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Abstract:
This paper proposes a ridge-type method for determining the number of factors in an
approximate factor model. The new estimator of factor number is obtained by max-
imizing both the ratio of two adjacent eigenvalues and the cumulative contribution
rate of the factors which represents the explanatory power of the common factors
for response variables. Our estimator is proved to be as asymptotically consistent
as those in Ahn and Horenstein (2013). But Monte Carlo simulation experiments
show our method has better correct selection rates in finite sample cases. A real
data example is given for illustration.
Key words: Approximate factor model, number of factors, eigenvalue ratio, cu-
mulative contribution rate, ridge-type method.
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1 Introduction
One of effective approaches to dimensional reduction is factor analysis. A small
number of common factors are found and used to represent a high dimensional data
set. Many references on various factor models for economic or financial data with
large numbers of cross-sectional units and a large sample of time series observations
have appeared in literature. These factor models could be classified into three cate-
gories: Static approximate factor models proposed by Chamberlain and Rothschild
(2014) and followed by Connor and Korajzcyk (1993), Bai and Ng (2002), Stock
and Watson (2002), Onatski (2010), Alessi, Barigozzi, and Capasso (2010), Fan,
Liao, and Mincheva (2013), Ahn and Horenstein (2013), Caner and Han (2014),
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Li, Li, and Shi (2017); Factor models for multivariate time series, see Pan and Yao
(2008), Li and Pan (2008), Lam, Yao, and Bathia (2011), Lam and Yao (2012),
Xia, Xu, and Zhu (2015), Chan, Lu, and Yau (2017), Xia, Liang, Wu, and Wong
(2018) and Xia, Wong, Shen, and He (2022); and So-called dynamic factor models,
see Forni, Wallin, Lippi, and Reichlin (2000), Hallin and Liska (2007), Amengual
and Watson (2007), Bai and Ng (2007) and Onatski (2009), among others. Some
of these references assume that factors are given and subsequently estimate factor
loadings. But many papers assume factors are unknown and should be determined
based on data. If we try to find the hidden unknown factors, one of the key prob-
lems is how to estimate the number of factors. In recent years, several estimation
methods have been developed for the number of factors in various factor models,
and we are particularly interested in the method proposed in Ahn and Horenstein
(2013) for the determination of factor number in a static approximate factor model.

For the static approximate factor models, Bai and Ng (2002) estimated the
number of factors by minimizing the information criteria (IC) for model selection.
In practice, however, this criteria has been known to overestimate the number of
factors. Onatski (2010) considered the so-called “Edge Distribution” estimator by
using the differences between eigenvalues of sample covariance matrix. As re-
ported by Ahn and Horenstein (2013), although the methods proposed by Bai and
Ng (2002) and Onatski (2010) performed well in a model with independent idiosyn-
cratic errors, they have unsatisfactory finite sample properties in the case with cross-
sectional dependent errors. Therefore, two eigenvalue ratio (ER) estimators were
proposed and shown to be better when the idiosyncratic errors are cross-sectionally
correlated or serially correlated in Ahn and Horenstein (2013). Similarly Wu (2016)
used a ratio-type method based on the ratio of transformation function of two ad-
jacent eigenvalues. As a modification to the ER and GR (growth ratio) estimators
in Ahn and Horenstein (2013), Xia, Liang, and Wu (2017) proposed an estimator
obtained by maximizing the ratio of two adjacent transformed contribution of the
eigenvalues, and Wu (2018) obtained an estimator by maximizing the difference
between function values of two adjacent eigenvalues.

To determine the number of factors in high-dimensional time series, Lam
and Yao (2012) proposed a ratio-type ER estimator based on the ratio of two es-
timated eigenvalues. Xia et al. (2015) argued that the ratio-type estimators may
suffer from the instability of the 0/0 type ratio values. As a modification of the ER
estimator, a ridge-type ratio estimator was proposed by adding a so-called ridge pa-
rameter to the numerator and denominator of the ratio of two adjacent eigenvalues
in their paper. Furthermore, Xia et al. (2018) suggested a ratio-type estimator by
minimizing the ratio of the contributions of two adjacent eigenvalues.

It is well known that a factor model is useful when: the dimension of com-
mon factor vector is significantly lower than the dimension of response vector; and
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Figure 1: The correct rates of ER and GR in Ahn and Horenstein (2013) for model
(3.1) with θ = 1, kmax = 8, ρ = 0.5, β = 0.2, J = max{10,N/20} and two factors
F1 ∼ N(0,1), F2 ∼ N(0,20), assuming there is a dominant factor and the errors are
both serially and cross-sectionally correlated.

at the same time, the cumulative contribution rate of factors is high sufficiently as
well. Then, the dimension reduction is achieved because the high-dimensional vec-
tor of response variables is driven by a lower-dimensional vector of common fac-
tors. The cumulative contribution rate measures the explanatory power of common
factors, and thus is important in factor models. However, the eigenvalue ratio-type
estimators are determined only according to the mutation of two adjacent eigenval-
ues, without considering the cumulative contribution rate of all factors which rep-
resents the driving power of the common factors in the factor models. Therefore,
although the ER and GR estimators of Ahn and Horenstein (2013) are asymptot-
ically consistent when the sample size is large, they often underestimate the true
number of factors in finite sample cases, especially when there is a dominant factor
and the errors are both serially and cross-sectionally correlated, as the simulation
example in Figure 1 shows.

