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Digital design of continuous API 
manufacturing offers a path to 
reduce the quantity of material 

consumed during process 
development

Aim: Develop an integrated mechanistic filtration and washing model and 
accompanying optimization workflow to minimize impurities in the isolated filter cake. 

Materials and methods

Expt ID PE or 
V

Crystallization 
Solvent

Wash Solvent Isolation Pressure 
(mbar)

Wash Solvent cake 
volume

Number of 
Washes

1 PE Ethyl Acetate Cyclohexane 100 2 3
2 PE Diglyme-Water Heptane 600 2 3
3 PE Ethyl Acetate Heptane 600 2 2
4 PE Ethyl Acetate Heptane 100 4 2
5 V Diglyme-Water Cyclohexane 100 4 2
6* PE Diglyme-Water Cyclohexane 350 3 3
7* V Diglyme-Water Cyclohexane 350 3 3
8 V Diglyme-Water Heptane 100 4 3
9* V Diglyme-Water Cyclohexane 350 3 3

Related impurities: 2-chlorobenzoic acid   2-3-dimethyl-N-phenylaniline  Benzoic acid    Copper (II) acetate
Filtration: 50mL dose stopped to dryland

Equipment/simulation tools Purpose
Biotage VacMaster Manual filtration and washing unit
Mastersizer 3000 laser diffraction Particle size analyzer of the feed and isolated solid
HPLC - Composition of filtrate removed during filtration and washing stages

- Solid composition of the isolated cake
COSMOTherm Solubility simulation
gPROMS FormulatedProducts Filtration and washing process modelling 

1) Experimental 
data 

2) Models
development

Parameter estimation:
- Cake resistance, α
- Cake porosity, ɛ
- Compressibility index, n

3) Optimal model
Design 
exploration

Model 
validation

4) Optimal isolation 
conditions

PE = experiments used for parameter estimation
V = experiments used for model validation
• = experiment replicas Model development

-Filtration model (stage 1) outcome to feed washing model
-Washing modelled with diffusion – dispersion mechanism(3)

-No particle dissolution or growth

- Filtration simulated as in stage 1, integrated with washing
- Washing modelled with displacement mechanism

-No changes in solid phase are considered (no particle dissolution 
or growth)

-Carman – Kozeny equation(1) to simulate cake resistance
-Darcy’s law(2) filtration to simulate filtrate flow rate

-Filtration stopped at dryland

Filtration model (batch 
pressure filter) 

1

Integrated filtration and 
washing model (continuous 

pressure filter) 
2

Washing model (MSMPR 
crystallizer)3

Filtration:

𝛼𝛼𝑎𝑎𝑎𝑎 =
180 1 − 𝜀𝜀
𝜌𝜌𝑠𝑠𝑥𝑥𝑠𝑠𝑠𝑠2 𝜀𝜀3

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =

𝐴𝐴2 ∆𝑃𝑃
𝜇𝜇 𝛼𝛼𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 + 𝐴𝐴𝑅𝑅𝑚𝑚

Displacement 
washing:

Diffusion dispersion 
washing:

𝑊𝑊𝑟𝑟 =
𝑉𝑉𝑤𝑤
𝑉𝑉𝑣𝑣

= 𝑢𝑢𝑠𝑠𝑡𝑡
𝐿𝐿𝜀𝜀𝑎𝑎𝑎𝑎

Washing:

𝑐𝑐𝑗𝑗,𝑒𝑒 = ൝
𝑐𝑐𝑗𝑗,𝑖𝑖 if 𝑊𝑊𝑟𝑟 < 1
𝑐𝑐𝑗𝑗,𝑤𝑤 if 𝑊𝑊𝑟𝑟 ≥ 1 𝐷𝐷𝐿𝐿

𝑑𝑑2𝑐𝑐
𝑑𝑑𝑥𝑥2 −

𝑢𝑢𝑠𝑠
𝜀𝜀𝑎𝑎𝑎𝑎

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

Factor Definition Unit Factor Definition Unit

ε Cake porosity - c Dry cake mass per unit volume of filtrate kg m-3

Vs Volume of solids m3 V Filtrate volume removed m3

Vcake Total volume of cake m3 𝑊𝑊𝑟𝑟 Wash ratio m3 m-3

αav Average specific cake 
resistance

m kg-1 Vw Volume of wash m3

ρs Density of solids kg m-3 Vv Volume of voids m3

xsv Volume equivalent diameter m us Superficial velocity of wash m s-1

t Time s L Cake height m

A Filter area m2 𝑐𝑐_(𝑗𝑗,𝑖𝑖) 
, 

𝑐𝑐_(𝑗𝑗,𝑒𝑒)

Solute concentration initial, at the exit of 
the filter cake

-

ΔP Pressure drop along the filter 
axis 

kg m-1s-2 𝑐𝑐_(𝑗𝑗,𝑤𝑤) Inlet wash solvent concentration -

µ Filtrate viscosity kg m-1s-1 DL Axial dispersion coefficient m2 s-1

Results
Parameter estimation

Crystallization 
Solvent Wash Solvent

Cake 
Porosity 

(empirical 
value 0.44)

Simulated
Medium 

Resistance (1/m)

Compressibility 
Index, n

Diglyme-water Heptane 0.694 1.31x108 0.833
Diglyme-water Cyclohexane 0.5258 1.31x107 0

Ethyl acetate Heptane 0.4804 1.6x109 1.312
Ethyl acetate Cyclohexane 0.476 1.46x109 0

• Pharmaceutical cakes are generally low-moderately compressible (n<1). (4) 

• Cake and filtration estimated parameters show good fit with the porosity.
• Cyclohexane cases show n=0 due to not enough data for PE. 
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Expt 6

Model validation: filtration model

• Simulated Darcy’s plots accurate in reproducing the experimental filtration flow rate evolution.
• Less accuracy for experiment 6: errors in manually collecting the experimental data.

