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We investigate numerically a one-dimensional Bose-Einstein Condensate illuminated by off-
resonant laser light which is retroreflected by a single feedback mirror. Studying the ground states
of the system, we find density structures which are self-trapped via the optomechanical action of
the diffracted light. We show that these structures are stable and exhibit Newtonian dynamics. We
propose that these results allow continuous, non-destructive monitoring of condensate dynamics via
the optical intensity and may offer new opportunities for optical control and transport of coherent

matter via gradients in optical phase alone.

I. INTRODUCTION

Self-organized patterns and structures that arise due
to a combination of optical nonlinearity and diffraction
have been predicted and observed in a variety of me-
dia [1-10] including specifically atomic vapours [1-6, 11—
13]. In recent times, there has been significant interest
in self-organisation phenomena involving cold and ultra-
cold atomic gases e.g. cold atoms or a Bose-Einstein
Condensate (BECs) interacting with one or more modes
of an optical cavity [14-19], which have resulted in a wide
range of new nonlinear and quantum phenomena e.g. col-
lective atomic recoil lasing (CARL) [14, 20], Dicke super-
radiance [21] and supersolid formation [22-24]. In these
systems, the source of optical nonlinearity is optomechan-
ical i.e. the centre-of-mass motion of the atoms under
the mechanical action of light, specifically optical dipole
forces. Optomechanical self-structuring of a cold thermal
gas has been studied experimentally and theoretically in
systems of counterpropagating beams in [25, 26] and, as
is modelled here, in a single mirror feedback (SMF) con-
figuration in [27, 28], with diffraction of light providing
spatial coupling between different parts of the BEC. The
concept of optomechanical self-structuring was extended
theoretically from the case of a thermal gas to a BEC
in [29]. It was shown that a significant difference with
the behaviour in a classical, thermal gas, was due to the
presence of “quantum pressure” i.e. the dispersive nature
of the BEC wavefunction, which acts to damp out den-
sity modulations or spatial structure in the BEC. Recent
work has shown that in addition to global patterns, the
system can display a spatially localised structures termed
“droplets” or “quantum droplets” both in the SMF con-
figuration [30, 31] and in a ring-cavity setup [32]. These
droplets are self-bound optomechanical structures con-
sisting of interacting light and matter. They display some
similar characteristics to quantum droplets in other sys-
tems e.g. dipolar BECs [33] but are also similar in some
respects to other types of spatially-localised structures
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e.g. spatial solitons [34]. In this paper we study the dy-
namical behaviour of these optomechanical droplets in
1D in a configuration involving a single feedback mirror,
as in [30, 31].

1II. MODEL
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FIG. 1. Schematic diagram of the single mirror feedback
(SMF) configuration.

Here we model the optomechanical behaviour of a BEC
present within a SMF configuration as is shown diagra-
matically in Fig. 1. We take a similar approach to [29]
to model the dilute, non-interacting BEC where we use
a Schrodinger equation which describes the evolution of
the BEC wavefunction, ¥(z,t), as:
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where we consider a potential energy, V', to be given by:
ho 5 9

V(xat):7(|F| +|B(l‘,t>| )7 (2)

and where m is the atomic mass, § = w —w, where w and

w, are the optical field frequency and atomic transition
resonance frequency respectively, s = |F|* + |B(z,t)|°
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is the saturation parameter due to the forward and
backwards fields, which are given by |F, B \2 = Ili e
with Ir p the intensity of the forward (F') or backward
(B) beam, I,y is the saturation intensity on resonance,
A= 2*1:5 and T is the decay rate of the atomic transition.
It has been assumed that |A| > 1 and that consequently
s < 1 so that the atoms remain in their ground state.
In addition, longitudinal grating effects due to interfer-
ence between the counter-propagating optical fields on
the transverse pattern formation process are neglected.

In order to describe the optical field evolution we as-
sume that the gas is sufficiently thin that diffraction
can be neglected, so that the forward field transmitted
through the cloud is

Fiyr = /Do exp (—ixon(z,1)) 3)

where pg = |F(z = 0)|? is the scaled pump intensity
incident on the atoms, yo = 2”—2 is the susceptibility of the
cloud, by is the optical thickness of the cloud at resonance
and n(z,t) = |¥(x,t)|? is the local density of the BEC.
We consider that the total density is conserved and as
such the assumption of a preserved number of atoms is
made.