In this paper, we propose a different method based on further sample in-
formation for determining the number of factors in static approximate factor mod-
els. The proposed estimators are obtained by maximizing the ratio of two adjacent
eigenvalues and the cumulative contribution rate of the total common factors. Our
estimators are proved to be asymptotically consistent like the ER and GR estima-
tors of Ahn and Horenstein (2013) under the same mild conditions. But Monte
Carlo simulation experiments show that the proposed approaches have higher cor-
rect rates in the finite-sample cases as shown in Figure 2. That is, by numerical
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Figure 2: The correct rates of EC and CR proposed in this paper for model (3.1)
below with θ = 1, kmax= 8, ρ = 0.5, β = 0.2, J =max{10,N/20}, and two factors
F1 ∼ N(0,1), F2 ∼ N(0,20), assuming there is a dominant factor and the errors are
both serially and cross-sectionally correlated.

comparison with the estimators of Ahn and Horenstein (2013), our estimators have
superior finite-sample properties.

The rest of this paper is organized as follows: The methodological develop-
ment and asymptotic properties of the proposed estimators are described in Section
2; Simulation studies are presented in Section 3; Section 4 gives an example on real
economic data; The concluding remarks are given in Section 5; All the proofs of
theoretical asymptotic properties are given in the Appendix.

2 Methodology and asymptotic properties
Consider the approximate factor model of Chamberlain and Rothschild (2014). Let
xit denote the response variable i(= 1, ...,N) at time t(= 1, ...,T ). The variables are
generated by an r×1 vector of common factors ft as follows

x.t = Λ ft + ε.t , t = 1, ...,T, (1)

where x.t = (x1t , ...,xNt)
′ is an N×1 vector of response variables, Λ = (λ1, ...,λN)

′,
in which λi is an r-dimensional vector of factor loadings for variable i, and ε.t =
(ε1t , ...,εNt)

′ is the N× 1 vector of the idiosyncratic components of response vari-
ables. The factors, factor loadings, and idiosyncratic components are not observed.
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Let X = (x.1, ...,xiT )
′, F = ( f1, f2, ..., fT )

′, and E = (ε.1, ...,ε.T )
′. Then, model (2.1)

can be rewritten as the matrix form

X = FΛ
′+E. (2)

We treat the entries in Λ as parameters and those in F as random variables.
Throughout this paper, A′ denotes the transpose of a matrix A. ‖A‖ =

[trace(A′A)]1/2 means the norm of a matrix A. ψk(A) denotes the kth largest eigen-
values of a positive semidefinite matrix A. Two scalars c1 and c2 denote generic
positive constants. For any real z, [z] means the integer part of z. The notation
a � b denotes a = Op(b) and b = Op(a). Finally, we denote m = min{N,T} and
M = max{N,T}.

Let

µ̃NT,k = ψk[XX ′/(NT )] = ψk[X ′X/(NT )],k = 1, ...,m. (3)

denote the kth largest eigenvalues of the matrix XX ′/(NT ). Ahn and Horenstein
(2013) proposed two ratio-type estimators, i.e. ER and GR estimators, to determine
the number of common factors as follows:

r̂ER = arg max
1≤k≤kmax

µ̃NT,k

µ̃NT,k+1
, r̂GR = arg max

1≤k≤kmax

ln[V (k−1)/V (k)]
ln[V (k)/V (k+1)]

, (4)

where

V (k) =
m

∑
j=k+1

µ̃NT, j (5)

and kmax is the predetermined possible maximum value of the number of factors.
Ahn and Horenstein (2013) proved that the ER and GR estimators are consistent
when m→ ∞.

In order to avoid the possibility of underestimating ER and GR estimators,
in this paper, we consider determining the number of factors in model (2.1) by the
following forms.

r̃ = arg min
1≤k≤kmax

{
µ̃NT,k+1

µ̃NT,k

V (k)
V (0)

}
= arg min

1≤k≤kmax

{
µ̃NT,k+1

µ̃NT,k
V (k)

}
= arg max

1≤k≤kmax

{
µ̃NT,k

µ̃NT,k+1

1
V (k)

}
, (6)

where V (0) = trace(XX ′)/(NT ). Note that

V (k)
V (0)

= 1− 1
V (0)

k

∑
j=1

µ̃NT, j.

The second term in the right side of the above equation is the cumulative contribu-
tion rate of the first k largest eigenvalues of the matrix XX ′/(NT ). Therefore, if the
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number of factors in model (2.1) is r = r̃, then the cumulative contribution rate of
the total common factors for the response variables is ∑

r̃
j=1 µ̃NT, j/V (0). Thus, the

resulting estimator r̃ can give consideration comprehensively to both the ratio of
two adjacent eigenvalues and the cumulative contribution rate of factors. However,
it is observed that V (k) descends with k. The estimator r̃ obtained from (2.6) may
be an overestimate. Moreover, it can be seen that the consistency of the estimator
r̃ can not be ensured when m→ ∞. To avoid these issues, we suggest a ridge-type
estimator based on the forms (2.5), as a modification of the ER estimator, given by

r̂EC = arg max
1≤k≤kmax

{
µ̃NT,k

µ̃NT,k+1

1
v+V (k)

}
, (7)

where v > 0 is a pre-specified positive value. We suggest that it is chosen as v =
Op(1). It is seen from Corollary 1 that if v = 1, the asymptotic property of r̂EC
is satisfactory. Here, the term EC refers to “Eigenvalue ratio” and “Cumulative
contribution rate”. This is an idea similar to adding a ridge parameter v to V (k) in
the last term of (2.6). Intuitively, the EC estimator r̂EC should work better than the
ER estimator r̂ER, because the former uses more information from the sample.

