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Abstract
This paper studies the tail behaviours of the stationary distribution of multiple-
regime threshold AR models with multiple heavy-tailed innovations. It is shown
that the marginal tail probability has the same order as that of the innovation with
the heaviest tail. Other new results in this paper include the geometric ergodicity
and the tail dependence of TAR models with multiple heavy-tailed innovations.
Key words. Heavy-tailed distribution, tail probability, threshold AR model, er-
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1 Introduction
Tong’s (1978) threshold autoregressive (TAR) model and its many extensions are
one standard class of nonlinear time series models. The probabilistic structures
of these models were studied by many authors. Examples are Chan, Petruccelli,
Tong, and Woolford (1985), Chan and Tong (1985), Tong (1990), Chen and Tsay
(1991), Brockwell, Liu, and Tweedie (1992), Liu and Susko (1992), An and Huang
(1996), An and Chen (1997), Liu, Li, and Li (1997), Ling (1999), Hansen (2011),
and Tsay and Chen (2019) among others. The impact of TAR model in the fields of
econometrics and economics was reviewed by Hansen (2011). In contrast, however,
it seems that the tail behaviours of the stationary distributions of these threshold
time series models have not been discussed in literature.

Tail properties of stationary time series models are very important in ap-
plications, particularly in financial risk analysis, see Embrechts, Kluppelberg, and
Mikosch (1997). Heavy tail is a well known empirical feature in financial time se-
ries. Good evidences show that Gaussian or light-tailed innovations can not describe
the tail behaviors of these time series, see Mandelbrot (1963b), Mandelbrot (1963a),
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Fama (2013) and Adler, Feldaman, and Taqqu (1997). More and more people are
interested in time series models with heavy-tailed innovations. The tail behaviours
of linear models and bilinear models were studied by Resnick (1997) and Davis and
Resnick (1996), respectively. The tail of ARCH and GARCH models were studied
by DeHaan, Resnick, Rootzen, and De Vries (1989), Mikosch and Starica (2000),
Borkovec and Kluppelberg (2001) and Mittnik, Paolella, and Rachev (2002). Pan,
Yu, and Pang (2004) discussed the relation between the marginal tail probability
and the innovation’s tail probability for three important types of time series mod-
els: infinite order moving averages, bilinear time series and solutions of stochastic
difference equations. Jin and An (2005) discussed the tail probability of nonpara-
metric AR models with an additive heavy-tailed innovation and Pan and Wu (2005)
studied the tail probability of nonparametric AR models with varying conditional
variances. Asimita, Gerrarda, Houb, and Peng (2016) used tail dependence to ex-
amine financial extreme co-movements. Heavy-tailed time series has been extended
to multivariate cases in Xie (2017).

This paper considers the tail behaviours of the general form of TAR model:

xt =
s

∑
i=1
{ϕi0 +

p

∑
j=1

ϕi jxt−1 + εit}I(ri−1 < xt−d ≤ ri), (1)

where (ε1t , · · · ,εst)
′ is independent of {xh,h < t}, I(·) is the indicator function, d is

a positive integer and −∞ = r0 < r1 < · · · < rs = ∞. The following assumption is
used:

Assumption A. For each i = 1, · · · ,s, εit has a continuous positive
probability density function over the real line R1, and

lim
x→∞

P(|εit |> x)
x−αiL(x)

= 1

for some αi > 0, where L(x)> 0 is a slowly varying function.

We say that εit has a heavy-tailed distribution if Assumption A holds (some-
times it is said that εit follows power-law, and some references called them heavy-
tailed only when αi < 2) and αi is called its tail index. Under Assumption A, model
(1.1) is driven by multiple heavy-tailed innovations and hence it is a generalization
of the traditional TAR in Chan et al. (1985) and Chen and Tsay (1991). These in-
novations may be different in different regimes. They may not be independent and
may not have finite means or finite variances. Since this model is new in nature, we
first discuss its geometric ergodicity in Section 2, which guarantees the existence

Tail behaviours of multiple-regime threshold AR models with heavy-tailed innovations

2



and uniqueness of a stationary distribution for this model. Furthermore, we inves-
tigate the tail behaviours of the stationary distribution of model (1.1) in sections 3
and 4 for the following two cases:

Case 1. {(ε1t , · · · ,εst)
′} is an iid sequence of s-dimensional random

vectors, and

lim
x→∞

P(|εit |> x, |ε jt |> x)
min{P(|εit |> x),P(|ε jt |> x)}

= 0, 1≤ i < j ≤ s. (2)

Case 2. ε1t = · · · = εst = εt , and {εt} is an iid sequence of random
variables.

In case 2, the innovations are the same for all regimes of xt−d . But in case 1, differ-
ent regimes could have different innovations. When ε1t , · · · ,εst are independent-in-
tail, particularly independent, random variables, (2) is satisfied (see Asimita et al.
(2016)).

Because the conditions for TAR(1) can be much weaker than those for
TAR(p) (p > 1), we establish the results for TAR(1) and TAR(p) separately in dif-
ferent sections. For case 1, it is shown that the marginal tail probability has the
same order as that of the innovation with the heaviest tail. Section 5 gives an upper
bound for the tail conditional probability of model (1.1).

2 Geometric ergodicity of multiple-regime TAR mod-
els with heavy-tailed innovations

When p = 1, d = 1, s = 2, and ε1t = ε2t = εt , model (1.1) was studied by Petruccelli
and Woolford (1984). They showed that {xt} is geometrically ergodic iff

ϕ11 < 1,ϕ21 < 1,ϕ11ϕ21 < 1.

This result was extended to the case with p = 1, d > 1,s = 2 by Chen and Tsay
(1991) and it was showed that {xt} is geometrically ergodic iff

ϕ11 < 1,ϕ21 < 1,ϕ11ϕ21 < 1, and ϕ
s(d)
11 ϕ

t(d)
21 < 1,ϕ t(d)

11 ϕ
s(d)
21 < 1,

where s(d) and t(d) are nonnegative integers depending on d, and s(d) and t(d) are
odd and even numbers, respectively. When p = 1, d = 1, model (1.1) was studied
by Chan et al. (1985). Cline and Pu (1999) discussed the stability of nonlinear
AR(1) with delay under very general conditions. But their results can not be applied
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to model (1.1). In this section, we provide a simple sufficient condition for the
geometric ergodicity of model (1.1) with p = 1 and p > 1 respectively.

