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Abstract: The transport sector generates a considerable amount of greenhouse gas (GHG) emissions
worldwide, especially road transport, which accounts for 95% of the total GHGs. It is commonly
known that Electric vehicles (EVs) can significantly reduce GHG emissions. However, with a fossil-
fuel-based power generation system, EVs can produce more GHGs and therefore cannot be regarded
as purely environmentally friendly. As a result, renewable energy sources (RES) such as photovoltaic
(PV) can be integrated into the EV charging infrastructure to improve the sustainability of the
transportation system. This paper reviews the state-of-the-art literature on power electronics converter
systems, which interface with the utility grid, PV systems, and EVs. Comparisons are made in
terms of their topologies, isolation, power and voltage ranges, efficiency, and bi-directional power

beck § capability for V2G operation. Specific attention is devoted to bidirectional isolated and non-isolated
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updates EV-interfaced converters in non-integrated architectures. A brief description of EV charger types,
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their power levels, and standards is provided. It is anticipated that the studies and comparisons in
this paper would be advantageous as an all-in-one source of information for researchers seeking
information related to EV charging infrastructures.
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According to the World Health Organization (WHO), air pollution has been responsible
for almost 18% of premature births and over 3.7 million death tragedies worldwide [1]. As
the biggest contributor, internal combustion engine (ICE) vehicles burning fossil fuels (e.g.,
gasoline, diesel, etc.) are responsible for 29% of the total GHG emissions in the USA [2].
Growing public concerns about environmental problems and rising demand for fossil
fuels have been major factors in accelerating the growth of environmentally friendly and
zero-emission means of transportation, specifically electric vehicles (EVs), including hybrid
electric vehicles (HEVs), battery electric vehicles (BEVs), and plug-in electric vehicles
(PEVs) [3]. Despite the COVID-19 pandemic, the total number of EV sales experienced a
43% increase from 2019 to 2020 [4]. The projected growth of EV sales from 3.1 million in
2020 to 14 million in 2025 calls for a corresponding development in the charging facilities [2].
The high cost of batteries and their short lifespan, EV reliability issues, limited driving
range, and charging time are all key barriers to accepting EVs as an alternative for IEC
vehicles [5,6].

Furthermore, the large-scale penetration of EVs may impose strain on the grid during
Attribution (CC BY) license (https:// ~ charging periods as they demand a huge amount of electrical energy in a short time.
creativecommons.org/ licenses/by / Because the present utility grid in many countries is predominantly powered by a fossil
40/). fuel-based generation system, EVs cannot be deemed completely eco-friendly [7].
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Integrating Renewable Energy Sources (RESs) including wind, biomass, and solar
into EV charging infrastructures is gaining popularity as they can reduce the burden on
the electricity grid, charging costs, and GHG emissions [8,9]. Wind energy has attracted
much attention due to its low cost, sustainability, and rapid growth. Furthermore, it can
be constructed on current farms, bringing additional income to owners [10]. It has been
reported by the Global Wind Energy Council (GWEC) that renewable energy will deliver
25% of the global electricity demand in 2035 wherein wind energy will account for a quar-
ter [11]. Biomass-based electricity production from waste streams such as Municipal Solid
Wastes (MSW), animal wastes, and food processing wastes also offers many advantages,
of sustainability, such as carbon neutrality, domestic production, versatility, availability,
efficiently managing waste produced, and not being subjected to price fluctuations [12,13].
In 2020, bioenergy electricity generation increased by 53 TWh (+8%) when compared with
2019, which exceeds the 7% annual rate needed through 2030 in the Net Zero Emissions
by 2050 Scenario [14]. Solar power is an environmentally friendly energy source [15].
Low-carbon PV power generation is attracting substantial interest owing to a significant
reduction in installation costs over recent decades [3,8]. Improvements in efficiency and a
continuous drop in the price of materials utilised (e.g., crystalline silicon (c-Si), amorphous
silicon (a-5i), gallium arsenide (GaAs), organometallics (soluble platinum), etc.) have all
contributed to the total cost reduction [16]. Furthermore, a PV system requires minimal
maintenance [8]. Therefore, it has been preferred over other RESs for EV charging. There are
several benefits to PV solar-powered EV charging, such as (i) reduced grid power demand,
(if) installation feasibility, (iii) free of emissions, (iv) lower fuel cost, and (v) significant cost
savings, as the charging occurs during the peak demand period with high tariffs [1,17,18].
Additionally, the EV battery can function as an energy storage unit (ESU) to store PV energy
when required, alleviating problems associated with large-scale PV integration into the
electricity grid.