Furthermore, we wish to consider the contribution rates sufficiently and pro-
pose using the ratio of two adjacent contribution rates to determine the number of
factors as follows

r̂CR = arg max
1≤k≤kmax

{
µ̃NT,k/V (k−1)
µ̃NT,k+1/V (k)

}
, (8)

where V (k) is defined by (2.5). This estimator will prove to be asymptotically
consistent as well, see Theorem 2 below. Simulation studies show the estimator
defined by (2.8) has better finite sample properties than the GR estimator in Ahn
and Horenstein (2013).

Remark 1. It follows from Lamma A.12 of Ahn and Horenstein (2013) that
if r is the true value of the number of common factors in model (2.1), then V (r+
1) � Op(1). Thus, in practice, we suggest choosing v in (2.7) as v̂ = dV (r̂ER +1),
where d > 0 is a constant, V (r̂ER + 1) = trace(XX ′)/(NT )−∑

r̂ER
k=1 µ̃NT,k, where

r̂ER is the ER estimator obtained from (2.4). In fact, it can be seen that the new
estimators introduce two different multipliers compared to the ER estimator, i.e.,
EC(k) = ER(k) V (k)

V (k−1) and CR(k) = ER(k) 1
υ+V (k) . Note that 1

υ+V (k) = Op(1) and
V (k)

V (k−1) = Op(1) are needed to justify the consistency holding for r̂EC and r̂CR. The
new estimators are consistent because the additional multipliers do not change their
asymptotic behavior compared to ER, i.e., both r̂EC and r̂CR are diverging at the rate
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min(N,T ) for k = r and remain bounded for k 6= r. Moreover, the main part

µ̃NT,k/V (k−1) = µ̃NT,k/
m

∑
i=k

µ̃NT,i

in CR estimator, which measures µ̃NT,k’s influence on V (k− 1), and can be called
the contribution of µ̃NT,k for V (k− 1). As the modifications to ER and GR esti-
mators, we then name them as “both the ratio of two adjacent eigenvalues and the
cumulative contribution rate of factors” and “contribution rate ratio” (hereafter EC
and CR) estimators.

For the consistency of the estimator r̂EC, we impose some assumptions on
the factor model (2.1). These assumptions are the same as those in Ahn and Horen-
stein (2013).

Assumption A: (i) Let µNT,k = ψk[(Λ
′Λ/N)(F ′F/T )] for k = 1, ...,r. Then.

for each k = 1, ...,r, p limm→∞ µNT,k = µk, and 0 < µk < ∞. (ii) r is finite.
Assumption B: (i) E‖ ft‖4 < c1 and ‖λi‖< c2 for all t and i.
(ii) E(‖N−1/2

∑i εitλi‖2)< c1 for all t.
(iii) E(N−1

∑i ‖T−1/2
∑t εit ft‖2) = E[(NT )−1‖E ′F‖2]< c1.

Assumption C: (i) 0 < y ≡ limm→∞ m/M ≤ 1. (ii) E = R1/2
T UG1/2

N , where
U ′=(uit)N×T , and R1/2

T and G1/2
N are the symmetric square roots of T×T and N×N

positive semidefinite matrices RT and GN , respectively. (iii) The uit are indepen-
dent and identically distributed (i.i.d.) random variables with uniformly bounded
moments up to the fourth order. (iv) ψ1(RT ) < c1 and ψ1(GN) < c1, uniformly in
T and N, respectively.

Assumption D: (i) ψT (RT ) > c2 for all T . (ii) Let y∗ = limm→∞ m/N =
min{y,1}. Then, there exists a real number d∗ ∈ (1− y∗,1] such that ψ[d∗N](GN)>
c2 for all N.

Remark 2. Assumptions C and D are sufficient, but not necessary, condi-
tions for our results. Weaker conditions sufficient for our results are

ψ1(EE ′/M)� Op(1), (9)

ψ[dcm](EE ′/M)]≥ c+op(1), (10)

for some positive and finite real number c and some dc ∈ (0,1]. The condition (9)
rules out the possibility that the error matrix E contains common factors. The con-
dition (10) indicates that the first largest [dcm] eigenvalues of EE ′/M are bounded
away from zero. It follows from Lemma A.9 of Ahn and Horenstein (2013) that the
Assumptions C and D are sufficient for both (9) and (10).

Our main results are as follows.
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Theorem 1. If Assumptions A-D hold with r ≥ 1, then there exists dc ∈
(0,1] such that limm→∞ Pr(r̂EC = r) = 1, for any kmax ∈ (r, [dcm]− r−1].

Theorem 2. Suppose that Assumptions A-D hold with r ≥ 1. Then, there
exists dc ∈ (0,1] such that limm→∞ Pr(r̂CR = r)= 1, for any kmax∈ (r, [dcm]−r−1].

The proofs of Theorem 1 and Theorem 2 are presented in the Appendix. It
can be seen from the proof that if v = 1 the assertion from Theorem 1 holds. Thus,
we have the following corollary.

Corollary 1. Let v = 1 in the definition of r̂EC given by (2.7), and suppose
that Assumptions A-D hold with r ≥ 1. Then, there exists dc ∈ (0,1] such that
limm→∞ Pr(r̂EC = r) = 1, for any kmax ∈ (r, [dcm]− r−1].

