP

0.9338 - -

SMOTE-TL+LCMine+CAEP 0.9284 - -
ADASYN+LCMine+CAEP 0.9234 - -
Borderline-
SMOTE+LCMine+CAEP

0.9032 - -

SafeLevel
SMOTE+LCMine+CAEP

0.9203 - -

ROS+LCMine+CAEP 0.9252 - -
ADOMS+LCMine+CAEP 0.9311 - -
SPIDER+LCMine+CAEP 0.9279 - -
AHC+LCMine+CAEP 0.9365 - -
SPIDER2+LCMine+CAEP 0.9198 - -
SMOTE-RSB+LCMine+CAEP 0.9284 - -
TL+LCMine+CAEP 0.9252 - -
CNN+LCMine+CAEP 0.8658 - -
RUS+LCMine+CAEP 0.9423 - -
OSS+LCMine+CAEP 0.9068 - -
CNNTL+LCMine+CAEP 0.791 - -
NCL+LCMine+CAEP 0.9225 - -
SBC+LCMine+CAEP 0.7063 - -
CPM+LCMine+CAEP 0.7333 - -
Clustering-LMS - 0.8773 -
Clustering-SVD - 0.8888 -
CO2RBFN-LMS - 0.8593 -
CO2RBFN-SVD - 0.8638 -
Genetic-LMS - 0.8877 -
Genetic-SVD - 0.895 -
Incremetal-LMS - 0.8743 -
Incremetal-SVD - 0.8913 -
NBG 0.9718 0.9706 0.9262
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Table 11 Comparison of training time(s) of different methods

Datasets GVM BM NG ABM SBM BBM MSBM MWBM NBM NBG

breast tissue 7 1357 87 1437 1607 1437 156 159 727 147
bupa 28 1763 29 1687 2190 1301 2353 2359 2278 2148
cleveland 39 2849 88 3357 3025 2482 3599 3999 163 2861
ecoli01VS235 20 267 21 532 686 219 799 798 586 2182
glass4 7 95 9 184 152 112 142 196 706 277
Wisconsin 5 25 11 215 162 36 223 434 717 371
glass6 6 699 26 605 588 645 817 813 406 562

the algorithm, the proposed algorithm’s time complexity should be improved
in the future.

5 Conclusions and Future Work

Many existing algorithms are applied as one single algorithm for imbalanced
classification problems, and the research on hybrid algorithms is seldom. The
oversampling algorithm balances the class distribution by generating new
minority class samples independent of the classification algorithm and rela-
tively simple. Compared with the SMOTE, AYASYN, Borderline SMOTE,
MSNOTE, MWNOTE, the oversampling algorithm NPSMOTE can produce
more effective positive class samples. The feature selection algorithm can ef-
fectively select significant features to improve the classification performance of
imbalanced classification. The state-of-the-art BALO algorithm can adaptively
search the space of features optimally, and better than the particle swarm
optimizer and genetic algorithm [56]. In this article, a novel hybrid algorithm
called the NBG is based on NPSMOTE and BALO for imbalanced binary data
set classification. The NBG compromises the merits of oversampling and fea-
ture selection algorithms. The experiments are conducted on seven imbalanced
data sets, and classification results show that our proposed NBG algorithm
significantly outperforms nine similar algorithms and six algorithms recently
published.

As future work, we would mainly conduct in the following areas: 1) the
application of the BALO algorithm to improve the performance of the en-
semble algorithm for solving the class imbalance problem. It is challenging
to set parameters with respect to different algorithms in the ensemble algo-
rithm, and we can apply the BALO algorithm to select the optimal parameter
value, 2) to construct a hybrid algorithm based on the undersampling algo-
rithm and feature selection algorithm. The undersampling algorithm may lead
to the loss of important information [48,64], so the proposed undersampling
algorithm must solve the problem of the loss of important information. The
proposed hybrid algorithm combines the undersampling algorithm and fea-
ture selection algorithm’s advantage and may achieve a better performance,
3) to establish an ensemble algorithm based on undersampling algorithm. The
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ensemble algorithm can obtain better performance than a single algorithm
[63,38]. The undersampling algorithm outperforms the oversampling method
in time efficiency. Therefore, we can use the undersampling algorithm as the
base algorithm in the ensemble algorithm, 4) we will deliver an objective anal-
ysis of the ratio of the positive and negative samples in the used dataset and
give some statistical hypotheses analysis about the future proposed algorithm,
and 5) To further optimize the algorithm, the time complexity of the proposed
algorithm should be improved in the future.
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65. Pérez-Godoy, M., Rivera, A.J., Carmona, C.J., Jesus, M.J.D.: Training algorithms for

radial basis function networks to tackle learning processes with imbalanced data-sets.
Applied Soft Computing 25(C), 26–39 (2014)

66. R. Mohammad F.A. Thabtah, T.M.: UCI machine learning repository. http://archive.
ics.uci.edu/ml (2017). Accessed 12 December, 2017

67. Ramentol, E., Caballero, Y., Bello, R., Herrera, F.: Smote-rsb*: a hybrid preprocessing
approach based on oversampling and undersampling for high imbalanced data-sets using
smote and rough sets theory. Knowledge & Information Systems 33(2), 245–265 (2012)

68. Rayhan, F., Ahmed, S., Mahbub, A., Jani, M.R., Shatabda, S., Farid, D.M.: Cusboost:
Cluster-based under-sampling with boosting for imbalanced classification (2017)

69. Ren, F., Cao, P., Li, W., Zhao, D., Zaiane, O.: Ensemble based adaptive over-sampling
method for imbalanced data learning in computer aided detection of microaneurysm.
Computerized Medical Imaging & Graphics 55, 54 (2017)
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