Exiting EV chargers are generally categorised into three levels. Level-1 chargers have
the lowest ratings, where the peak power is approximately 3.75 kW. In Level 2, the peak
power can reach 22 kW, and therefore, they are becoming more popular as they reduce the
charging time considerably. Three-phase Level-3 AC chargers can provide a power rating
greater than 14.4 kW and up to 43.5 kW (e.g., Renault Zoe). Usually, IEC 60,309 and IEC
62198-2 connectors are used in these chargers. Level-3 DC chargers can provide 350 kW
of power directly to the battery [1]. SAE J1772, CHAdeMO, and IEC 62,196 are the main
standards for Level-3 DC chargers. Unlike Level-1 chargers where the converter can be
installed within the car (on-board battery chargers), the converters employed in Level-2
and Level-3 AC chargers are bulkier and heavier, so the charger is not located within the
car (off-board battery chargers) [1,2].

There are two ways to use PV panels for charging EVs, namely PV-grid (on-grid)
and PV-standalone (off-grid) [8,19]. PV-standalone refers to charging an electric vehicle
solely with solar energy without involving the grid. Because PV power is inherently
variable, a connection to the electricity grid is required to ensure a consistent secure
supply of electricity for EV charging. The PV array, a DC-DC converter equipped with
maximum power point tracking (MPPT), and a DC-DC converter at the EV port, are
common hardware components in PV-standalone and PV-grid charging systems [8], while
another power stage (AC-DC) is required in an on-grid EV charging system. If both the
EV-interfaced and grid-interfaced converters can support bidirectional power flow, vehicle-
to-grid (V2G) can be implemented to increase grid stability during peak load hours [20]. To
meet international safety standards (e.g., IEC 62955, IEC 61851) [21-23], solar PV and the
electricity grid are required to be isolated from the EV batteries [24]. The isolation can be
implemented using either a high-frequency (HF) transformer in the kHz range associated
with the EV-interfaced converter or a grid-connected low-frequency (LF) transformer.
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Power electronic converters play a crucial role in EV charging systems to deliver
the highest possible power at high efficiency. Converter topologies employed in the
PV-grid charging stations can be classified as non-integrated and integrated architec-
tures [17,18,25]. There are three converters dominating the non-integrated architectures,
namely the PV-interfaced converter [3,26], the grid-interfaced converter [27-54], and the
EV-interfaced converter [55-85]. For efficient charging, each converter requires a specific
controller, which adds to the complexity and increases the total power losses. Alternatively,
a single integrated converter comprised of sub-converters interfacing with the EV, PV,
and grid can be used [18,86-89]. Although extra switches are required for integration,
the entire integrated system has a reduced number of devices when compared with its
non-integrated counterpart.

Reviews of power electronics converter architectures for DC fast chargers have been
presented in [2,26]. However, they lack information about how the EV battery chargers are
supplied by both PV solar power and the local AC grid. In addition, the studies on the
PV-EV-grid charging architecture in [3,8,9] have not covered all the potential PV, EV, and
grid-interfaced converter topologies, particularly those proposed in recent publications.
Therefore, it appears that there is an absence of an updated and thorough overview of
these topics. In this paper, power converter topologies for PV-grid and PV-stand-alone
charging infrastructures are comprehensively reviewed. Specific attention is devoted to
bidirectional isolated and non-isolated EV-interfaced converters, which play a fundamental
role in delivering power to EV batteries. For a broader readership, this work contains a
concise explanation of EV battery charging types and their relevant standards.

The following outline is provided to facilitate reader navigation through the paper.
The Global PV system deployment is presented in Section 2. EV charger types, power
levels, and their standards are briefly described in Section 3. PV-grid and PV stand-alone
EV charging structures are provided in Section 4. PV-interfaced, grid-interfaced, and
EV-interfaced converters for non-integrated architectures are comprehensively reviewed
and compared in the first subsection of Section 5, while the second subsection deals with
multi-port integrated topologies and associated sub-converters. After giving some direction
for the future research in Section 6, concluding remarks are drawn in Section 7.