In the case with no factors, i.e. r = 0, we can modify slightly the above
estimator r̂EC using the same method as Ahn and Horenstein (2013). Specifically,
we can defined a mock eigenvalue, e.g. µ̃NT,0 =V (0)/ ln(m), such that

µ̃NT,0→ 0, mµ̃NT,0→ ∞, (11)

as m→ ∞, although a finite multiple of the choice is also available. Then, we have
the following corollary.

Corollary 2. Suppose that Assumptions A-D hold with r ≥ 0, and redefine
r̂EC using µ̃NT,0 satisfying (11) for k = 0. Then limm→∞ Pr(r̂EC = r) = 1.

Corollary 2 can be implied by (11) and Lemma 2 in the appendix as follows:
When r = 0, from Lemma 2 we have µ̃NT, j = Op(m−1), j = 1,2, ...,kmax, which
implies µ̃NT, j

µ̃NT, j+1
= Op(1), j = 1,2, ...,kmax, but from (11), µ̃NT,0

µ̃NT,1
= Op(1)mµ̃NT,0→

∞. When r ≥ 1, µ̃NT,0
µ̃NT,1

= Op(1)µ̃NT,0→ 0.

3 Simulation studies
In this section, extensive simulation experiments are carried out to investigate the
performance of the proposed estimators EC and CR. To compare with competitors,
our simulation exercises will be carried on the model of Ahn and Horenstein (2013):

xit =
r

∑
j=1

λi j f jt +
√

θuit , uit =

√
1−ρ2

1+2Jβ 2 eit , (12)

where eit = ρei,t−1 + vit +∑
i−1
l=max{i−J,1}βvlt +∑

min{i+J,n}
l=i+1 βvlt , and λi j and vlt are

both drawn from the standard normal distribution N(0,1) independently. The fac-
tors f jt are drawn from normal distributions with zero means. Note that the idiosyn-
cratic components (errors) uit have been normalized to have variance 1.
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In our simulation experiments, the settings of parameters are important to
show the various structures of data. Control parameter θ is the inverse of the signal-
to-noise ratio (SNR) of each factor, i.e., SNR = 1/θ = var( f jt)/var(

√
θuit) with

var( f jt) = 1. When it is necessary to change SNRs of all factors, we adjust the
value of θ while fixing variances of factors at 1. To change the SNR of a single
factor, we adjust the variance of the factor with θ fixed at 1. Moreover, ρ can
show the serial correlation of the idiosyncratic errors over the time index, and β

and J can control the cross-sectional dependency of the idiosyncratic errors over
the individual index.

Our simulations are classified into four parts with the same settings as Ahn
and Horenstein (2013). Performances of our EC and CR estimators are compared
with their counter parts: ER and GR estimators in Ahn and Horenstein (2013), BIC3
estimator in Bai and Ng (2002), ED estimator in Onatski (2010), and IC1 estimator
in Alessi et al. (2010). The estimation procedure for the number r is replicated 1000
times, and the corresponding results are denoted by x(y|z), where x is the number of
different estimators in the replications, the numbers y and z in parentheses (y|z) are
the number of under- and over-estimations in the 1000 replications, respectively.

The first part is designed to investigate four examples with different error
covariance structures which will influence the finite-sample performances of EC
and CR estimators as well as other estimators:

Example 1. Independent and identically distributed errors (ρ = β = J = 0);
Example 2. Serially correlated errors (ρ = 0.7,β = J = 0);
Example 3. Cross-sectionally correlated errors (ρ = 0,β = 0.5,J =max{10, N

20});
Example 4. Both serially and cross-sectionally correlated errors (ρ = 0.5,β =
0.2,J = max{10, N

20}).

Table 1 reports the simulation results on the effects of the model structure on
performance of seven estimators when three factors are drawn from N(0,1) and θ

is fixed at 1. In example 1 with i.i.d. errors, BIC3, IC1 and CR are almost better than
the other estimators with N ≤ 50; when N ≥ 50, except ED estimator, all estimators
have the same desired performance. In example 2 with serially correlated errors, CR
and GR are slightly better than other estimators with N,T ≤ 50; when N ≥ 50 with
growing T , EC, ER and BIC3 estimators improve as well as CR and GR estimators,
while T ≤ 50, BIC3 estimator gives poor performance. In example 3 with cross-
sectionally correlated errors, all estimators have bad performance when N ≤ 50;
when N = 100,T ≤ 100, ER, GR and CR outperform other estimators; when N =
100,T = 200, ED estimator has the best performance; when N = 200,T ≤ 25,
CR estimator has the best performance; when N = 200,T = 25, CR estimator has
the best performance; when N = 200,T ≥ 50, ER, GR, EC and CR almost show
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the same satisfactory performance. Meanwhile, BIC3 always performs poorly. In
example 4 with serially/ cross-sectionally correlated errors, ER is superior to other
estimators with N = 25, the second best one is EC estimator; when N = 50,T ≤ 100,
EC performs better than other estimators; when N ≥ 100,T = 25, CR estimator is
the best one; when N = 2000,T ≥ 100, BIC3 estimator becomes as good as ER, GR,
EC and CR estimators. It appears that the performance of BIC3 estimator is much
more sensitive to cross-sectional correlation than to autocorrelation in the errors
from examples 3 and 4.
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Table 1: Performances of seven estimators for model (3.1) with three factors and
I.I.D. errors with θ = 1,kmax = 8,ρ = β = J = 0