To complete the feedback loop, calculation of the back-
ward field, B at the atomic cloud is required. As the field
propagates a distance 2d from the cloud to the mirror and
back, optical diffraction plays a crucial role by converting
phase modulations to amplitude modulations and conse-
quently optical dipole forces. The relation between the
Fourier components of the forward and backward fields
at the cloud is

Blg) = VRE (g)e "% (4)

where R is the mirror reflectivity, ¢ is the transverse
wavenumber, kg = % and it has been assumed q < kg.
It has also been assumed that the propagation time of the
light between the BEC and mirror is sufficiently small as
to be neglected.

Eq. (1), (3) and (4) can be solved self-consistently to
describe the mutual interaction of the moving atoms and
the optical fields. Numerical integration of these equa-
tions is performed to obtain the spatiotemporal dynam-
ics of the BEC within the SMF setup. Transformation
to imaginary time ,7 = —it, is also performed here and
the same equations numerically intergrated with an inital
Gaussian density distribution to obtain the ground state
solutions.

IIT. OPTOMECHANICAL PATTERNS AND
DROPLETS

A. Optomechanical Patterns

The existence of optomechanical patterns in a dilute
BEC illuminated by an optical field retro-reflected by a

SFM was first predicted in [29] using a 1D model. These
patterns form as a result of a self-structuring instabil-
ity in which a spatially homogeneous optical field and
BEC density become unstable, resulting in the sponta-
neous formation of periodic modulations in both the op-
tical intensity and BEC density. The physical origin of
the instability is the Talbot effect, which converts phase
modulation in the optical field produced by BEC density
fluctuations to intensity modulations and consequently
optical dipole forces which increase density modulation.
An example of this pattern formation is shown in Fig. 2.
The system develops a modulated optical intensity and
modulated BEC density with a spatial period of A, = i—’:,
where

e = \/ﬁ- (5)

. hq? .
From ¢q. we define w, = z"fn analogous to the recoil fre-

quency associated with momentum changes of fq..

The reason for this instability is that BEC density
modulations (which correspond to refractive index mod-
ulations of the BEC) with spatial frequency g¢., produce
phase modulations in F}, which are in turn converted into
intensity modulations of B (see Eq.(4)) [35]. These in-
tensity modulations produce dipole forces, which in turn
reinforce density modulations, resulting in positive feed-
back and instability of the initial, homogeneous state.
More recently, 2D patterns and droplet formation in a
SFM configuration was studied in [30, 31], including the
effects of direct atom-atom interactions via the BEC scat-
tering length.
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FIG. 2. Example of pattern formation/self-structuring of a
BEC in a single feedback mirror configuration. Parameters
used here are: po = 1.9 x 107°, A = —100, R = 0.99, w,./T' =
9.88 x 1077 and by = 20.



B. Optomechanical Droplets
1. Stable droplets

In section IIT A, the initial conditions correspond to a
spatially homogeneous optical intensity and BEC density
which exhibits a self-structuring instability and evolves
into a quasi-stationary state which consists of a strongly
modulated pattern with some temporal variation in the
amplitude of the pattern maxima and minima. How-
ever, simulations involving imaginary time propagation
demonstrate that the ground states of this system are lo-
calised structures of BEC density and corresponding op-
tical intensity, as originally predicted in [30] where a non-
linearity due to a combination of optomechanical forces
and atomic collisions was investigated. Here we concen-
trate on a regime in which effects due to atomic collisions
(or atomic scattering length) are negligible and struc-
tures are produced due to optomechanical forces alone.
The temporal evolution of these stable optomechanical
droplets is shown in Figs. 3 and 4 for both red-detuning
(A < 0) and blue-detuning (A > 0) respectively. It can
be seen that for red-detuning, the maxima of the BEC
density and optical intensity coincide due to the poten-
tial energy of the system being minimised when atoms sit
at positions of maximum optical intensity. In contrast,
for blue-detuning the maximum of the BEC density coin-
cides with a minimum of optical intensity. The properties
of the stable ground state droplet are determined in full
by the optical parameters of the system such as detuning,
pump intensity and mirror-distance, d (via q.).
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FIG. 3. Evolution of a stable optomechanical droplet for red-
detuning. Parameters used are: po = 2.0 x 1072, A = —800,
R =10.99, w,./T =5.69 x 10~% and by = 20.

