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ABSTRACT In this paper we demonstrate the application of Fully Convolutional Neural Network (FCN)
for Frame Synchronization (FS) in bursty single carrier transmissions, commonly used in wireless sensor
networks and Internet of Things (IoT) applications. Our approach shows greatly improved performance
compared to noncoherent correlation-based methods under carrier phase and frequency offsets, especially
for shorter preambles. Using a fully convolutional architecture allows the training of a deep filter, which
we believe is more suited to signal processing tasks than more commonly used deep learning architectures
with fully connected layers. In terms of deployment within a wider communications system, it could be
treated similarly to a typical signal processing filter, which means it can be deployed to inputs of arbitrary
length. Additionally, because the proposed model is composed only of convolutional layers, the entire
model benefits from the weight sharing property of convolutional filters, and results in a greatly reduced
memory footprint compared to that of similar models containing fully connected layers.

INDEX TERMS Deep learning, fully convolutional neural network, frame synchronization, Internet of
Things.

I. INTRODUCTION

MODERN modulation and coding schemes are nearing
the theoretical limit of what is achievable in Bit Error

Rate (BER) [1]. However there still exist significant over-
heads in our communication systems in terms of the added
redundancies and training symbols necessary for receivers to
function optimally. This introduces necessary, yet undesir-
able inefficiencies in overall throughput, transmitter power
and radio frequency spectrum usage. With more devices
being connected than ever before to the Internet of Things
(IoT), private 5G networks and wireless sensor networks,
it is becoming increasingly important to cut down on the
overhead that introduces these inefficiencies [2], [3].
Frame Synchronization (FS) [4] is a crucial step in recov-

ering packet data from wireless transmissions. Usually this
is accomplished by prepending a known preamble sequence
to the transmitted data symbols and forming a packet, which
the receiver can detect by correlating the known preamble
with the captured signal. In practice this correlation is gen-
erally implemented by a matched filter, and then the output
is compared against a threshold to determine whether the
preamble has been detected. Adding preamble symbols to

the data payload is an extra overhead and ideally we would
want to keep that as small as possible without sacrificing
throughput. Long preambles will greatly increase the prob-
ability of successfully detecting data packets, however this
comes at the cost of the transmitter expending more power
due to more bits having to be transmitted. Saving the trans-
mitter from emitting as little as 2 bytes in the preamble can
have significant power implications [5].
Machine Learning (ML), with Deep Learning (DL) in

particular, has shown a great deal of success in recent
years when applied to wireless communications problems
in the PHY layer [6], such as channel estimation [7],
Automatic Modulation Classification (AMC) [8], even
learned communication via autoencoder with captured over-
the-air data [9], [10], and many others. It is a technology that
is seeping into a great number of applications in this field.
However, not as much attention has been given to frame syn-
chronization using this technology, and as our results show,
there is much to be gained by applying DL techniques at
the very edge of the radio physical layer. Perhaps the addi-
tional cost of implementing a neural network instead of a
matched filter can now be justified, given the increasing
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demand for radio spectrum, and the fact that the hardware
used for computation is becoming more optimized for these
types of neural network models [11], [12].

A. RELATED WORK
ML-based frame synchronization in burst-mode communi-
cations has been previously investigated in [13], where the
problem is not tackled in a purely data driven approach,
but rather ML is used in a way that supports existing ana-
lytical methods. In this type of approach a pre-processing
stage takes place first, where useful synchronization metrics,
such as cross-correlation, are extracted. Then the extracted
features are used to train a neural network which cleans the
correlation output and reduces the packet detection error rate
of the overall system. This approach has a great advantage
of lower resource usage than comparable DL models, while
improving on classical correlation results, however because
it relies on empirical knowledge it is not end-to-end trainable
in the way a DNN (Deep Neural Network) could be.
Existing works on applying DL for FS typically treat it

as a classification problem, which seems like a very natural
fit for the data. A dataset for the FS problem will con-
tain an input waveform and a desired response – a single
peak at the time offset of the packet. This type of data
maps perfectly into DL classification techniques, such as
Convolutional Neural Networks (CNNs), which process an
input image or waveform, and, ideally, output a single peak
corresponding to the predicted class. Using DL for FS in this
way was proposed in [14], where the authors approached it
as a type of classification problem, and deployed a CNN to
predict the correct starting index of a packet in a captured
waveform of a fixed size, showing improved results under an
AWGN channel. One drawback of this approach is that, once
the network is trained, the input frame size must match the
frame sizes it was fed during training, it also assumes that
there will always be a single packet in a captured waveform.
Additionally, the authors in [14] did not consider carrier
phase offset in their experiments, which can cause signifi-
cant overfitting problems, as will be demonstrated later in
this paper.
Another example of DL being applied for FS was consid-