We first introduce the following two lemmas.

Lemma 2.1. Assume that {Xt} is an aperiodic φ - irreducible Markov chain, and
let g be a nonnegative measurable function. Then {Xt} is geometrically ergodic if
there exist a small set C and constants λ1 > 0, λ2 > 0, 0 < ρ < 1 such that

(i) E{g(Xt)|Xt−1 = x} ≤ ρg(x)−λ1, for any x /∈C;
(ii) E{g(Xt)|Xt−1 = x} ≤ λ2, for any x ∈C.

This lemma is called drift-criteria for the geometric ergodicity of a Markov
chain, which comes from Tweedie (1975) (see also Nummelin (1984)). Before
given another lemma, we needs the following notations:

Xt = (xt , · · · ,xt−m+1)
′,

ϕ(xt−1, · · · ,xt−m) =
s

∑
j=1

(ϕ j0 +ϕ j1xt−1 + · · ·+ϕ jpxt−p)I(r j−1 < xt−d ≤ r j),

Φ(Xt−1) = (ϕ(xt−1, · · · ,xt−m),xt−1, · · · ,xt−m+1),

where m = max(p,d). We rewrite model (1.1) in a vector form as follows:

Xt = Φ(Xt−1)+ ε(xt−d)e, (3)

where ε(xt−d)=∑
s
i=1 I(ri−1 < xt−d ≤ ri)εit and e=(1,0, ...,0)′ is the m−dimensional

unit vector.

Lemma 2.2. Let µm be the Lebesgue measure on Rm. Under Assumption A, {Xt}
defined by (3) is an aperiodic µm- irreducible Markov chain, and every bounded
compact set with positive Lebesgue measure is a small set.

Proof. We only give the proof of this lemma for the case with p = 1 and d = 2.
When p > 1 or d > 2, the proof is similar. Firstly, take A = [a3,b3)× [a2,b2).
Denote z = (z1,z0)

′. Then, 2-step transition probability is

P2(z,A) = P{X3 ∈ A
∣∣X1 = z}

= P{x3 ∈ [a3,b3),x2 ∈ [a2,b2)
∣∣x1 = z1,x0 = z0}.

Suppose that, for example, z0 ∈ (r j0−1,r j0 ],z1 ∈ (r j1−1,r j1 ]. Then, by the definition
of the model, we have

x2 = ϕ j0,0 +ϕ j0,1x1 + ε j0,2 = ϕ j0,0 +ϕ j0,1z1 + ε j0,2
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x3 = ϕ j1,0 +ϕ j1,1x2 + ε j1,3

= ϕ j1,0 +ϕ j1,1ϕ j0,0 +ϕ j1,1ϕ j0,1z1 +ϕ j1,1ε j0,2 + ε j1,3.

Since ε j0,2 and ε j1,3 are independent, it follows that

P2(z,A) = P{ϕ j1,0 +ϕ j1,1ϕ j0,0 +ϕ j1,1ϕ j0,1z1 +ϕ j1,1ε j0,2 + ε j1,3 ∈ [a3,b3),

ϕ j0,0 +ϕ j0,1z1 + ε j0,2 ∈ [a2,b2)}

≥
∫ b2−ϕ j0,0−ϕ j0,1z1

a2−ϕ j0,0−ϕ j0,1z1

P{a3−ϕ j1,0−ϕ j1,1ϕ j0,0−ϕ j1,1ϕ j0,1z1−ϕ j1,1u

< ε j1,3 ≤ b3−ϕ j1,0−ϕ j1,1ϕ j0,0−ϕ j1,1ϕ j0,1z1−ϕ j1,1u} f j0(u)du

=
∫ b2

a2

∫ b3

a3

f j0(u−ϕ j0,0−ϕ j0,1z1)

f j1(v−ϕ j1,0−ϕ j1,1ϕ j0,0−ϕ j1,1ϕ j0,1z1−ϕ j1,1u)dudv
> 0,

where f j(u) denotes the density function of ε jt and it is positive everywhere. In
the same way, we can get a similar but more complicated inequality for P3(z,A).
By Assumption A, for any z ∈ R2 and any Borel measurable subset A of R2 with
µ2(A)> 0, we have

P2(z,A)> 0, and P3(z,A)> 0.

Thus, the Markov chain {Xt} is µ2- irreducible and aperiodic.
Finally, let A be an arbitrary bounded compact set with µ2(A)> 0. Then, by

Assumption A,

ν = inf
(u,v)∈A,z∈A

f j0(u−ϕ j0,0−ϕ j0,1z1)

· f j1(v−ϕ j1,0−ϕ j1,1ϕ j0,0−ϕ j1,1ϕ j0,1z1−ϕ j1,1u)> 0.

Therefore, for any Borel subset B⊂A with µ2(B)> 0, infz∈A P2(z,B)≥ νµ2(B)> 0.
This implies that A is a small set. This completes the proof.

Now we are ready to state the following theorem for TAR(1) with general
delay d.