To observe a fully static droplet in time-dependent sim-
ulations using Eq. (1), (3) and (4) requires the BEC
density profile to exactly match the ground state pro-
file. However, the system continues to support droplet
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FIG. 4. Evolution of a stable optomechanical droplet for blue-
detuning. Parameters used are: pp = 2.0 X 107%, A = 800,
R =10.99, w,./T =5.69 x 10™% and by = 20.

structures with an initial BEC density profile which is
perturbed from the ground state. With such initial condi-
tions the system exhibits now dynamical behaviour, with
density oscillations as the self-imposed trapping poten-
tial from the optical intensity continually adjusts to the
changing BEC density profile. This behaviour is shown
in Fig. 5.
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FIG. 5. Evolution of a perturbed blue-detuned droplet, where
the initial BEC density has been produced from a Gaussian
distribution whose width is adjusted slightly from the ideal
value. Parameters used are: po = 5.0 x 1079, A = 800,
R =10.99, w./T =5.69 x 10™% and by = 20.

For both the self-structuring patterned state and per-
turbed droplet profiles we can observe temporal varia-
tion consistent with a system which is a superposition
of eigenstates rather than in the ground state. In this
conservative system the patterned state is a asymptotic
state, however with the inclusion of damping and friction,



the system would be expected to relax to the droplet state
as it is a ground state of the system, as demonstrated by
the imaginary time simulations.

Quantum pressure in the BEC plays an important role
in stabilising the droplet against compression, and is ca-
pable of producing a stable droplet even in the absence
of other dispersive effects such as finite temperature or
repulsive collisions (positive scattering length). It can
be shown that the presence of quantum pressure is re-
quired to produce a minimised ground state energy with
non-zero droplet width [36, 37]. For narrow droplets an
additional stabilising factor is diffraction, which will pro-
duce a lower limit to the width of the optical potential
associated with the droplet.

2. Single and multiple peak droplet structures
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FIG. 6. Droplet width, o, and peak density \\I/|2 against
pump intensity, po, shown in panels (a) and (b) respectively.
Results were calculated through imaginary time integration
with parameters; R = 0.99, w,/T" = 1.01 x 1077, A = 800 and
bo = 20.

Fig. 6 shows the dependence of the width and ampli-
tude of the BEC density on pump intensity, pg, when a
stable droplet forms. It can be seen that as the pump
intensity is increased, the droplet narrows and the peak
of the BEC density increases. It can also be seen that
the width of the droplet has a power-law dependence on
Po, scaling as o, o< pp~ /4 | in agreement with analyt-
ical predictions of the droplet width in the limit where
X|¥|? < 1 [36, 37).

When the pump is red-detuned (A < 0), then in ad-
dition to the single-peaked droplet structures shown pre-
viously, structures consisting of multiple density peaks
also arise. Examples of these multi-peak droplet struc-
tures are shown in Fig. 7 (b) & (c) which show double and
triple peaked droplet structures respectively. Complex,
multiple droplet structures were observed in [30, 31] but
their physical origin is different as their existence was re-
ported only for non-zero BEC scattering length, whereas
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FIG. 7. Example ground state droplet density profiles for red
detuning, calculated from imaginary time integration. Panels
(a), (b) and (c) show the density profiles of single, dual and
triple peak droplet structures respectively. Parameters used
are; R = 0.99, w,/T" = 4.05 x 10777 bo = 20 and A = —800
with pump intensity, po, for (a), (b) and (c) being 3.714 x
107°, 2.395 x 107% and 9.398 x 10™° respectively. Panel (b)
shows an off centre structural position, consistent with the
translational invariance of the system.

here we exclusively consider the case for no internal in-
teractions.

These multiple droplet structures have not been ob-
served in numerical simulations for cases involving blue-
detuning (A > 0). The reason for the different be-
haviour of the system when red and blue detuned is due
to the combined effect of refraction in the narrow BEC
and diffraction between the BEC and mirror, which pro-
duces the corresponding optical intensity profile and con-
sequent (dipole) potential energy profile. The BEC acts
like a narrow refractive element, which affects the optical
phase as described by Eq. 3. Its refractive effect is depen-
dent on yo and consequently on A. The resulting diffrac-
tion pattern after propagation of the transmitted optical
field from the BEC to the mirror and back will also there-
fore depend on A. The most significant difference is in
relative amplitudes of the off-axis maxima and minima of
the diffraction pattern. As shown in Fig. 3(b) and 4(b),
for (A > 0) the pattern consists of a central minimum,
with a series of damped oscillations off-centre which are
characteristic of Fresnel diffraction. For (A < 0) the pat-
tern consists of a central maximum, with damped oscil-
lations off-centre. As pump intensity pq is increased, the
width of the BEC decreases as shown in Fig. 6, which
causes the amplitude of the off-centre diffractive min-
ima/maxima to increase relative to the central one [35].