ered in [15], with a similar approach to [14], except the final
layer of the CNN was a single output regression rather than
a classification with as many outputs as the input waveform.
A drawback of using this type of CNN is that in order to
adapt to a changing communication protocol one will require
retraining an entirely new network – for example, if the size
of the payload according to the standard increased, requir-
ing the receiver to operate on longer waveform captures.
Additionally, because these models use fully connected lay-
ers, the network size scales proportionally to the input size,
which could result in very large/wide models and become
problematic when training on long input waveforms.
Recurrent Neural Networks (RNNs) are known to work

well with data sequences of variable length – this has been
explored in a wireless communications context in [16] using

a sequence-to-sequence model for simultaneous modulation
classification and demodulation of PSK (Phase Shift Keying)
modulated symbols. A clear drawback shown in this work
was that RNNs become increasingly difficult to train on raw
I/Q samples as the input size increases, even when using
cells like LSTM (Long short-term memory) that alleviate
this difficulty [17].
Input size variance is not a problem unique to the wireless

communications field; this is a big research problem in DL
for computer vision, and many other disciplines. Advanced
pooling methods, such as Spatial Pyramid Pooling (SPP)
have been introduced in [18] and applied in very popular
object segmentation models, such as R-CNN [19]. Pyramid
pooling works well for classification problems where the
number of outputs is set, and the input size is variable.
However, this is not the case for FS in wireless communi-
cations – typically the output produced by a filter matches
the number of samples it received. If we want to train a
network to act as a filter, the output of the model will have
to match the variable size of the input waveforms.

B. PROPOSED SOLUTION
In this paper, we propose that the FS problem be treated as a
filter design challenge, where by using DL, we train a Fully
Convolutional Neural Network (FCN) to act as a non-linear
deep filter that can be applied to inputs of arbitrary length.
In doing so, we can overcome the fixed size limitation of
typical CNN approaches, while still being enabled by DL
to train powerful non-linear models. We compare the FCN
performance to (i) the standard correlation approach, (ii) one
of the reference methods derived in [20], that improves upon
standard noncoherent correlation by adding some corrective
terms, and evaluate all three approaches for multiple pream-
ble lengths. We also compare the FCN to a more common
CNN architecture trained on the same dataset, and eval-
uate the generalization ability and complexity of the two
DL methods, with correlation as a baseline. A high level
overview of each approach can be seen in Figure 1.
The FCN approach shows improved detection rates over

the correlation based methods, when faced with random car-
rier phase and frequency offsets – this is especially true
for shorter preamble lengths. The proposed FCN method
also generalizes and consumes less memory than the CNN
approach, though it does not outperform it in every scenario.
The ability to generalize to longer inputs without having to
modify the architecture and re-train is a key advantage of
the FCN architecture.
While the reduction of the FS overhead is one of the main

concerns of this approach, we believe this architecture could
be applied to a variety of applications in its future itera-
tions. This architecture could be used for continuous AMC,
similarly to image segmentation in computer vision, or to
replace RNNs for learned matched filtering and demodula-
tion as shown in [16]. Moreover having a FCN at the front
of the receiver pipeline and processing every sample that
has been perturbed by the wireless channel could be very
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FIGURE 1. Overview of correlation-based and DNN-based frame synchronization models. a) The leftmost pipeline represents correlation, where a sliding matched filter
produces an output, b) the middle figure shows the typical DNN approach by employing a CNN – because it can only be deployed on inputs of fixed size, the input has to be
segregated into frames and fed into the model individually, c) the rightmost model is the proposed deep filter approach, where it is trained in the same DL methodologies as the
CNN, but works in a sliding window approach, exactly like the basic correlation method – combining the best of both worlds.

valuable if other parts of the receiver are replaced by DNNs.
In this case we can feed the features extracted by the FCN
into one of these synchronizing or demodulating DNNs.

C. RESEARCH CONTRIBUTIONS
The main contributions of this paper are as follows:

• We introduce a fully convolutional neural network archi-
tecture, or deep filter, for the problem of FS. This allows
us to take advantage of the learning algorithms from
DL, while operating as a sliding window seen in signal
processing filters, thus overcoming the inherent disad-
vantage of being locked to a fixed-sized input, which
is present in typical DNNs.

• Classification-based CNNs must be trained with a
dataset that represents every possible index of pream-
ble start location in a captured waveform, much like
in [14]. We demonstrate in our results that the FCN
can generalize and accurately predict the time offsets
after seeing only a fraction of these possibilities.

• An efficient method of training these networks for FS is
presented that avoids the need of a large training dataset,
usually composed of a variety of SNR levels [21], while
the trained model maintains robustness to different noise
levels.