2. International Deployment of Solar Photovoltaic (SPV) Systems

Solar PV power accounts for 3.1% of all electricity worldwide. Even the COVID-
19 pandemic did not significantly impact solar deployment in 2020, given that installed
renewable power capacity increased by more than 256 gigawatts (GW) during the pandemic,
the highest increase ever [90]. Global PV capacity increased from 17 GWpc to 139 GWpc
between 2010 and 2020 (see Figure 1). European markets led at the start of the decade, but
PV growth shifted to Asia. By 2020, 57% of cumulative PV installations were in Asia, 22%
in Europe, and 15% in the USA. At the end of the last decade, Germany, China, Japan, the
USA, and India led the dominant markets in terms of cumulative PV installations. In 2020,
China’s yearly PV installations increased by 60%, accounting for more than one-third of
global deployment. In terms of both cumulative and annual installations, the USA was
the second-largest PV market. PV installations climbed dramatically in many important
markets, including the USA, within the first nine months of 2021. India installed 177% more
solar panels than it did in the same period in 2020 during the same period in 2021. In total,
171 GW of PV was added worldwide by the end of 2021. As predicted by analysts, annual
global PV installations will continue to rise, with an average projection of 209 GWpc and
231 GWpc in 2022 and 2023, respectively [1,91].
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Figure 1. PV annval installations from 2010 te 2020 [90,91]
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Table 1. Cont.

. . Charging .
Charger Size Weight Duration Power Range Benefits Challenges
e  Flexible to charge
at various places
e  Cutting down e  Charge at lower
on the amount level
power levels
On-board Small Light Long Lg%sl;d‘;\a}l n of equip- ° Slow charging
ment needed e  Added EV weight

by end-user
e  Less complex and
lower cost

Nowadays, most EVs have off-board DC fast chargers in addition to an on-board
charger (OBC) embedded in the EV, which is used for slow charging overnight. The primary
issue related to an OBC is the voltage range (up to 120 Vac), and hence charging power
limitations caused by space and weight issues, in addition to cost constraints. Nevertheless,
as EV battery capacity grows, the power in OBCs drastically increases. Early EVs using
OBCs could only charge at 3.3 kW, but almost all EVs can now charge at 6.6 kW, 7.4 kW,
11 kW, and more (up to 20 kW) [92,93]. Despite the higher cost of off-board DC charging
stations, they offer some attractive features, such as lightening the EV’s weight and charging
at much higher power levels (quicker charging) compared to their on-board counterparts.

The charging power level is usually a trade-off between charging time and EV charging
infrastructure cost. There are two methods of charging: AC and DC. AC charging with
Level-1, Level-2, and Level-3 charging delivers an AC supply, which is then converted into
DC to charge the batteries through OBCs [9,93].

Level-1 AC charging offers the lowest power and is commonly installed in residential
complexes for overnight charging. It takes 120 Vac/230 Vac as the input voltage and
provides approximately 1.92 kW output power. Level-2 AC charging takes an input voltage
of 208 Vac or 240 Vac and delivers up to 20 kW of power. Level-3 AC chargers (400 Vac,
three-phase, 32-63 A) have a power rating higher than 14.4 kW and up to 43.5 kW. They
recharge the EV battery pack in no more than two hours [1]. Level-3 DC fast chargers
(off-board), which can handle power between 50 kW and 300 kW, have grown in popularity
due to the limited power rating and longer charging time of on-board Level-1, Level-2,
and Level-3 AC chargers. Level-3 DC fast chargers can deliver DC voltage of 300 V or
more, up to 800 V, and charge existing EV batteries in under 30 min. DC chargers are
positioned off-board due to high power flow, allowing the vehicle’s weight and capacity
to be minimised. DC charging (off-board chargers), however, necessitates more complex
infrastructures as the output voltage must be adapted to various EVs encountered at the
charging stations.

Table 2 lists the charging levels, specifications, and standards for electric vehicles. In
terms of standardisation, three central global organisations rival each other to be the de
facto standard for EV charging: (i) CHAdeMO association, (ii) the Society of Automotive
Engineering (SAE), and (iii) the International Electro-technical Commission (IEC). Besides,
Tesla Motors has proposed an exclusive set of EV charging standards [9,19]. In the United
States, the Level-2 AC charging connector is a proprietary Tesla plug or the SAEJ1772
Type-1, whereas, in Europe, the IEC62196-2 Type-2 plug is used [22,94,95]. IEC 60309, IEC
62198-2-Mennekes, and 62198-2-Same connectors are generally used in EV chargers at
level-3 AC chargers [1].
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Table 2. EVs charging levels, specifications, and standards.
Charging On-Board/Off- Suppl Single/Three Power Charging CB atteﬁ’ Charging Protection T Standard
Station Type Board UPPLY Phase Range (kW) Time (?(l;/a\llch)y Location otection 1ype andards
Lf;’él) 1 On-board 12{)2/_213601“ Single 1.44-1.92 11-36 h 16-50 Residential ~ Breakerincable  SAE]1772
. . SAE J1772
208/240 . . Pilot function
Level-2 On-board Vac Single/split 3.1-19.2 2-6h 16-30 Home or and breaker IEC 62196
(AQ) 15-80 A phase workplace in cable IEC 60309
¢ IEC 62198
Pilot function SAE J1772
tevey? On-board S0NAC Threephase 144435 <h ~15 ome or. and breaker IEC 60309
P in cable IEC 62198
300-600 Monitoring and SAE J1772
Level-3 . Public (like communication IEC 62196
(DC) Off-board U Vdc Three phase >400 <30 min 20-50 gas stations) between EV and CHAdeMO
p to 400 A R .
charging station Tesla