In the case of red-detuning these off-centre maxima
grow to become the global maxima of the optical inten-
sity profile. This results in an energetically favourable
configuration when the BEC occupies the off-centre lo-
cations of peak optical intensity instead of occupying the
central local maximum. Fig. 8(a) shows the case for a
global central peak where a single peak droplet is the
ground state configuration. Fig. 8(b) shows that, for an
increased pump amplitude relative to Fig. 8(a), the off-
centre maxima are now the global maxima. As pump
amplitude is increased further a transition to the two



peak droplet ground state is observed at which point the
optical intensity profile takes the form shown in Fig. 8(c).
For blue detuning the off-centre minima do not grow to
become global minima of the intensity profile for any of
the parameters examined here.
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FIG. 8. Ground state optical field intensity profiles for red
detuned system with pump amplitudes po = 3.07 x 1072,
po = 1.43 x 1078 and po = 1.53 x 107® for (a), (b) and
(c) respectively. Calculated from imaginary time integration.
Additional parameters used are; R = 0.99, w,/T" = 4.05 X
1077, A = —800 and by = 20.

3. Dynamic droplets

It has been established that the BEC and optical fields
can form a stationary, stable droplet. We now consider
the dynamics of moving droplets, with first the addition
of a uniform velocity. Providing our initial BEC wave-
function with an additional linear phase gradient will im-
print this initial velocity on the droplet.

U(z,t = 0) = \/ng(x) emvos/h (6)
Such a phase gradient is given in Eq. 6, where ng(z) is
the initial density profile of the BEC (the ground state
droplet profile), vy is the uniform BEC velocity and m is
the mass of each atom in the BEC.

Figs. 9 and 10 show the evolution of the BEC and op-
tical fields for both red and blue detuning respectively.
These droplets continue to be stable like their static coun-
terparts, which were shown in Figs. 3 and 4. In both cases

the optical field distribution also moves with uniform ve-
locity, tracking the uniformly moving BEC. In the case
of red detuning, Fig. 9, this results in an optical intensity
maximum which always coincides with the BEC, whereas
in the case of blue detuning, Fig. 10, an optical intensity
minimum always coincides with the BEC.

Dynamics of similar self-trapping BEC structures have
been studied for a ring-cavity configuration [32] where a
friction like force was found to damp out motion of the
density structures. This friction arises in the ring-cavity
case from the finite response time of the cavity which
allows optical intensity profiles to lag behind changes in
BEC density. Although mirror loss is included within our
model the finite time for propagation of light through the
system is neglected resulting in the undamped motion
seen here.
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FIG. 9. Uniformly moving droplet for red-detuning (A <
0). Parameters used are identical to those of Fig. 3 with the
addition of vo = figc/12m.
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FIG. 10. Uniformly moving droplet for blue-detuning (A >
0). Parameters used are identical those of Fig. 4 with the
addition of vo = hgc/12m.



Similarly, we can investigate the stability and be-
haviour of these droplets under uniform acceleration. An
acceleration can be achieved with the modification of the
potential energy given in Eq. 7 where a is the constant
acceleration.

Vix,t) = %5 (|F|2 + |B(x,t)|2) + (ma)x (7)

Figs. 11 and 12 show the evolution of the BEC and optical
fields for the cases of red and blue detuning respectively.
It can be seen that the BEC now accelerates uniformly,
and as for the case of uniform motion, the optical field
follows this motion with the BEC density coinciding with
an optical intensity maximum or minimum for red and
blue detuning respectively.
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FIG. 11. Uniformly accelerating droplet for red-detuning
(A < 0). Parameters used are identical those of Fig. 3 with
the addition of @ = —4.0 x 1072 (hq.T'/12m).
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FIG. 12. Uniformly accelerating droplet for blue-detuning
(A > 0). Parameters used are identical those of Fig. 4 with
the addition of @ = —4.0 x 107%(hq.T'/12m).

Figs. 9 and 10 for uniform motion and Figs. 11 and 12 for
uniform acceleration show that in both cases, it is possi-
ble to infer the distribution of BEC density continuously
via observation of the optical intensity distribution.

It should be noted that although only the motion of
single droplet structures has been presented here, the
stable multi-peak droplet structures display similar be-
haviour under motion, maintaining their structure as
they propagate and providing a consistent optical inten-
sity profile dependant on detuning.