• Using DL for FS allows the training of powerful models,
that work best under challenging channel impairments.
Our FCN architecture is shown to perform very well
under carrier phase and frequency offsets, and for the
case of short preambles in fading channels as well.

• A complexity analysis is carried out that demonstrates
that the FCN architecture scales significantly better than
typical neural networks containing fully connected lay-
ers, in terms of the number of parameters required to
store these models in memory.

The rest of this paper is organized as follows: the system
overview and proposed model are discussed in Section II,

and Section III covers the details of training the deep filters
for various preamble lengths. Numerical results are then dis-
cussed in Section IV, where the FCN architecture is evaluated
with multiple preamble lengths, and channel impairments
such as AWGN and carrier offsets. The complexity analysis
is carried out in Section V, where the scaling of the FCN is
compared to correlation and another neural network archi-
tecture containing fully connected layers. Finally, Section VI
marks our conclusions and in Section VII we discuss possible
future work.
Notations: Lower and upper case letters x and X denote

scalars, bold faced lowercase letters x represent column
vectors and bold faced uppercase letters X denote multi-
dimensional tensors or matrices. For a vector x, x(n) denotes
the nth element of the vector. And for a tensor Xi,j,k this
operation extracts the (i, j, k)th element of the tensor. R and
C denote real and complex sets of numbers. x∗ is the com-
plex conjugate of the vector x. τ denotes a time offset. L
represents a loss function, λ denotes a regularization factor
that is applied to a loss function, and w denotes the vector of
all the weights present in a neural network model. We refer
to complexity measurements as Computational Complexity,
denoted in equations as CC.

II. FRAME DETECTION USING FULLY CONVOLUTIONAL
NEURAL NETWORKS
A. SYSTEM OVERVIEW
We consider bursty packet transmissions of Binary Phase
Shift Keying (BPSK) modulated data. The packets, as illus-
trated in Figure 2, are made up of random data symbols
of length Nd and prepended with a pseudo-random noise
(PN) sequence preamble of length Np. The total waveform
length is determined as M = Np +Nd +Nt, where Nt is the
total non-symbol padding in the captured frame, for instance
when M = 200, Nd = 128 and Np = 8 bits respectively,
Nt = 64. We then define τ as the time delay (or front
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FIGURE 2. Convolutional Network Input Structure.

FIGURE 3. System Overview.

padding), and the back padding as Nt − τ . Padding refers to
zero valued samples representing the lack of signal at those
particular time indexes. The effects on the transmitted frame
are illustrated in Figure 3 – it gets perturbed by carrier phase
and frequency offsets, and complex Additive White Gaussian
Noise (AWGN) n ∈ C

M . We assume matched filtering and
perfect symbol timing synchronization.
The goal of the frame synchronizer is to identify the loca-

tion of the preamble symbol sequence at index τ of the
received waveform r = [r1, r2, . . . , rM] ∈ C

M . The most
common way of performing this detection is to use a non-
coherent correlation detector (1) and estimate the peak τ̂

from the absolute cross correlation response,

c(r) =
∣
∣
∣
∣
∣

M−1
∑

i=0

rip∗
i

∣
∣
∣
∣
∣
, (1)

where p = [p1, p2, . . . , pNp ] ∈ C
Np is the preamble symbol

sequence, M is the number of samples in the received signal
and ∗ the complex conjugate. This detection method can be
improved further by adding correction terms to (1), as shown
in [20], and defined in (2). This method has shown improved
FS performance under an AWGN channel with phase offset
for PSK (Phase Shift Keying) modulation.
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. (2)

In the following experiments, both methods will be used
as baselines when evaluating the FCN performance.

B. FULLY CONVOLUTIONAL NEURAL NETWORKS
FCNs are most prominently used for dense pixel-wise clas-
sification in image segmentation [22]. This type of network

is constructed entirely from convolutional layers, pooling
layers and activation functions. Since they have no fully
connected layers they are not constrained to a fixed sized
input, as is the case with feedforward networks, which work
by performing matrix multiplication of their learned weights
by the entire input at once. The convolution operation is
ubiquitous in signal processing, which makes it a natural fit
for the problems of filtering and recovering digitally modu-
lated waveforms, especially in time-varying channels, where
defining analytical models is difficult. A single convolutional
layer output of the ith filter at input lags of j, k, is defined as

yi,j,k =
∑

c,m,n

Xc,j−m,k−nWi,c,m,n + bi, (3)

where W ∈ R
K×C×L×H is the weight tensor, K is the number

of filters in the convolutional layer, C is the number of input
channels, L and H are the length and height of the 2-D
filters respectively, and X is the input tensor of length M.
Additionally, a bias term b is added for each filter. The output
is often passed through a non-linear activation function, such
as the Rectified Linear Unit (ReLU), defined as max(x, 0).