4. PV-Grid and Stand-Alone EV Charging

The rapid growth in EV numbers has brought a new issue: An additional burden on
the electricity grid caused by the extremely high current drawn for EV fast charging, partic-
ularly during rush hour when electricity tariffs and load demand are at their highest [96,97].
Building renewable energy source (RES)-based EV charging stations is one viable solution.
With a steady rise in PV annual installations (see Figure 1) and a downward trend in PV
module prices, solar power is becoming more widely recognised as a cost-effective source
of energy to complement the electricity grid, and the integration of PV into EV charging
systems is becoming more common [98,99].

PV-grid (on-grid) and PV-standalone (off-grid) are two possible options for charging
an EV with solar power, and their block diagrams are shown in Figure 3a,b, respectively.
PV stand-alone EV charging, which stands for charging an EV only through PV power and
without utilising the utility grid, is more advantageous in rural or depopulated locations
where utility supply is unavailable, limited, or relatively expensive [100,101]. The PV
array, on the other hand, should be reasonably large to meet the charging requirements
for a large number of EVs [102]. Furthermore, because of the intermittent nature of PV
power, a grid connection is required to ensure a consistent supply of electricity for EV
charging. In other words, EV charging could be continuously conducted through a PV-grid
EV charging system since the charger can switch to the utility grid when there is inadequate
solar irradiation or variations in ambient conditions (e.g., temperature). It is also flexible
because solar PV power can be injected into the electricity grid in the absence of EVs. From
a practical standpoint, the main distinction between the on-grid and off-grid architectures
is the bidirectional grid-interfaced power converter (which can act as both an inverter
and a rectifier). PV arrays, DC-DC converters with built-in MPPT, and bidirectional DC
converters for charging and discharging batteries are all common hardware components in
on- and off-grid charging systems [1].

In a PV stand-alone architecture, the charging system must include an ESU, which
allows extra energy to be stored. This energy then can later be used to charge the EV when
the PV power is unavailable (e.g., overnight). The ESU can also be utilised in a PV-grid
charging system to lessen the negative impact of EV charging on the electricity grid [103].
However, with ESU integration, one power stage is added, leading to increased controller
complexity and battery charger implementation costs. Despite the fact that the off-grid
charging system appears to be considerably simpler and more efficient thanks to the fewer
power conversion stages involved, the PV-grid system has proven to be more profitable
and currently preferred [1].

PV-grid charging systems can typically operate in 10 different modes based on the
interaction among the PV array, EVs, the grid, and the ESU. The charging station operation
in a PV-grid charging system can be adjusted such that it is supplied by the utility grid,
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Mode 3 (PV and gPAI'$-EV): If available PV power is inadequate for fully independ-
ent @Y charging due to insufficient solar radiation, the deficit w&} be supplied by the grid
(Figure 4c). In this mode, the grid-interfaced bidirectional converter is in the rectification
nfdgaredd EhefEV-interfaced bidirectional DC-DC converter operates in the buck mode.
Because PV generation is variable, the system requires a controller to continuously moni-
tor the power generated by the PV and modify the grid intake accordingly to guarantee
that the required power to the EV is maintained.

Mode 4 (PV-to-ESU (PV2ESU)): When there is no EV to be charged, then all the avail-
able PV power is directed to the ESU using the PV- and ESU-interfaced DC-DC converters
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Mode 4 (PV-to-ESU (PV2ESU)): When there is no EV to be charged, then all the
available PV power is directed to the ESU using the PV- and ESU-interfaced DC-DC
converters (Figure 4d). This mode aids the charging system in reducing grid reliance by
storing energy in the ESU for later use, particularly during rush hours.

Mode 5 (grid-to-ESU): Power will be directed from the grid to the ESU when the grid
is not overloaded, and electricity prices are relatively low (e.g., overnight). In this mode,
the grid-interface bidirectional converter is in the rectification mode. This mode tends to
exploit the chance of a low grid tariff to boost charging station benefits (Figure 4e).
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Mode 6 (ESU-to-EV (ESU2EV)): In this mode, the energy stored in the ESU (from the
PV modules or the electricity grid) is utilised for EV charging through the ESU- and the
EV-interfaced DC-DC converters. This mode assists the grid in charging the EV from the
ESU during peak hours, overnight, or during the daytime when the PV power is insulfficient
to meet the EV demand (Figure 4f).