N T r ER GR BIC3 IC1 ED EC CR
25 25 3 888(112|0) 948(52|0) 838(0|162) 986(13|1) 982(3|15) 924(76|0) 964(36|0)

50 3 984(16|0) 995(5|0) 1000(0|0) 1000(0|3) 993(0|7) 994(6|0) 997(3|0)
100 3 996(4|0) 998(2|0) 1000(0|0) 1000(0|0) 993(0|7) 996(4|0) 998(2|0)
200 3 999(1|0) 1000(0|0) 999(1|0) 1000(0|0) 997(0|3) 999(1|0) 1000(0|0)

50 25 3 988(12|0) 997(3|0) 1000(0|0) 998(0|2) 987(0|13) 989(11|0) 997(3|0)
50 3 1000(0|0) 1000(0|0) 1000(0|0) 999(0|1) 990(0|10) 1000(0|0) 1000(0|0)

100 3 1000(0|0) 1000(0|0) 1000(0|0) 1000(0|0) 996(0|4) 1000(0|0) 1000(0|0)
200 3 1000(0|0) 1000(0|0) 1000(0|0) 1000(0|0) 992(0|8) 1000(0|0) 1000(0|0)

100 25 3 994(6|0) 999(1|0) 1000(0|0) 1000(0|0) 993(0|7) 997(3|0) 1000(0|0)
50 3 1000(0|0) 1000(0|0) 1000(0|0) 1000(0|0) 999(0|1) 1000(0|0) 1000(0|0)
100 3 1000(0|0) 1000(0|0) 1000(0|0) 1000(0|0) 997(0|3) 1000(0|0) 1000(0|0)
200 3 1000(0|0) 1000(0|0) 1000(0|0) 1000(0|0) 992(0|8) 1000(0|0) 1000(0|0)

200 25 3 1000(0|0) 1000(0|0) 1000(0|0) 1000(0|0) 993(0|7) 1000(0|0) 1000(0|0)
50 3 1000(0|0) 1000(0|0) 1000(0|0) 1000(0|0) 991(0|9) 1000(0|0) 1000(0|0)
100 3 1000(0|0) 1000(0|0) 1000(0|0) 1000(0|0) 994(0|6) 1000(0|0) 1000(0|0)
200 3 1000(0|0) 1000(0|0) 1000(0|0) 1000(0|0) 996(0|4) 1000(0|0) 1000(0|0)

Table 2: Performances of seven estimators for model (3.1) with three factors and
serially correlated errors with θ = 1,kmax = 8,ρ = 0.7,β = J = 0

N T r ER GR BIC3 IC1 ED EC CR
25 25 3 612(314|74) 629(200|171) 0(0|1000) 521(242|237) 570(132|298) 632(137|231) 624(170|206)

50 3 878(122|0) 927(66|7) 5(0|995) 869(35|96) 894(16|90) 929(64|7) 938(51|11)
100 3 974(26|0) 991(9|0) 963(0|37) 965(3|32) 971(0|29) 982(18|0) 994(6|0)
200 3 994(6|0) 998(2|0) 1000(0|0) 998(0|2) 981(0|19) 997(3|0) 998(2|0)

50 25 3 785(198|17) 812(109|79) 0(0|1000) 620(82|298) 719(72|209) 806(85|109) 810(90|100)
50 3 981(19|0) 993(6|1) 31(0|969) 885(0|115) 942(0|58) 991(19|0) 993(6|1)

100 3 1000(0|0) 1000(0|0) 998(0|2) 963(0|37) 971(0|29) 1000(0|0) 1000(0|0)
200 3 1000(0|0) 1000(0|0) 1000(0|0) 998(0|2) 990(0|10) 1000(0|0) 1000(0|0)

100 25 3 864(130|6) 907(61|32) 0(0|1000) 623(15|362) 823(51|126) 893(55|52) 905(50|45)
50 3 997(3|0) 998(2|0) 68(0|932) 953(0|47) 989(0|11) 999(1|0) 1000(0|0)
100 3 1000(0|0) 1000(0|0) 1000(0|0) 991(0|9) 990(0|10) 1000(0|0) 1000(0|0)
200 3 1000(0|0) 1000(0|0) 1000(0|0) 996(0|4) 989(0|11) 1000(0|0) 1000(0|0)

200 25 3 909(91|0) 945(46|9) 0(0|1000) 557(8|435) 920(24|56) 943(46|11) 955(31|14)
50 3 1000(0|0) 1000(0|0) 86(0|914) 966(0|34) 997(0|3) 1000(0|0) 1000(0|0)

100 3 1000(0|0) 1000(0|0) 1000(0|0) 995(0|5) 995(0|5) 1000(0|0) 1000(0|0)
200 3 1000(0|0) 1000(0|0) 1000(0|0) 999(0|1) 994(0|6) 1000(0|0) 1000(0|0)
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Table 3: Performances of seven estimators for model (3.1) with three factors and
cross-sectionally correlated errors with

θ = 1,kmax = 8,ρ = 0,β = 0.5,J = max{10,N/20}

N T r ER GR BIC3 IC1 ED EC CR
25 25 3 4(2|994) 0(0|1000) 0(0|1000) 0(0|1000) 0(0|1000) 2(0|998) 0(0|1000)

50 3 0(0|1000) 0(0|1000) 0(0|1000) 0(0|1000) 0(0|1000) 0(0|1000) 0(0|1000)
100 3 0(0|1000) 0(0|1000) 0(0|1000) 0(0|1000) 0(0|1000) 0(0|1000) 0(0|1000)
200 3 0(0|1000) 0(0|1000) 0(0|1000) 0(0|1000) 0(0|1000) 0(0|1000) 0(0|1000)