Theorem 2.1. Suppose Assumption A holds and max{|ϕ11|, |ϕs1|}< 1. Then
(a) the TAR(1) process {xt}, defined by (1.1) with p=1, is geometrically

ergodic, and hence it has a unique stationary distribution and is strong mixing with
a geometric rate,

(b) the density function of the stationary distribution of {xt} is positive ev-
erywhere in R1.
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Proof. (a) Let ρ =max{|ϕ11|, |ϕs1|}, c0 =max1≤ j≤s |ϕ j0|, and c1 =max1≤ j≤s |ϕ j1|.
By the definition of ϕ(·), it follows that

|ϕ(xt−1, · · · ,xt−d)|

≤ c0 +
s

∑
j=1
|ϕ j1||xt−1|I(r j−1 < xt−d ≤ r j)

≤ c0 +ρ|xt−1|[I(−∞ < xt−d ≤ r1)+ I(xt−d > rs−1)]

+
s−1

∑
j=2
|ϕ j1||xt−1|I(r j−1 < xt−d ≤ r j). (4)

Let r = max1≤r≤s−1 |r j|. Then ∑
s−1
j=2 I(r j−1 < xt−d ≤ r j) ≤ I(−r < xt−d ≤ r). It is

straightforward to show that when −r < xt−d < r,

|xt−d+1| = |
s

∑
j=1

(ϕ j0 +ϕ j1xt−d)I(r j−1 < xt−2d+1 < r j)+ ε(xt−2d+1)|

≤ c0 + c1|xt−d|+ |ε(xt−2d+1)| ≤ c0 + c1r+ |ε(xt−2d+1)|
· · ·

|xt−d+k| ≤ Mk +
k

∑
i=1

ck−i
1 |ε(xt−2d+i)|,

· · ·

|xt−1| ≤ Md−1 +
d−1

∑
i=1

cd−1−i
1 |ε(xt−2d+i)|, (5)

where Mk = c0 + c0c1 + c0c2
1 + · · ·+ c0ck

1 + ck
1r. Let c = c0 + c1Md−1. Then, com-

bining (4) and (5), we have

|ϕ(xt−1, · · · ,xt−d)| ≤ ρ|xt−1|+ c+
d−1

∑
i=1

cd−i
1 |ε(xt−2d+i)|, (6)

and

|xt | ≤ |φ(xt−1, · · · ,xt−d)|+ |ε(xt−d)|

≤ ρ|xt−1|+ c+
d

∑
i=1

cd−i
1 |ε(xt−2d+i)|. (7)

Define a norm by

‖X‖v = |x1|+ρ|x2|+ · · ·+ρ
d−1|xd| f or X = (x1, · · · ,xd)

′ ∈ Rd.

By (6) and (7), it follows that

‖Φ(Xt−1)‖v = |ϕ(xt−1, · · · ,xt−d)|+ρ|xt−1|+ · · ·+ρ
d−1|xt−d+1|
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≤ ρ|xt−1|+ c+
d

∑
i=1

cd−i
1 |ε(xt−2d+i)|

+ρ
2|xt−2|+ρc+ · · ·+ρ

d

∑
i=1

cd−i
1 |ε(xt−2d+i−1)|

+ · · ·+ρ
d|xt−d|+ρ

d−1c+ρ
d−1

d

∑
i=1

cd−i
1 |ε(xt−2d+i−d+1)|

= ρ‖Xt−1‖v + cρ +Ht−d, (8)

where cρ = c+ cρ + · · ·+ cρd−1, and

Ht−d =
d−1

∑
k=0

ρ
k

d−1

∑
i=0

cd−i−1
1 |ε(xt−2d+i−k+1)|

=
d−1

∑
k=0

d−1

∑
h=0

ρ
kch

1|ε(xt−d−(k+h))|

=
2d−2

∑
m=0

(
∑

0≤h,k≤d−1,k+h=m
ρ

kch
1
)
|ε(xt−d−m)|

=
2d−1

∑
l=1

al|ε(xt−d−l+1)|,

where al =∑0≤h,k≤d−1,k+h=l−1 ρkch
1. Furthermore, since |ε(xt−d−l+1)| ≤∑

s
j=1 |ε j,t−l+1|,

it follows that

Ht−d ≤ Rt−d =:
2d−1

∑
l=1

al

s

∑
j=1
|ε j,t−l+1|. (9)

Firstly, by Lemma 2.2, {Xt} is an aperiodic and irreducible Markov chain.
Pick a constant δ ∈ (0,min{1,α1, · · · ,αs}). By Assumption A, it follows that

E|ε(xt−d)|δ = E|
s

∑
j=1

ε jtI(r j−1 < xt−d < r j)|δ

≤
s

∑
j=1

E|ε jt |δ =: Γδ < ∞,

and

ERδ
t−d ≤

2d−1

∑
l=1

aδ
l
( s

∑
j=1

E|ε j,t−l+1|
)δ
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≤
2d−1

∑
l=1

aδ
l

s

∑
j=1

E|ε j,t−l+1|δ =: Λδ < ∞.

Now we choose the test function as

g(X) = 1+‖X‖δ
v , for X = (x1, · · · ,xd) ∈ Rd.

From (3), we have

E{g(Xt)|Xt−1 = X} = E{1+‖Φ(X)+ eε(xd)‖δ
v }

≤ 1+E[‖Φ(X)‖v +‖eε(xd)‖v]
δ

≤ 1+E{‖Φ(X)‖δ
v +(|ε(xd)|‖e‖v)

δ}
≤ ρ

δ‖X‖δ
v +ERδ

t−d + cδ
ρ +E|ε(xd)|δ +1

≤ ρ
δ‖X‖δ

v +Λδ + cδ
ρ +Γδ +1.

Taking λ and M such that 0 < ρδ < λ < 1 and

M >
Λδ + cδ

ρ +Γδ +1

λ −ρδ
,

we get, when ‖X‖v > M,

E{g(Xt)|Xt−1 = X} ≤ λg(X)−λ1,

where λ1 = (λ − ρδ )Mδ −Λδ − cδ
ρ −Γδ − 1. Denote C = {X : ‖X‖v ≤ M}. By

Lemma 2.2, C is a small set. For any X ∈C,

E{g(Xt)|Xt−1 = X} ≤ λ2

where λ2 = ρδ Mδ +Λδ + cδ
ρ +Γδ + 1. Then, from Lemma 2.1, {Xt} is geomet-

rically ergodic. This implies that {xt} is geometrically ergodic, and hence it has a
unique stationary distribution and satisfies the strong mixing condition: the mixing
coefficient

α(l) = sup
k

sup
A∈F k

−∞,B∈F ∞
k+l

|P(A∩B)−P(A)P(B)|

goes to zero exponentially fast as l→ ∞, where F k
−∞ and F ∞

k+l are the σ -algebras
generated by {xt}k

t=−∞ and {xt}∞
t=k+l respectively.