Solvent mass left 
filtration (kg)

Solvent mass 
left wash 1 (kg)

MFA 
concentration 
wash 1 (kg/kg)

CBA 
concentration 
wash 1 (kg/kg)

Experimental data
3.73E-03 9.56E-04 1.21E-03 2.48E-03

Displacement model
2.06E-03 1.63E-03 1.47E-04 1.33E-04

Diffusion dispersion model
N/A 4.65E-04 1.11E-03 1.00E-03

Model validation: washing models   (Exp 3)

WASHING DISPLACEMENT MODEL:
• Accurate filtration end point simulated.
• Not able to predict the liquid composition due to lack of diffusion dilution 

mechanisms.
WASHING DIFFUSION DISPERSION MODEL: 
• Better accuracy in simulating the concentration of solute species 

removed during washing.
• Not able to predict residual solvent mass due to semi-batch operation 

and holdup specifications used.

(i)

(ii)

Design space exploration

• The more wash solvent you 
use, the better is the purity 
achieved.

• No meaningful impurity 
improvement with >20mL (3 
equivalent cake volumes) of 
wash solvent used.

• Multiple washes do have an 
effect on the impurity 
concentration. 

Effect of multiple 
washes (each 17mL):
(i) 2 washes
(ii) 3 washes

• Developed a mechanistic model-based workflow for the optimization of an integrated filtration and washing model.
• Good match achieved between the estimated and experimental cake and filtration parameters.
• The pressure filter model is not able to predict the composition of filtrate removed well enough due to the displacement washing mechanism; better prediction achieved with diffusion-

dispersion mechanisms, so diffusion-dispersion model used for design space exploration to identify which washing conditions reduce the final cake impurity concentration. 
• Strong correlation between wash solvent volume used and number of washes and purity achieved.

Summary & Conclusions
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Kinnarinen, T., Häkkinen, A., Ekberg, B., Kallas, J., 2012. Sep. Sci. and Technol., 47, 1102-1112. (4) Tiller, F., M., Kwon, J., H., 1998. AIChE J., 2159. 

Context: Transitioning pharmaceutical manufacturing from batch to 
continuous provides opportunity to improve sustainability.

3. 1D Population Balance Model Predictions

4. 2D Population Balance Model

Acknowledgement

o 2D Population Balance Modelling (PBM) offers several advantages to 1D PBMs

o Ability to model two different growth kinetics for the axes, which allows for

better predictions for needle or plate-like crystals

o Can account for crystal shape evolution during the crystallization process

o Aim of this work is to develop and validate a 2D PBM model for an API with a

plate-like crystal morphology

6. Conclusions

o 1D PBM model was developed for the antisolvent crystallization of anthranilic acid

and ethanol-water. Lab-scale experimental data was used to validate the model

o The growth kinetics were estimated, and the predicted concentration profile shows

a good fit with experimental data.

o The circular equivalent diameter however is significantly underestimated even

after several iterations.

o This may be due to the 1D PBM limitations, therefore a 2D PBM model was

developed with the 1D kinetic predictions as a starting point for the major axis

growth kinetic parameters

2. Process Workflow

o This work shows the workflow for the development of a 2D PBM model for the

anti-solvent crystallization of anthranilic acid, which as a plate-like morphology

o The 1D PBM crystallizer model shows good agreement with concentration

profile, however it does have poor particle size predictions

o This challenge is addressed by changing the model to a 2D PBM, which allows

for the specification of 2 growth kinetics, one for each axis.

o The next step from here is to validate the growth kinetics for the minor axis and

optimise the antisolvent crystallization process

5. Parameter Estimation
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1. Introduction

o The 2D PBM predictions showed

good agreement for the

concentration profile data, which

is similar to that seen with the 1D

PBM

o More importantly, the predictions

for the major axis growth kinetics

showed better agreement with

experimental data

o The next step would now be to

validate the minor axis growth

kinetics and optimise the

crystallization process

o The 2D PBM was developed specifically to predict growth kinetics on the major

and minor axes.

o Data required to validate the particle size is more detailed than that for the 1D

model

o Would require particle size distribution for the major & minor axis and aspect

ratio as opposed to a single circular equivalent diameter (laser diffraction)

o Workflow summarises the choice of PBM you would use based on the

experimental data you have available. In general:

o Start with a 1D PBM model

o If predictions for particle size are poor and the right dataset is available, move

onto a 2D PBM model
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