Mode 7 (PV and ESU-to-EV): When the PV alone is unable to meet the EV’s demand
and the ESU has adequate SOC, this mode is activated, and the EV is charged by the power
from both the PV modules and the ESU. To extract the maximum power from the PV
modules, the PV-interfaced DC-DC unidirectional converter is used. Two bidirectional
DC-DC converters also interface the ESU and EV. After extracting the maximum available
power from the PV modules, the output power (from the PV modules and the ESU) is
further conditioned by the DC charger to guarantee that the required power to the EV is
retained. This mode also will help to decrease the grid burden caused by EV charging
(Figure 4g).

Mode 8 (EV-to-grid (V2G)): EVs can be used as auxiliary power sources and contribute
to grid stability during peak demand hours. In this mode, energy is transferred from
the EV batteries to the grid via the EV-interfaced bidirectional DC-DC converter and
grid-interfaced bidirectional converter. The EV-interfaced and grid-interfaced converters
are in the boost and inversion modes, respectively. EV power availability, however, is
contingent on the EV driver’s willingness to discharge EV batteries into the electricity grid.
Furthermore, because this may shorten the lifespan of an electric vehicle’s battery, it is not
suggested unless the financial gain can be justified. It should be noted that the PV power
can also be directed to the grid in this mode as long as there are simultaneous operating
conditions of all system components (Figure 4h).

Mode 9 (PV-to-grid (PV2G)): The generated PV power can also be sent directly to
the grid in two steps, through the PV-interfaced unidirectional DC-DC converter and the
grid-interfaced bidirectional converter (in the inversion mode). As this mode is usually
operative when the feed-in-tariff rate is substantially high, it results in a financial gain for
the owner (Figure 4i).

Mode 10 (ESU-to-grid (ESU2G)): If the ESU has adequate SOC, this mode is operative,
and the power saved in the ESU is transferred to the electricity grid in a two-step conversion
using the ESU-interfaced bidirectional DC-DC converter in the boost mode and the grid-
interfaced bidirectional converter in the inversion mode (Figure 4j).

5. Converter Topologies for PV-Grid Charging Systems

Developments in power conversion technologies play a crucial role in the penetration
of solar PV power into EV charging stations. Converter topologies in PV-grid charging
stations can be classified as non-integrated and integrated [17]. As shown in Figure 3b,
at least three converters are used in non-integrated architectures. First, a unidirectional
DC-DC converter known as a “PV-interfaced converter” is employed for MPPT. The
PV-interfaced converter’s output is then connected to a second converter known as a
“grid-interfaced converter,” which typically operates in both rectification and inversion
modes. Finally, a bidirectional DC-DC converter known as an “EV-interfaced converter” is
utilised to enable EV charging. Each converter has its own controller for efficient charging,
which adds to the system’s complexity and power losses. Alternatively, a single integrated
converter made up of sub-converters can interface the PV, EV, and electricity, as seen in
Figure 5. Although additional switches/relays may be added to switch between different
modes, the overall integrated system will have fewer total components than its non-
integrated counterpart.
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can be adopted as the EV-interfaced converter, along with their main features, are shown in
Figures 8 and 9, and their main features are listed in Table 3.
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T Ref. F T 1 No. of S
ype Re 1gure OPoi0gy 0. of S/D Power n Advantages Disadvantages
Large inductor/Low power
126] Figure 1-phase 2 switches 250 V/48 Simple structure and con- density/Limited power rat-
7 Buck kw trol/V2G support ing/Absence of isolation/No
soft-switching
Reduced switching . .
Sensitivity of current equali-
2-phase losses/Lower voltage stress .
Figure Interleaved 2 switches Up to on the semiconductor de- zation among the phases to
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Table 3. Non-isolated and isolated DC-DC EV-interfaced topologies.