(b) Let F(x) be the stationary distribution function of xt , and denote the den-
sity function of εit by fi, i = 1, · · · ,s. Note that, in model (1.1), these innovations’
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densities are assumed to be continuous and positive over the whole line R1, and
(ε1t , · · · ,εst) is independent of {xs,s < t}. Then

F(x) = P{xt ≤ x}

=
s

∑
j=1

P{xt ≤ x
∣∣r j−1 < xt−d ≤ r j}P{r j−1 < xt−d ≤ r j}

=
s

∑
j=1

[F(r j)−F(r j−1)]
∫ +∞

−∞

P{xt ≤ x
∣∣r j−1 < xt−d ≤ r j,xt−1 = y}dF(y)

=
s

∑
j=1

[F(r j)−F(r j−1)]
∫ +∞

−∞

P{ε jt ≤ x− [ϕ j0 +ϕ j1y]}dF(y)

=
s

∑
j=1

[F(r j)−F(r j−1)]
∫ +∞

−∞

[
∫ x

−∞

f j(z− [ϕi0 +ϕ j1y])dz]dF(y)

=
∫ x

−∞

{ s

∑
j=1

[F(r j)−F(r j−1)]
∫ +∞

−∞

f j(z− [ϕ j0 +ϕ j1y])dF(y)
}

dz,

where the last step is guaranteed by the Fubini Theorem. Hence, F(x) has a density
function

f (x) =
s

∑
j=1

[F(r j)−F(r j−1)]
∫ +∞

−∞

f j(x− [ϕ j0 +ϕ j1y])dF(y).

Furthermore, since f j > 0, j = 1, · · · ,s, f (x) is strictly positive everywhere. This
completes the proof.

Remark 2.1. Comparing the above theorem with those in Petruccelli and Woolford
(1984), Chan et al. (1985) and Chen and Tsay (1991), one can see that

max{|ϕ11|, |ϕs1|}< 1

is a stronger condition. But it keeps an important feature, as in Chan et al (1985),
that the coefficients in middle regimes are irrelevant to the ergodicity of model (1.1)
with p= 1. It is difficult to get a necessary and sufficient condition for the ergodicity
of model (1.1) with p = 1. This remains as an open problem for the heavy-tailed
case.

For the geometric ergodicity of model (1.1) with p > 1, we have the follow-
ing theorem.
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Theorem 2.2. Under Assumption A and the condition

λ := max
1≤i≤s

p

∑
j=1
|ϕi j|< 1, (10)

(1) model (1.1) is geometrically ergodic. Hence, it has a unique station-
ary distribution with positive density function in R1 and is strong mixing with a
geometric rate.

(2) the density function of the stationary distribution of model (1.1) is posi-
tive everywhere in R1.

Proof. (1) Under Assumption A, {Xt} is an aperiodic irreducible Markov chain. If
condition (10) holds, then

|φ(xt−1, · · · ,xt−m)| = |
s

∑
i=1

I(ri−1 < xt−d ≤ ri)[ϕi0 +
p

∑
j=1

φi jxt− j]|

≤ λ max{|xt−1|, · · · , |xt−p|}+ c0

≤ λ max{|xt−1|, · · · , |xt−m|}+ c0

where m = max{p,d} and c0 = max |ϕi0|. For 0 < λ < 1, we can take positive
constants b1 > b2 > · · ·> bm > 0 and 0 < ρ < 1 such that

λ <
b1λ

bi
< ρ, i = 2, · · · ,m,

bi+1

bi
< ρ, i = 1, · · · , i = 1, · · · ,m−1.

Consider a norm defined by

‖X‖b = max{b1|x1|, · · · ,bm|xm|} for X = (x1, · · · ,xm)
′ ∈ Rm.

Then

‖Φ(Xt−1)‖b = max{b1ϕ(xt−1, · · · ,xt−m),b2|xt−1|, · · · ,bm|xt−m+1|}
≤ max{b1λ max{|xt−1|, · · · , |xt−m|}+b1c0,b2|xt−1|, · · · ,bm|xt−m+1|}

≤ max{max{b1λ |xt−1|,
b1λ

b2
b2|xt−2|, · · · ,

b1λ

bm
bm|xt−m|},

b2λ

b1
b1|xt−1|, · · · ,

bm

bm−1
bm−1|xt−m+1|}+b1c0

≤ max{ρ max{b1|xt−1|,b2|xt−2|, · · · ,bm|xt−m|},ρb1|xt−1|,
· · · ,ρbm−1|xt−m+1|}+b1c0

≤ ρ max{b1|xt−1|, · · · ,bm|xt−m|}+b1c0
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= ρ‖Xt−1‖b +Cρ .

Therefore, taking the test function g(X)= 1+‖X‖δ
b , where 0< δ <min{1,α1, ...,αs},

we can easily prove the geometric ergodicity of {Xt} by the drift criteria.
(2) Note that

F(x) = P{xt ≤ x}

=
s

∑
j=1

[F(r j)−F(r j−1)]

·
∫ +∞

−∞

· · ·
∫ +∞

−∞

[
∫ x

−∞

f j(z− [ϕi0 +ϕ j1y1 + · · ·+ϕ jpyp])dz]dF(y1, ...,yp)

=
∫ x

−∞

{ s

∑
j=1

[F(r j)−F(r j−1)]

·
∫ +∞

−∞

· · ·
∫ +∞

−∞

f j(z− [ϕ j0 +ϕ j1y1 + · · ·+ϕ jpyp])dF(y1, ...,yp)
}

dz.

Because f j is positive everywhere, F has a density function which is positive ev-
erywhere. This completes the proof.