50 25 3 69(31|900) 12(6|982) 0(0|1000) 0(0|1000) 0(0|1000) 22(1|977) 10(3|987)
50 3 31(2|967) 3(0|997) 0(0|1000) 0(0|1000) 0(0|1000) 4(0|996) 2(0|998)

100 3 16(0|984) 1(0|999) 0(0|1000) 0(0|1000) 0(0|1000) 1(0|999) 0(0|1000)
200 3 4(0|996) 0(0|1000) 0(0|1000) 0(0|1000) 0(0|1000) 0(0|1000) 0(0|1000)

100 25 3 755(160|0) 737(73|190) 0(0|1000) 645(116|239) 696(111|193) 702(36|262) 722(66|212)
50 3 947(46|7) 945(18|37) 0(0|1000) 862(32|106) 922(25|53) 931(15|54) 943(15|42)

100 3 998(2|0) 999(1|0) 0(0|1000) 982(0|18) 994(0|6) 994(0|6) 999(1|0)
200 3 999(1|0) 999(1|0) 0(0|1000) 858(0|142) 1000(0|0) 999(1|0) 999(1|0)

200 25 3 941(58|1) 969(30|1) 0(0|1000) 850(2|48) 934(5|61) 963(35|2) 975(23|2)
50 3 998(2|0) 1000(0|0) 0(0|1000) 924(0|76) 984(0|16) 1000(0|0) 1000(0|0)

100 3 1000(0|0) 1000(0|0) 0(0|1000) 985(0|15) 991(0|9) 1000(0|0) 1000(0|0)
200 3 1000(0|0) 1000(0|0) 0(0|1000) 1000(0|0) 1000(0|0) 1000(0|0) 1000(0|0)

Table 4: Performances of seven estimators for model (3.1) with three factors and
serially/cross-sectionally correlated errors with

θ = 1,kmax = 8,ρ = 0.5,β = 0.2,J = max{10,N/20}
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N T r ER GR BIC3 IC1 ED EC CR
25 25 3 543(271|186) 510(150|340) 0(0|1000) 388(95|527) 385(76|559) 544(121|335) 492(119|389)

50 3 640(160|200) 576(51|373) 2(0|998) 207(14|779) 222(11|767) 632(49|319) 544(37|419)
100 3 722(100|178) 623(18|359) 10(0|990) 46(2|952) 64(0|936) 687(28|285) 566(13|421)
200 3 772(79|149) 599(17|384) 20(0|980) 0(0|1000) 3(0|997) 725(29|246) 510(12|478)

50 25 3 790(164|46) 808(78|114) 0(0|1000) 532(25|443) 624(41|345) 816(76|108) 802(65|133)
50 3 958(29|13) 956(6|38) 28(0|972) 303(0|697) 580(1|419) 964(9|27) 945(4|51)

100 3 996(3|1) 998(0|2) 31(0|969) 95(0|905) 436(0|564) 997(1|2) 993(0|7)
200 3 1000(0|0) 1000(0|0) 1000(0|0) 999(0|1) 986(0|14) 1000(0|0) 1000(0|0)

100 25 3 931(67|2) 960(34|6) 59(0|941) 746(4|50) 863(9|28) 956(40|4) 967(26|7)
50 3 1000(0|0) 1000(0|0) 455(0|545) 731(0|269) 893(0|107) 1000(0|0) 1000(0|0)

100 3 1000(0|0) 1000(0|0) 568(0|452) 654(0|346) 913(0|87) 1000(0|0) 1000(0|0)
200 3 1000(0|0) 1000(0|0) 658(0|342) 751(0|249) 967(0|33) 1000(0|0) 1000(0|0)

200 25 3 968(32|0) 990(10|0) 548(0|452) 857(0|143) 952(0|48) 984(16|0) 993(6|1)
50 3 1000(0|0) 1000(0|0) 994(0|6) 872(0|128) 954(0|46) 1000(0|0) 1000(0|0)
100 3 1000(0|0) 1000(0|0) 1000(0|0) 902(0|98) 971(0|29) 1000(0|0) 1000(0|0)
200 3 1000(0|0) 1000(0|0) 1000(0|0) 948(0|52) 991(0|9) 1000(0|0) 1000(0|0)

The second part examines the effects of weak factors on the estimators. We
consider two cases: the case in which all three factors have weak explanatory power
(SNR= 0.17), and the case in which two factors are strong (SNR= 1) and one factor
is weak (SNR< 1). Table 5 reports the results for the first case from our simulations.
In short, when N,T ≤ 125, none of the estimators are satisfactory; when N,T = 150,
the ER estimator is superior to other estimators; when N,T ≥ 175, the CR estimator
outperforms other estimators. Table 6 reports the results for the second case from
our experiments. When SNR3 ≤ 0.25, the IC1 estimator shows better than others,
but all estimators seem to have poor performance; when 0.3 ≤ SNR3 ≤ 0.45, the
EC performs best; when SNR3 = 0.5, the CR estimator becomes the most suitable
one.