C. Controlling Droplet Motion Using Mirror Tilt

In the previous section we demonstrated how imposing
a uniform velocity or acceleration on the BEC could pro-
duce an optomechanical droplet with a BEC density dis-
tribution and optical field distribution which moved with
uniform velocity or uniform acceleration respectively. We
now investigate what happens when the mirror in the
SEFM configuration is not perfectly aligned, so that the
normal to the mirror and the pump propagation direc-
tion are misaligned by a small angle, «. This mirror
misalignment or tilt is shown schematically in Fig. 13.

Mirror

FIG. 13. Schematic diagram of the single mirror feedback
(SFM) configuration with a mirror misalignment/tilt, labelled
a.

In order to simulate the effect of this mirror tilt, we
follow the method used in [38], where before calculation
of the backward field, B, using Eq. 4, the forward field
is shifted by an amount Az = 2dtan (o). The effect of
a mirror tilt can also be understood as creating a phase
gradient in the reflected light. An example of evolution of
an initially stationary droplet (vg = a = 0) with Az >0
is shown in Fig. 14. It can be seen that the effect of the
mirror tilt is to produce a constant acceleration on the
droplet.

Fig. 15 shows the dependence of the droplet accel-
eration on the mirror tilt induced shift, Axz. It can be
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FIG. 14. Evolution of BEC density and optical field intensity
when a mirror tilt is present. Parameters used are: pg =
1.9 x 1072, A =800, R = 0.99, w,/T' =5.69 x 1078, by = 20
and Ax/A. = 1.465 x 1073,

seen that for the smallest mirror tilts, the acceleration
produced is approximately proportional to Az and
consequently . However, as the mirror tilt is increased,
there is a region where the acceleration produced changes
direction. Similar behaviour was observed for dissipative
solitons [34] however a significant difference between the
behaviour shown here and that in [34] is that here the
droplets exhibit Newtonian dynamics whereas in [34] the
solitons exhibited Aristotelian dynamics.

Dynamics of dissipative solitons in phase gradients are
known from many such dissipative systems. However, the
dynamics are Aristotelian in nature as overdamped mo-
tion exhibits a constant velocity in the presence of a con-
stant gradient [34, 39, 40]. The acceleration consistent
with Newtonian motion in the BEC model considered
here is a novel feature of conservative optomechanical
systems, in comparison to dissipative solitons relying on
internal degrees of freedom [34, 39, 40] or optomechan-
ical structures and solitons in the presence of velocity
damping [41, 42].

Laser solitons in which the medium dynamics is
infinitely fast should also exhibit Newtonian dynamics
[9, 43] but we are not aware of any experimental obser-
vation, as typical lasers do not operate in this regime. In
contrast, observation in a BEC system, similar to that
discussed here, would appear to be very feasible.

In addition to inducing acceleration of the droplet, the
application of a finite mirror tilt also decreases the long
term stability of the droplet, with stability of the struc-

tures preserved for only very small misalignments.
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FIG. 15. Dependence of droplet acceleration, a4, on mirror
tilt-induced shift, Az/A.. Parameters used are: po = 1.9 X
107°, A =200, R = 0.99, w,/T = 1.01 x 10™7 and by = 20.

IV. CONCLUSIONS

We have investigated the dynamical behaviour of op-
tomechanical droplets, self-bound structures which arise
due to the interaction between light and a BEC in the
presence of a feedback mirror, using a 1D model. We
have shown the existence of multi-peak droplet profiles
from optical interactions alone, when atomic collisions
are negligible. We have also shown that by inducing BEC
motion with constant velocity and constant acceleration,
the optomechanical droplets remain stable and also move
with the same velocity and acceleration respectively, with
the BEC density maximum being tracked by the optical
field pattern in each case. As the pump is far-detuned
from resonance, absorption and therefore heating of the
BEC due to scattering of pump photons is minimised.
Consequently these results may offer new possibilities
for methods allowing continuous measurement of BEC
dynamics. Finally, we demonstrated that by introduc-
ing a mirror misalignment/tilt it was possible to induce
a constant droplet acceleration. This may offer new op-
portunities for optical control and transport of coherent
matter via phase gradients rather than amplitude gradi-
ents. Possibilities for future development of the results
presented here include investigation of the dynamics of
droplets in 2D and the inclusion of atomic collisions i.e.
non-zero scattering length in the BEC, as [30] showed
that the inclusion of non-zero scattering length leads to
other more complex structures e.g. droplet chains and
lattices, in addition to the single and novel multi-peak
droplets considered here.
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