3 Tail behaviours of stationary distribution for mul-
tiple TAR(1) with heavy-tailed innovations

This section gives the tail shape of the marginal stationary distribution of a TAR(1)
model. We first give the following notations:

al =
min(d−1,l−1)

∑
m=max(0,l−d)

ρ
l−1−mcm

1 ,

c1 = max
1≤ j≤s

|ϕ j1|,

ρ = max{|ϕ11|, |ϕs1|}< 1,
β = min(α1, · · · ,αs),

N = the number of the elements in {i : 1≤ i≤ s,αi = β},
τ = min

1≤ j≤s
P{r j−1 < xt−d ≤ r j}> 0.

Our main result is as follows.

Tail behaviours of multiple-regime threshold AR models with heavy-tailed innovations
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Theorem 3.1. Suppose Assumption A holds and max{|ϕ11|, |ϕs1|}< 1. Then

K1 ≤ liminf
x→∞

P{|xt |> x}
x−β L(x)

≤ limsup
x→∞

P{|xt |> x}
x−β L(x)

≤ K2

for Case 1 with K1 = τN(1+ c1)
−β ,

K2 =


N2β

1−ρβ
, if d = 1,

N(2β+∑
2d−1
l=2 aβ

l )

1−ρβ
, if d > 1;

for Case 2 with K1 = (1+ c1)
−β ,

K2 =


2β

1−ρβ
, if d = 1,

2β+∑
2d−1
l=2 aβ

l
1−ρβ

, if d > 1.

To prove this theorem, we need the following two lemmas. They have gen-
eral and independent interest for heavy-tailed random variables.

Lemma 3.1. Under Assumptions A and condition (2), it follows that

P{
s

∑
i=1
|εit |> x} ∼

s

∑
i=1

P{|εit |> x} ∼ Nx−β L(x),

as x→ ∞.

Proof. Let G be a distribution function such that

1−G(x)∼ x−β L(x), as x→ ∞.

Then,

P{|εkt |> x}
1−G(x)

→ ck =

{
0, if αk > β ,

1, if αk = β ,
k = 1, · · · ,s,

as x→ ∞. Take a sequence of positive constant {un} such that

n[1−G(un)]→ 1, as n→ ∞, (11)

and define
νn,k(A) = nP{u−1

n |εkt | ∈ A} for A ∈B(0,∞],
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where B(0,∞] denotes the collection of all Borel measurable subsets of (0,+∞].
Note that when A = (x,+∞), x > 0,

νn,k(A) = nP{|εkt | ≥ unx}→ ckx−β ,

as n→ ∞. We have
νn,k

v→ νk (12)

in (0,∞] for any fixed k = 1, · · · ,s as n→ ∞, where

νk(dx) = ckβx−β−1dx,x > 0, (13)

and v→ denotes vague convergence of Radon measures on the space (0,+∞] (see
Resnick (1987) or Kallenberg (1983)).

Under condition (2), for {Ak ∈B(0,∞],k = 1, · · · ,s} such that there are at
least two sets, say Ai and A j,i 6= j, with the form (x,+∞] and x > 0, we obtain

nP{u−1
n (|ε1t |, · · · , |εst |) ∈ A1×·· ·×As}

≤ nP{u−1
n (|εit , |ε jt |) ∈ Ai×A j}

= nP{|εit |> unx, |ε jt |> unx}

=
P{|εit |> unx, |ε jt |> unx}

1−G(un)
(1+o(1))

≤
P{|εit |> unx, |ε jt |> unx}

min{P{|εit |> unx},P{|ε jt |> unx}}
· 1−G(unx)

1−G(un)
(1+o(1))

→ 0 · x−β = 0,

as n→ ∞. Define

θn(A) = nP{u−1
n (|ε1t |, · · · , |εst |) ∈ A} for A ∈B([0,∞]s \{0}).

We have
θn

v→ θ (14)

on [0,+∞]s \{0}, where θ is a measure on [0,+∞]s \{0} such that

θ{yek : y > x}= νk{y : y > x}= ckx−β , x > 0,

and θ{∩s
k=1{yek : y 6= 0}c}= 0, where ek ∈ Rs is the basis element with kth compo-

nent equal to one and the rest zero. It is easy to see that for any A∈B([0,∞]s\{0}),

θ(A) =
s

∑
k=1

νk{y ∈ [0,+∞] : yek ∈ A}. (15)

Denote

Y(s) = (|ε1t |, · · · , |εst |)′,
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1(s) = (1, · · · ,1)′,

B = {(y1, · · · ,ys)
′ ∈ [0,+∞]s \{0} :

s

∑
k=1

yk > 1}.

Then,

P(∑s
k=1 |εkt |> un)

1−G(un)
=nP(1(s)

′
Y(s) > un)(1+o(1))

=nP(u−1
n Y(s) ∈ B)(1+o(1)) = θn(B)(1+o(1))→ θ(B),

as n→ ∞. But,

θ(B) =
s

∑
k=1

νk{y ∈ [0,+∞] : yek ∈ B}

=
s

∑
k=1

νk{y ∈ [0,+∞] : y > 1}

=
s

∑
k=1

∫
{y>1}

νk(dy) =
s

∑
k=1

ck = N.

It is easily seen that the above equality holds when un is replaced by x as x→ ∞.
Therefore,

P{
s

∑
i=1
|εit |> x} ∼ Nx−β L(x).

It is obvious that∑s
i=1 P{|εit |> x} ∼ Nx−β L(x). This completes the proof.

Lemma 3.2. For a slowly varying function L(x), it follows that

L(ax+b)
L(x)

→ 1,

as x→ ∞ for any constants a > 0 and b ∈ R1.