Type Ref. Figure Topology No. of S/D Voltage/Power Ui Specifications
Advantages Disadvantages
. 1-phase . Simple structure and control/V2G Large 1nd1‘1ct9r/ Low power
[26] Figure 7 Buck 2 switches 250 V/48 kW - support density /Limited power rating/Absence
PP of isolation/No soft-switching
2-phase Reduced switching losses/Lower voltage Sensitivity of current equalization among
[77] Fieure 8a Interleave d%uck converter 2 switches 150-200 V Up to 96% stress on the semiconductor the phases to duty cycle
g (IBC) 2 diodes p devices/Reduced current ripple/Compact fluctuation/ Absence of isolation/No
structure/Better step-down voltage ratio soft-switching/No V2G support
Increased power/Low cost simple Different phase characteristics (such as
design/Balanced power-sharing among power losses and RMS current) among
3-phase 6 switches 200-800 V/ the phases/Modularity /Low input and the interleaved phases/Sensitivity of
[78] Figure 8b Interleaved Buck converter (each module) Up to 150 kKW - output current ripple/Minimized current equalization among the phases to
(IBC) P inductor size by operating in the duty cycle fluctuation/Soft-switching
discontinuous mode (DCM)/Soft- would be difficult at higher switching
switching/V2G support frequencies/Absence of isolation
Lower rated switches/High-frequency
] 3-level asymmetrical ) operation / Smaller inductor/Reduced ) ) o
[82] Figure 8¢ voltage source converter 4 switches 200-500 V /40 kW - price and size/Compact structure/V2G Absence of isolation/No soft-switching
8 support/Lower output and inductor
current ripples
; : High voltage ripple at the input
Non-isolated [84] Figure 8d 3-level Eziucegnverter 8 switches 1.2 kW - k(,:j? /(goer:?;ic‘,t\qstt};uac]tﬁg:/l?z%iupport side/High circulating current/ Absence of
isolation/No soft-switching
High voltage conversion
Zero voltage transition ratio/ Compatible with different voltage High conduction power losses because the
[126] Figure 8e (ZVT) cgonverter 4 switches 220V - ranges/Reduced voltage ripple with resonant circuit is positioned in the
interleaved design/Soft-switching/V2G current path)/Absence of isolation
support
Low conduction losses/Low input current ng{.l pKt)W er}(I){sses at high powvler ¢
[127] Figure 8f Interleaved ZVT 6 switches 70-400 V/1 kW ~95% ripple/Small size inductors/Interleaved AP ICAlONS/ LEVErSE recovery 10sS o
X 1 body diodes/Absence of isolation/No
design/Soft-switching NoYe
support
Capable of operating at moderate
duty-cycle ratio/Lower EMI/Reduced Limited soft-switching range/Increased
voltage stresses losses when operating at high switching
[128] Figure 8g Half-bridge ZVT 4 switches 250 V/100 W - on switches/ frequencies/More components in the
Compeact structure/ current path/Longer conduction
Relatively simple path/Low efficiency / Absence of isolation
control/Soft-switching /V2G support
Reduced voltage stresses on More resonant circuits/increased
semiconductor devices, so suitable for probability of losing soft-switching /High
[129] Figure 8h 3-level ZVT 6 switches ~300 V/100 kW 98% medium and very high-power losses at light loads/Large size and the

applications/Soft-switching /
V2G support

volume of the circuit/High
control complexity
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Table 3. Cont.

Type Ref. Figure Topology No. of S/D Voltage/Power 7 Specifications
Advantages Disadvantages
Good voltage regulation/Can operate
o . . with light loads/No diode recovery Unidirectional power flow /Complex
[121] Figure 9a Fui:)rrlgif folrf\‘/litlégc 665‘3?;3};? 225-378 V/6.6 kW 98.14% losses/ A single capacitor to filter the design procedure/Switching and resonant
output side/Compact size/Low frequencies are close/No V2G support
EMI/High efficiency/Soft-switching
. - . Soft-switching is challenging at light to
High efficiency /High power .
Dual-active bridge density/Galvanic nlziiucllrlr;r]i;/tliztstsfsy/ ‘{S;:sgfzﬁrjr—f:rr} :former
[57] Figure %b & 8 switches 200-450 V/20 kKW 96% isolation/Soft-switching/V2G peak curre .
(DAB) converter . ) operation in saturation/Current
support/Modular design/Wide range of h ioh 1 iohf
voltage transfer ratio overshoot/High losses/High-frequency
Isolated current ripple, reducing battery lifetime
Dual-active bridge (DAB) R;'dl'lced r/eIzilcgve %owerd/ Ingreasled Cannot guarantee soft-switching for a
) ual-active bridge . o efficiency /Reduced conduction loss ;
(631 Figure 9c LCL resonant converter 8 switches 400 V/4kw 95% compared to DAB converter/No w1rc1iehrrar;%§ (zlf li;’itt;zly v;)llt’;a%(;{{cio}rln pletx
transformer saturation/V2G support synchronization and contro i cos
Modular design/Reduced stresses on ?iardd sx//vitchlnfgﬁf(i)rsecsrsldarz SIth
Phase-shifted full-brid 4 switch semiconductor devices/reduced Electro o e}sl to we Cti ny ll—liv'f:le vo ?.%.e
[75] Figure 9d ase-siutted ul-bridge switches 270-420 V/33 kW 98.5% magnetic interference/No circulatin, OVershoot across the Tul-bridge rectitier
8 8! 3
(PSFB) converter 6 diodes due to high-voltage EV charging/Reverse

current on primary and secondary
sides/Soft-switching

recovery problems of the diodes for high
power flow/No V2G support
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Table 4. A technical comparison among grid-interfaced converter topologies.