Table 5: Effects of all weak factors with serially/cross-sectionally correlated errors
with kmax = 8,θ = 6,ρ = 0.5,β = 0.2,J = max{10,N/20}, and

F1,F2,F3 ∼ N(0,1)
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N T r ER GR BIC3 IC1 ED EC CR
25 25 3 139(503|358) 130(379|491) 0(0|1000) 102(602|296) 117(466|417) 32(12|956) 134(354|512)
50 50 3 44(163|793) 29(82|889) 0(0|1000) 16(217|767) 7(479|514) 1(0|999) 25(68|907)
75 75 3 57(516|12) 11(28|961) 0(0|1000) 8(497|495) 2(617|381) 0(0|1000) 11(25|964)
100 100 3 100(285|615) 45(147|808) 0(0|1000) 7(849|144) 7(974|19) 0(0|1000) 44(142|814)
125 125 3 211(431|358) 156(313|531) 0(0|1000) 44(885|71) 33(964|3) 1(0|999) 153(303|544)
150 150 3 419(381|300) 396(305|299) 0(0|1000) 190(752|58) 104(889|7) 39(2|959) 394(299|307)
175 175 3 668(262|70) 683(211|106) 0(0|1000) 523(91|435) 380(614|6) 235(1|764) 685(206|109)
200 200 3 877(106|17) 902(71|27) 0(0|1000) 840(137|23) 731(267|2) 613(3|384) 903(70|27)

Table 6: Effects of strong and weak factors with serially/cross-sectionally
correlated errors with

N = T = 100,θ = 1,kmax = 8,ρ = 0.5,β = 0.2,J = max{10,N/20},
F1,F2 ∼ N(0,1), and F3 ∼ N(0,SNR3).

SNR3 r ER GR BIC3 IC1 ED EC CR
0.10 3 0(1000|0) 1(999|0) 0(0|1000) 72(743|185) 28(943|29) 1(998|1) 1(998|1)
0.15 3 1(999|0) 1(999|0) 0(0|1000) 73(676|251) 36(939|25) 0(998|2) 2(998|0)
0.20 3 5(995|295) 8(988|4) 0(0|1000) 188(505|207) 131(827|42) 7(984|9) 10(985|5)
0.25 3 37(963|0) 93(898|7) 0(0|1000) 393(269|338) 344(614|42) 83(878|39) 106(875|19)
0.30 3 163(836|1) 265(712|23) 0(0|1000) 489(150|361) 573(378|195) 254(694|52) 300(665|35)
0.35 3 377(623|0) 533(445|22) 0(0|1000) 604(35|361) 779(172|49) 501(419|80) 570(400|30)
0.40 3 582(417|1) 710(254|36) 0(0|1000) 589(14|397) 860(97|43) 685(234|81) 747(203|50)
0.45 3 745(254|1) 862(117|21) 0(0|1000) 602(7|391) 926(39|35) 832(115|53) 874(99|27)
0.50 3 877(123|0) 935(55|10) 0(0|1000) 593(4|403) 944(19|37) 918(50|32) 945(43|12)

The third part of our simulations considers the case in which two factors
have strong explanatory power, but one of factor powers is increasingly dominant.
We generate data using two factors with different SNRs (SNR1 = 1,SNR2 > 1), i.e.,
the two factors are drawn from N(0,1) and N(0,SNR2), respectively. We investigate
four cases N = T = 75; N = T = 100; N = T = 150; N = T = 200.

Table 7 reports the results of six estimators when there is one dominant
factor. For such a case with large SNR2, when N ≤ 150, the CR estimator are
outperforming other estimators in almost all cases.

Table 7: Effects of dominant factor with two factors with θ = 1, kmax = 8,
ρ = 0.5, β = 0.2, J = max{10,N/20}, F1 ∼ N(0,1), and F2 ∼ N(0,SNR2)

On determination of the number of factors in an approximate factor model

14



N = T SNR2 r ER GR BIC3 IC1 ED EC CR
75 1 2 987(13|0) 961(1|38) 0(0|1000) 36(0|964) 394(0|606) 909(1|90) 931(1|68)

3 2 788(212|0) 950(41|9) 0(0|1000) 28(0|972) 358(1|641) 919(1|90) 962(13|25)
7 2 210(790|0) 757(243|0) 0(0|1000) 36(0|964) 357(0|643) 503(496|1) 887(97|16)
10 2 76(924|0) 617(383|0) 0(0|1000) 34(0|966) 380(0|620) 281(719|90) 902(76|22)
15 2 11(989|0) 477(523|0) 0(0|1000) 28(0|972) 401(0|599) 101(899|0) 844(149|7)
20 2 1(999|0) 331(669|0) 0(0|1000) 25(0|975) 362(1|637) 42(958|0) 803(192|5)

100 1 2 1000(0|0) 999(0|1) 0(0|1000) 402(0|598) 842(0|158) 1000(0|0) 999(0|1)
3 2 927(73|0) 994(6|0) 0(0|1000) 401(0|599) 834(0|164) 979(21|0) 999(1|0)
7 2 372(628|0) 936(64|0) 0(0|1000) 381(0|619) 838(0|162) 704(296|0) 994(6|0)
10 2 116(884|0) 834(166|0) 0(0|1000) 419(0|581) 851(0|149) 407(593|0) 970(30|0)
15 2 19(981|0) 693(307|0) 0(0|1000) 376(0|624) 848(0|152) 174(826|0) 968(32|0)
20 2 4(996|0) 569(431|0) 0(0|1000) 374(0|626) 853(0|147) 61(939|0) 970(30|0)