Proof. The result comes directly from the Karamata representative (see Embrechts
et al. (1997)) of a slowly varying function:

L(x) = c(x)exp{
∫ x

z

δ (u)
u

du}, x≥ z,

for some z > 0, where c and δ are measurable functions satisfying c(x)→ c0 ∈
(0,+∞) and δ (x)→ 0 as x→ ∞. This completes the proof.
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Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1
Using the notation as in the proof of Theorem 2.1, by (2.6) and (2.7), it

follows that

‖Xt‖v = ‖Φ(Xt−1)+ ε(xt−d)e‖v

≤ ‖Φ(Xt−1)‖v +‖ε(xt−d)e‖v

≤ ρ‖Xt−1‖v + cρ +Rt−d + |ε(xt−d)|

≤ ρ
n‖Xt−n‖v + cρ

1−ρn

1−ρ
+

n−1

∑
k=0

ρ
k[|ε(xt−d−k)|+Rt−d−k]

≤
cρ

1−ρ
+

∞

∑
k=0

ρ
k[|ε(xt−d−k)|+Rt−d−k] (ρn‖Xt−n‖v −→ 0)

≤
cρ

1−ρ
+

∞

∑
k=0

ρ
k
ηt,k, (16)

where

Rt−d =:
2d−1

∑
l=1

al

s

∑
j=1
|ε j,t−l+1|,

and

ηt,k = 2
s

∑
j=1
|ε j,t−k|+

2d−1

∑
l=2

al

s

∑
j=1
|ε j,t−k−l+1|,

because of a1 = 1, and ∑
b
a = 0 as a > b; For case 2, noting that ε(xt−d) = εt in this

case, we have

‖Xt‖v ≤ ρ‖Xt−1‖v + cρ +Ht + |εt |, (17)

where

Ht =
2d−1

∑
l=1

al|εt−l+1|.

Similarly to (16), we get

‖Xt‖v ≤
cρ

1−ρ
+

∞

∑
k=0

ρ
k
η
′
t,k,
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where

η
′
t,k = 2|εt−k|+

2d−1

∑
l=2

al|εt−k−l+1|.

Hence, for case 1,

P{‖Xt‖v > x} ≤ P{
cρ

1−ρ
+

∞

∑
k=0

ρ
k|ηt,k|> x}; (18)

and for case 2,

P{‖Xt‖v > x} ≤ P{
cρ

1−ρ
+

∞

∑
k=0

ρ
k|η

′
t,k|> x}; (19)

Therefore, for case 1, since (ε1,t1 , · · · ,εs,t1)
′ is independent of (ε1,t2 , · · · ,εs,t2)

′ when
t1 6= t2, by lemmas 3.1 and 3.2, we have

P{ηt,k > x} ∼ P{2
s

∑
j=1
|ε j,t−k|> x)+

2d−1

∑
l=2

P{al

s

∑
j=1
|ε j,t−k−l+1|> x}

∼
s

∑
j=1

P{2|ε j,t−k|> x)+
2d−1

∑
l=2

s

∑
j=1

P{al|ε j,t−k−l+1|> x}

∼ Nx−β L(x)[2β L(x/2)
L(x)

+
2d−1

∑
l=2

aβ

l
L(x/al)

L(x)
]

∼ Nx−β L(x)[2β +
2d−1

∑
l=2

aβ

l ]

as x→ ∞; For case 2,

P{η
′
t,k > x} ∼ P{2|εt−k|> x)+P{

2d−1

∑
l=2

al|εt−k−l+1|> x}

∼ P{|εt−k|>
x
2
)+

2d−1

∑
l=2

P{|εt−k−l+1|>
x
al
}

∼ x−β 2β L(
x
2
)+

2d−1

∑
l=2

(
x
al
)−β L(

x
al
)

∼ x−β L(x)[2β +
2d−1

∑
l=2

aβ

l ]

as x→ ∞.
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So, for case 1, by lemmas 3.1-3.2, Assumption A, and Cline’s result (Cline
(1983)),

limsup
x→∞

P{‖Xt‖v > x}
x−β L(x)

≤ lim
x→∞

P{∑∞
k=0 ρkηt,k > x− Cρ

1−ρ
}

P{ηt,k > x− Cρ

1−ρ
}

· lim
x→∞

N(2β +∑
2d−1
l=2 aβ

l )(x−
cρ

1−ρ
)−β L(x− cρ

1−ρ
)

x−β L(x)

= N(2β +
2d−1

∑
l=2

aβ

l )
∞

∑
k=0

ρ
kβ =

N(2β +∑
2d−1
l=2 aβ

l )

1−ρβ
;

For case 2,

limsup
x→∞

P{‖Xt‖v > x}
x−β L(x)

≤
2β +∑

2d−1
l=2 aβ

l

1−ρβ
.

Since |xt | ≤ ‖Xt‖v, it follows that

limsup
x→∞

P{|xt |> x}
x−β L(x)

≤ limsup
x→∞

P{‖Xt‖v > x}
x−β L(x)

≤ K2.

On the other hand, note that

|xt | ≥ |ε(xt−d)|− |ϕ(xt−1,xt−2, ...,xt−d)| ≥ |ε(xt−d)|− c1|xt−1|− c0.

Hence

P{|xt |> x} ≥ P{|ε(xt−d)|− c1|xt−1|v− c0 > x}
≥ P{|ε(xt−d)|− c1|xt−1|− c0 > x, |xt−1| ≤ x}
≥ P{|ε(xt−d)|> (1+ c1)x+ c0, |xt−1| ≤ x}

Therefore, for case 1,

P{|xt |> x} =
s

∑
j=1

P{|ε jt |> (1+ c1)x+ c0,r j−1 < xt−d ≤ r j, |xt−1| ≤ x}

=
s

∑
j=1

P{|ε jt |> (1+ c1)x+ c0}P{r j−1 < xt−d ≤ r j, |xt−1| ≤ x}

≥ min
1≤ j≤s

P{r j−1 < xt−d ≤ r j, |xt−1| ≤ x}
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s

∑
j=1

P{|ε jt |> (1+ c1)x+ c0}. (20)

Thus, by lemmas 3.1-3.2, we have, for case 1,

liminf
x→∞

P{|xt |> x}
x−β L(x)

≥ lim
x→∞

∑
s
j=1 P{|ε jt |> (1+ c1)x+ c0}

x−β L(x)
lim
x→∞

min
1≤ j≤s

P{r j−1 < xt−d ≤ r j, |xt−1|< x}

= N(1+ c1)
−β · min

1≤ j≤s
P{r j−1 < xt−d ≤ r j}

= τN · (1+ c1)
−β ,

where τ = min1≤ j≤s P{r j−1 < xt−d ≤ r j}= min1≤ j≤s
∫ r j

r j−1
f (u)du > 0 by Theorem

2.1; For case 2, noticing that ε(xt−d) = εt , we have

P{|xt |> x} =
s

∑
j=1

P{|εt |> (1+ c1)x+ c0, |xt−1| ≤ x}

=
s

∑
j=1

P{|εt |> (1+ c1)x+ c0}P{|xt−1| ≤ x}, (21)

and then

liminf
x→∞

P{|xt |> x}
x−β L(x)

≥ lim
x→∞

P{|εt |> (1+ c1)x+ c0}
x−β L(x)

· lim
x→∞

P{|xt−1|< x}

= (1+ c1)
−β .