. Rectification/ Specifications
Type Ref. Figure No. of S/D . Voltage/Power THD i
P 8 ° Inversion Mode & Advantages Disadvantages
Simplified structure and control
Step-u scheme/Continuous input Harmonics appear at the DC-link
(Boostp m(fde) [45] Figure 10 6 Switches Both 620 V/4 kW 3.29% 96.5% current/High output DC voltage under unbalanced/AC input
voltage/Low current stress/Low voltage /High switching losses
THD/High efficiency /Soft-switching
Voltage source
Inveﬁer (VSID) Simplified strgcture a'nd control Semiconductor losses/ High )
scheme/Continuous input voltage stresses on the switches in EV
~ . current/High output DC charging/Input current distortion,
(gtei i?“én) [31] Figure 11a 6852/1\21t§1hes Rectification 600V - ~97% voltage/Low current stress/Low especially at light load
uckemode odes THD/High efficiency /Minimized conditions/Complex
reverse recovery losses of the control/Reduced
anti-parallel diodes/Soft-switching soft-switching capability
Suitable for high power
applications/Simple structure and
control method/High power Density =~ The need for de-link
and efficiency /Low THD/Neutral capacitors /Limited switching
VIENNA converter [42] Figure 11c 12 Switches Both 800 V/15 kW <5% >98% connection-free structure/Low frequency for a better trade-off
voltage stresses on the between high efficiency and
switches/Consistent with bipolar DC ~ high-power density
bus/Soft-switching/operating at
unity power factor
. .- Complex circuit and control in
. 14 Switches L. o o ngh efficiency/ Lov_v common-mode high power levels/Unidirectional
SWISS converter [39] Figure 11b . Rectification 400 V/10 kW <3% 95% noise/Low conduction and
10 diodes o power flow /Reduced
switching loss 1 e
soft-switching capability
Several switching Capacitors voltage
states/Modularity /Capability to ; -
8 Switches 95.4 isolate the faulty cells without an balancing/Inadequacy of delivering
CHB [46] Figure 12a Both 540 V/2 kW Low o . © fauity . y maximum modulation
(per phase) Yo interruption in operations/Low . s .
. index/Vulnerability to potential
current ripple/Robustness/ . I g
. . failure/Reliability /No soft-switching
Easy implementation
. Lo Severe unbalancing problem
: Less distortion in output voltage caused by uncertainties (e.g., various
Multilevel waveforms/Decreased stresses on battery tachnologies and r.ar.lldom
NPC : ; 16 switches o switches /Low THD/Minimised ey OIOBIES anc o
[51] Figure 12b . Both ~450 V/3.6 kW 5.39% - Lo arrival of vehicles/Limited switching
8 diodes switching losses/Improved £ L .
. ! . . requency/Limited maximum
reliability /Consistent with bipolar h C 1
DC bus structure phase current/ omprex
control/No soft-switching
. High-frequency operation/Smaller . .
, . 8 switches o 090 . . High cost/Challenges in
FC [48] Figure 12¢ (per level) Both 400 V/1.5 kW <3.5% 99% passive components/High power PEC/No soft-switching

delivery capability (in three-phase)
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Table 5. A technical comparison between integrated architectures.

Sub-Converters o u Specifications
. eratin,
Ref. Figure gy nterfaced  Grid-Interfaced  PV-Interfaced Power Range 11:\)4[0des 8 U .
Advantages Disadvantages
Converter Converter Converter
Hard switching for the
interleaved PV-interfaced and
High power three-phase VSI/Complex
density/Modularity/Electrical ~ controls for the three
[18]  Figure13 In;?f;:f d Three-phase VSI Intilg(e;;/ed 10 kW \I/’ZVG2g \gZE\Y’ ~95% isolation/High Switching sub-converters/Reliability
y ! frequency/High partial and concerns/No ESU/No control
peak load efficiency over SOC of the EV
batteries/Soft-switching for
EV-interfaced converter only
V2G support/Low .
: . No ESU/No electrical
[86] Figure 16 Half-bridge Full-bridge Half-bridge 3.5 kW V2G, PV2EY, - THD/Slmpl.e struc’Fure/ngh isolation/Hard switching/No
PV2G, G2V power density /Unity power o
soft-switching
factor
Hard switching for the PV-,
V2G, PV2EV, Electrical Evb; and grid'mterff.ce‘li i
Bidirectional Bidirectional Unidirectional PV2G, G2V, isolation/Modularity / A wide 151111 hcog‘\/fveei €rs, partictiarty mn
[88] Figurel4 DC-DC AC-DC - PV2ESU, - variety of DC sources are &1 POy .
Boost . applications/Challenging
converter converter ESU2G, supported through a multi . {
R transformer design for high
ESU2EV, G2ESU winding transformer .
power flow /Soft-switching for
TAB converter only
Simple and Compact No ESU/Hard switching for
design/No complex control or  the interleaved Boost
. Interleaved Dual-active Interleaved V2G, PV2EV, o optimization for the converter/Large output filter is
891 Figure 15 Boost bridge (DAB) Boost 02kW PV2G, G2V 96% modulation technique/High required to secure low