150 1 2 1000(0|0) 1000(0|0) 0(0|1000) 885(0|115) 989(0|11) 1000(0|0) 1000(0|0)
3 2 996(4|0) 1000(0|0) 0(0|1000) 891(0|109) 983(0|17) 1000(0|0) 1000(0|0)
7 2 671(329|0) 998(2|0) 0(0|1000) 872(0|128) 985(0|15) 907(93|0) 1000(0|0)
10 2 296(704|0) 991(9|0) 0(0|1000) 863(0|137) 984(0|16) 697(303|0) 1000(0|0)
15 2 58(942|0) 968(32|0) 0(0|1000) 882(0|118) 989(0|11) 355(645|0) 1000(0|0)
20 2 9(991|0) 943(57|0) 0(0|1000) 861(0|139) 990(0|10) 142(858|0) 999(1|0)

200 1 2 1000(0|0) 1000(0|0) 0(0|1000) 959(0|41) 989(0|11) 1000(0|0) 1000(0|0)
3 2 1000(0|0) 1000(0|0) 0(0|1000) 964(0|36) 997(0|3) 1000(0|0) 1000(0|0)
7 2 907(93|0) 1000(0|0) 0(0|1000) 962(0|38) 990(0|10) 988(12|0) 1000(0|0)
10 2 542(458|0) 1000(0|0) 0(0|1000) 969(31|0) 992(0|8) 890(110|0) 1000(0|0)
15 2 134(866|0) 999(1|0) 0(0|1000) 955(0|45) 990(0|10) 558(442|0) 1000(0|0)
20 2 25(975|0) 996(4|0) 0(0|1000) 956(0|44) 989(0|11) 266(734|0) 1000(0|0)

The last part of simulation study investigates how the choice of kmax, which
can be considered as “smoothing parameters” for the estimators, may influence the
performances of estimators. We discuss the effect of large kmax when the eigen-
values µ̃NT,i are close to zero for some large i(< m). Six different values are used
for kmax, and the data generating process is the same as example 4 of the first part
with N = T = 150, the estimated results are recorded in Table 8. The results show
that the EC and CR estimators performance nearly the same as the ER and GR esti-
mators, which are insensitive to kmax. The ED estimator is less sensitive to kmax
than the IC1 and BIC3 estimators.

Table 8: Estimation with different values of kmax with N = T = 150, θ = 1,
ρ = 0.5, β = 0.2, J = max{10,N/20}, and F1,F2,F3 ∼ N(0,1)
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kmax r ER GR BIC3 IC1 ED EC CR
8 3 1000(0|0) 1000(0|0) 0(0|1000) 889(0|111) 988(0|12) 1000(0|0) 1000(0|0)
12 3 1000(0|0) 1000(0|0) 0(0|1000) 576(0|424) 970(0|30) 1000(0|0) 1000(0|0)
16 3 1000(0|0) 1000(0|0) 0(0|1000) 218(0|782) 896(0|104) 1000(0|0) 1000(0|0)
20 3 1000(0|0) 1000(0|0) 0(0|1000) 235(0|765) 889(0|111) 1000(0|0) 1000(0|0)
25 3 1000(0|0) 1000(0|0) 0(0|1000) 227(0|773) 899(0|101) 1000(0|0) 1000(0|0)
30 3 1000(0|0) 1000(0|0) 0(0|1000) 223(0|777) 874(0|126) 1000(0|0) 1000(0|0)

4 A real data example
An example on the macroeconomic data used by Bernanke, Boivin, and Eliasz
(2005) is given as illustration of our methodology. This data set is retrieved from
Jean Boivin’s webpage and contains 120 monthly macroeconomic variables with
511 time series observations during the period from February 1959 to August 2001.
In order to transform the data into stationary time series, we use double-demeaned
variables suggested by Ahn and Horenstein (2013) to remove time and time and
variable-specific effects from this data. For more detailed information about this
data, one can refer to appendix 1 of Bernanke et al. (2005).

The numeric results of the estimated numbers of factors are shown by dif-
ferent estimators as follows. For kmax = 8,15,20, ER, GR, EC, and CR estimates
are always 5. But BIC3, IC1 and ED are affected by kmax, because it is found that
8 factors for BIC3 and IC1 estimators, and 7 for ED estimator when kmax = 8; 15
factors for BIC3 and IC1 estimators, and 7 for ED estimator when kmax = 15; 20
factors for BIC3 and IC1 estimators, and 16 for ED estimator when kmax = 20. If
we use raw data, we can find that ER, GR, EC and CR estimates are always 1, 2, 6
and 7, respectively when kmax = 8,15,20. Furthermore, BIC3, IC1 and ED estima-
tors are also found to be sensitive to the choice of kmax: BIC3 and IC1 estimators
are 8, ED estimator is 7 with kmax = 8; BIC3 and IC1 estimators are 15, ED estima-
tor is 7 with kmax = 15; BIC1, IC1 and ED estimators are 20 with kmax = 20. Thus,
in this case without demeaned data, we think that 7 factors may be more reliable.

5 Concluding remarks
In this paper, we introduced two new estimators EC and CR for the number of
factors in static approximate factor models. These new estimators were proved to be
convergent to the true number of factors theoretically. Simulation studies showed
EC and CR generally outperform those estimators in existing literature in finite
sample cases: They have overcome the potential underestimation of ER and GR;
They are generally insensitive to cross-sectional correlation and autocorrelation;
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When all the factors have weak explanatory power, CR outperforms other estimators
for large N and T , and when factors become strong, EC becomes better and CR
becomes most suitable; EC and CR are insensitive to choices of kmax as ER and
GR. When there is a dominant factor, CR always outperforms other estimators.
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