This completes the proof. �

Remark 3.1 Combining (22) and (3.7), we have

s

∑
j=1

P{|ε jt |> (1+ c1)x+ c0} min
1≤ j≤s

P{r j−1 < xt−d ≤ r j, |xt−1|< x}

≤ P{|xt |> x} ≤ P{
∞

∑
j=0

ρ
j|ηt, j|> x−

cρ

1−ρ
}.

This inequality shows that xt is light-tailed if {εt} are i.i.d. normal. So model (1.1)
turns light-tailed input into light-tailed output, heavy-tailed input into heavy-tailed
output. This feature is similar to that of linear process.
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Remark 3.2 Under the assumption of Theorem 2.1, the coefficients in middle
regimes in model (1.1) do not make any contribution to the existence of the sta-
tionary distribution. However, Theorem 3.1 shows that the innovations in these
regimes may play an important role to the tail index of the stationary distribution.
This is a new and interesting finding.

4 Tail behaviours of stationary distribution for mul-
tiple TAR(p) with heavy-tailed innovations

For the general order case, we can get similar results to the first-order case but in
stronger conditions on autoregressive coefficients.

Theorem 4.1. Suppose model (1.1) satisfies Assumption A and max1≤i≤s ∑
p
j=1 |ϕi j|<

1. Then, for case 1 and case 2, there exist two constants 0 < K1 < K2 < +∞ such
that the stationary distribution of TAR(p) satisfies

K1 ≤ liminf
x→∞

P{|xt |> x}
x−β L(x)

≤ limsup
x→∞

P{|xt |> x}
x−β L(x)

≤ K2.

Proof. By using the notations in the proof of Theorem 2.2, we have

‖Xt‖b = ‖Φ(Xt−1)+ ε(xt−d)e‖b

≤ ‖Φ(Xt−1)‖b + |εt |‖e‖b

≤ ρ‖Xt−1‖b +Cρ + |εt |Cu (Cu = ‖e‖b)

≤ ρ
n‖Xt−n‖b +Cρ

1−ρn

1−ρ
+Cu

n−1

∑
j=0

ρ
j|ε(xt−d− j|

≤
Cρ

1−ρ
+Cu

∞

∑
j=0

ρ
j|ε(xt−d− j)| (ρn‖Xt−n‖b −→ 0)

≤
Cρ

1−ρ
+Cu

∞

∑
j=0

ρ
j[

s

∑
i=1
|εi,t− j)|].

Then,

P{‖Xt‖b > x} ≤ P{
Cρ

1−ρ
+Cu

∞

∑
j=0

ρ
j[

s

∑
i=1
|εi,t− j)|]> x}

= P{
∞

∑
j=0

ρ
j[

s

∑
i=1
|εi,t− j)|]>

x− Cρ

1−ρ

cu
}. (22)

But |xt | ≤ b−1
1 ‖Xt‖b, and then P{|xt |> x} ≤ P{‖Xt‖b > b1x}.
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On the other hand, note that

|xt | ≥ |ε(xt−d)|− |ϕ(xt−1,xt−2, ...,xt−m)|

and

|ϕ(xt−1,xt−2, ...,xt−m)| ≤ b−1
1 ‖Φ(Xt−1)‖b ≤ b−1

1 ρ‖Xt−1‖b +b−1
1 Cρ .

Then, the result of Theorem 4.1 can be obtained by the same way as that in the
proof of Theorem 3.1.

Remark 4.1. From the proofs of Theorem 3.1 and Theorem 4.1, it can be seen
that xt is light-tailed if {εit} are normal. So model (1.1) turns light-tailed input
into light-tailed output, heavy-tailed input into heavy-tailed output. This feature is
similar to that of linear process.

5 The auto-tail-dependence of multiple TAR models
with heavy-tailed innovations

The tail conditional probability

P{|xt2 |> x
∣∣|xt1 |> x} for large x > 0

can describe the possibility that an extreme event will occur again at time t2 when
such an extreme event has already occurred at time t1. It is very useful in practice,
particularly in financial risk analysis, see Poon, Rockingger, and Tawn (2003). We
call this tail conditional probability the auto-tail-dependence, which is a measure of
possibility that an extreme event causes another extreme event in a time series. Pan
(2002) has discussed tail dependence of ARCH and heavy-tailed Bilinear models.
In this section, based on the main results in section 3 and section 4, we can get the
following upper bound of the tail conditional probability of model (1.1).

Theorem 5.1. Assume the conditions for TAR(1) in Theorem 3.1 and for AR(p)
in Theorem 4.1 are satisfied. Then, the following upper bound for the auto-tail-
dependence of {xt} defined by model (1.1) is true: for any two time points t1 < t2,

limsup
x→∞

P{|xt2 |> x | |xt1 |> x} ≤ 1− K1

K2
(23)

holds for TAR(1) and TAR(p), where K1 and K2 are defined as in Theorem 3.1 for
case 1 and case 2, and in Theorem 4.1, respectively.
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Proof. We give the proof for TAR(1) first. Note that, for t1 < t2,

P{|xt2 |> x, |xt1 |> x}= P{|xt2 |> x}−P{|xt2 |> x, |xt1 | ≤ x}.