power density /It can be scaled
up to high power levels

THD/Soft-switching for DAB
converter only
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vide bidirectional power flow capability, a DC-DC unidirectional boost converter for the
PV port, and a bidirectional converter to interface with the utility grid. The proposed to-
pology offers electrical isolation and modularity. It could be more advantageous by sup-
porting a wide range of DC sources utilising a multi-winding transformer. However, alt-
hough soft-switching is guaranteed for the TAB converter, the three sub-converters sy ffess
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A three-port integrated topology based on interleaved Boost and DAB converters has
been proposed in [89]. As shown in Figure 15, the DAB topology interfaces with the grid
(Port-3) while the interleaved boost converter interfaces EV (Port-1) and PV (Port-2). Apart
from a simple and compact design, the modulation technique used does not require com-
plex control or optimization. Furthermore, the proposed architecture offers high power
density and can be scaled up to higher power. Despite inherent soft-switching for the DAB
converter, the interleaved Boost converter suffers from hard switching, plus a large output
filter is required to secure low THD.
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grid (Port-3) while the interleaved boost converter interfaces EV (Port-1) and PV (Port-2).
Apart from a simple and compact design, the modulation technique used does not require
complex control or optimization. Furthermore, the proposed architecture offers high power
density and can be scaled up to higher power. Despite inherent soft-switching for the DAB
converter, the interleaved Boost converter suffers from hard switching, plus a large output
filter is required to secure low THD.

A three-port integrated topology interfacing PV, EV, and the electricity grid has been
presented in [86]. As shown in Figure 16, the proposed topology includes an A-DC bidi-
rectional full-bridge converter interfacing with the electricity grid, a DC-DC bidirectional
half-bridge converter on the EV side, and a DC-DC unidirectional half-bridge converter
at the PV port. The V2G support, low THD, simple structure, high power density, and
unity power factor are the benefits delivered by this topology. However, hard switch-
ing and the absence of isolation are its main drawbacks, which cannot be ignored in EV
charging systems.

6. Future Research

The EV charging system faces challenges when PV-based EV chargers are integrated
into the grid. EV batteries are usually used to decrease the problems associated with the PV
variable nature and electricity grid faults, which result in unwanted charging or discharging
of EV batteries. This can shorten the lifespan of EV batteries. Therefore, aside from adopting
a proper integrated or non-integrated topology in EV charging stations, there is an essential
requirement for a reliable, effective, and uncomplicated controller capable of meeting EV
user requirements, supporting the four-quadrant operation of the EV charger for G2V/V2G,
mitigating grid current harmonics, supporting the electricity grid with reactive power,
dealing with the intermittent nature of renewables, and charging the EVs from RES with
seamless transitions between operating modes. Various control algorithms with their pros
and cons have been proposed in the literature, such as model predictive control (MPC),
heuristic optimizations, fuzzy logic control (FLC), and particle swarm optimization (PSO).
A comparison study representing the associated control methods could provide a better
direction for future research.

7. Conclusions

PV-EV charging systems, including PV stand-alone (off-grid) and PV-grid (on-grid)
infrastructures, have been discussed in this paper. Although the off-grid infrastructure
involves fewer power stages, its on-grid counterpart is preferred to ensure a consistent elec-
tricity supply for charging EVs during insufficient solar PV power periods. Adopted power
converters for on-grid infrastructures were divided into non-integrated and integrated
topologies. Non-integrated topologies require at least three power converters, namely,
PV-interfaced, grid-interfaced, and EV-interfaced converters, whereas one single converter
is interfaced with PV, grid, and EV in integrated topologies. Soft-switching, isolation, low
input and output current/voltage ripple, high efficiency, and high power density are key
requirements for the converters used in EV charging systems. Bidirectional power flow is
needed for the EV- and grid-interfaced converters to increase grid stability during peak
load hours.
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