Since

|xt2 | ≥ |ε(xt2−d)|− |ϕ(xt2−1,xt2−2, ...,xt2−d)| ≥ |ε(xt2−d)|− c1|xt2−1|− c0,

we have, for case 1,

P{|xt2 |> x, |xt1 | ≤ x}
≥ P{|ε(xt2−d|− c1|xt2−1|− c0 > x, |xt1 | ≤ x}
≥ P{|ε(xt2−d|− c1|xt2−1|− c0 > x, |xt2−1| ≤ x, |xt1 | ≤ x}
≥ P{|ε(xt2−d)|> (1+ c1)x+ c0, |xt2−1| ≤ x, |xt1 | ≤ x}

=
s

∑
j=1

P{|ε jt2 |> (1+ c1)x+ c0,r j−1 < xt2−d ≤ r j, |xt2−1| ≤ x, |xt1 | ≤ x}

=
s

∑
j=1

P{|ε jt2 |> (1+ c1)x+ c0}P{r j−1 < xt2−d ≤ r j, |xt2−1| ≤ x, |xt1 | ≤ x}

≥ min
1≤ j≤s

P{r j−1 < xt2−d ≤ r j, |xt2−1| ≤ x, |xt1 | ≤ x}
s

∑
j=1

P{|ε jt2 |> (1+ c1)x+ c0}.

Furthermore, by the stationarity of {xt}, it follows that

P{|xt2 |> x, |xt1 |> x}
P{|xt1 |> x}

≤ 1−
[∑

s
j=1 P{|ε jt2 |> (1+ c1)x+ c0}

P{|xt1 |> x}
· min

1≤ j≤s
P{r j−1 < xt2−d ≤ r j, |xt2−1| ≤ x, |xt1 | ≤ x}

]
.

But, by Lemma 3.1 and Theorem 3.1,

liminf
x→∞

∑
s
j=1 P{|ε jt2 |> (1+ c1)x+ c0}

P{|xt1 |> x}

≥ lim
x→∞

∑
s
j=1 P{|ε jt2 |> (1+ c1)x+ c0}

N[(1+ c1)x+ c0]−β L((1+ c1)x+ c0)

· lim
x→∞

N[(1+ c1)x+ c0]
−β L((1+ c1)x+ c0)

Nx−β L(x)
· liminf

x→∞

Nx−β L(x)
P{|xt1 |> x}
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≥ (1+ c1)
−β N[limsup

x→∞

P{|xt1 |> x}
x−β L(x)

]−1

≥ (1+ c1)
−β NK−1

2 =
K1

τK2
.

It follows that

limsup
x→∞

P{|xt2 |> x| |xt1 |> x}

= limsup
x→∞

P{|xt2 |> x, |xt1 |> x}
P{|xt1 |> x}

≤ 1− liminf
x→∞

∑
s
j=1 P{|ε jt2 |> (1+ c1)x+ c0}

P{|xt1 |> x}
· lim

x→∞
min

1≤ j≤s
P{r j−1 < xt2−d ≤ r j, |xt2−1|< x, |xt1 | ≤ x}

≤ 1− K1

K2
.

This completes the proof for case 1.
Now turn to the proof for case 2. For case 2,

P{|xt2 |> x, |xt1 | ≤ x}
≥ P{|εt2 |> (1+ c1)x+ c0, |xt2−1| ≤ x, |xt1 | ≤ x}

=
s

∑
j=1

P{|εt2 |> (1+ c1)x+ c0} ·P{|xt2−1| ≤ x, |xt1 | ≤ x}

Then

P{|xt2 |> x, |xt1 |> x}
P{|xt1 |> x}

≤ 1− P{|εt2 |> (1+ c1)x+ c0}
P{|xt1 |> x}

·P{|xt2−1| ≤ x, |xt1 | ≤ x}
]
.

But

liminf
x→∞

P{|εt2 |> (1+ c1)x+ c0}
P{|xt1 |> x}

≥ lim
x→∞

P{|εt2 |> (1+ c1)x+ c0}
[(1+ c1)x+ c0]−β L((1+ c1)x+ c0)

· lim
x→∞

[(1+ c1)x+ c0]
−β L((1+ c1)x+ c0)

x−β L(x)
· liminf

x→∞

x−β L(x)
P{|xt1 |> x}
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≥ (1+ c1)
−β K−1

2 =
K1

K2
.

Therefore

limsup
x→∞

P{|xt2 |> x| |xt1 |> x}

≤ 1− liminf
x→∞

P{|εt2 |> (1+ c1)x+ c0}
P{|xt1 |> x}

· lim
x→∞

P{|xt2−1| ≤ x, |xt1 | ≤ x} ≤ 1− K1

K2
.

Finally, for TAR(p) with general delay d, we can have, for case 1,

P{|xt2 |> x, |xt1 | ≤ x}
≥ min

1≤ j≤s
P{r j−1 < xt2−d ≤ r j, |xt2−1| ≤ x, · · · , |xt1+1| ≤ x, |xt1 | ≤ x}

·
s

∑
j=1

P{|ε jt2 |> (1+ c1 + ·+ cp)x+ c0};

for case 2,

P{|xt2 |> x, |xt1 | ≤ x} ≥ P{|xt2−1| ≤ x, · · · , |xt1+1| ≤ x, |xt1 | ≤ x}
·P{|εt2 |> (1+ c1 + ·+ cp)x+ c0},

where ci = max1≤ j≤s |ϕ ji|, i = 1, ...,s. Then, by the same way as above for TAR(1),
we obtain (5.1) for TAR(p).

6 Concluding remarks
Threshold AR models have been widely used in applications. However, their tail
behaviours have rarely been studied. This paper tries to fill in this gap. In this
paper, the tail probability and tail dependence of this type of model are studied.
There are important questions remaining open: How to estimate beta in Theorem
3.1 and Theorem 4.1? How sharp is the upper bound 1−K1/K2 in Theorem 5.1?
These questions are worthy of further research.
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