The FCN presented in this work is composed of 3 convo-
lutional layers, the parameters of which are shown in Table 1.
The first two layers are followed by a ReLU function, while
the last one remains linear to extend the output range to
negative and large positive values. The design does not use
any pooling layers, and the padding of each convolutional
layer is set to match the input size of the previous layer,
ensuring that the final output length N is of the same length
as the input.
Since the largest preamble size tackled in this work is

32 bits long, we made sure that the length of the filters
of the first layer were at least large enough to learn to
correlate this preamble sequence. We found that, for our
network and dataset, using more than 16 filters in the first
two layers does not improve performance. It is important
that the last layer contains only a single filter, which then
transforms the intermediary feature maps produced by the
second convolutional layer into a single-dimensional vector
that we can easily interpret in the same way as a correlation
output.
Selecting good parameters (number of filters, size of ker-

nels, number of layers) is a very difficult problem spanning
the field of ML. We have not done an exhaustive search in
the parameter space, but empirically determined a network
that performed well. It is very likely that even better results
could be achieved by experimenting with different DNN
parameters like activation functions or numbers of layers.

III. TRAINING
Two neural network architectures (illustrated in Figure 4) and
the training data required for each are discussed in this sec-
tion. The CNN model is trained for comparison using typical
methods for training an ML classifier. The individual layer
settings for each network are characterised by the parameters
given in Tables 1 and 2. The proposed FCN model utilizes
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TABLE 1. FCN parameters for input length N .

TABLE 2. CNN parameters for input length 200.

FIGURE 4. CNN and FCN model architectures.

the same dataset parameters and preprocessing steps as the
CNN, but is trained as a regressor, rather than a classifier.
Training of the models consists of optimizing the weights

of the neural network models by feeding them training exam-
ples, which are composed of simulated transmissions of
BPSK modulated packets at random delay intervals, and
corresponding desired responses (e.g., a peak at the frame
start index). Each training example consists of a waveform
that is 200 samples long and a response of the same length.
The models were trained on BPSK packets, consisting

of 128-bit payloads with 8, 16 and 32-bit PN synchroniz-
ing sequences, all affected by AWGN, random time delay
τ ∈ {0, 100}, random phase offset φ ∈ {−π, π} and CFO
between 0–10kHz. We found that an effective training strat-
egy was to generate data at a relatively high SNR, and
apply regularization, rather than train on overly noisy data
or ranges of SNRs.
If trained with an SNR that is too high, the network

will not learn to be robust to noise. However if the SNR
is too low, our model will just learn noise (garbage in –
garbage out). If a baseline is available, such as the correla-
tion performance, we found through experimentation that a
good guideline is to stay within the range of SNRs where the
baseline accuracy is at 60-90%, as illustrated in Figure 5. A
good starting point for training the FCN model is to generate
data at the SNR where the baseline model reaches around

FIGURE 5. Finding the best training dataset SNR.

90% of its maximum accuracy. However, if the baseline never
achieves very good results, as is the case with extremely short
preambles, it is a good idea to start with a high SNR value
of around 15dB, then incrementally reduce the SNR until
performance stops improving. A similar strategy of initially
training on a high SNR and progressively introducing more
noise has been presented in [23].

A. FCN
In order to evaluate how well the network fits the training
data, an appropriate loss function should be selected. The
Mean Squared Error (MSE) loss works well for regression
tasks, where the outputs can take on ranges of values, rather
than discrete categorical outcomes (where a log loss would
be more appropriate). The MSE loss function used to train
the networks is defined as

L(

y, ŷ
) = 1

N

N
∑

n=0

∣
∣y(n) − ŷ(n)

∣
∣2

, (4)

where N is the number of training examples in a batch, y(n)
is the desired response of the system (ideally all 0 values,
except for the preamble index), and ŷ(n) is the response
predicted by the FCN model. This is generally a good choice
for regression tasks where the output is not discrete. While
basic, it turns out that this loss function is more than good
enough to produce a very desirable output function for this
problem. Using MSE to optimize the deep filters also avoids
the limitation of having examples of only 1 packet capture in
the training set, as seen in other softmax-based classification
methods discussed earlier. This enables future expansion of
the architecture with various multi-packet configurations.
Regularization is important to avoid overfitting the model

to the training dataset – this is desirable as it enables
networks to actually perform well on cases they have not
seen before [28]. We found L2 penalization (also known as
weight decay [29]), to be a simple and effective method of
regularizing the models. Weight decay can be implemented
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by adding a regularization term to (4):

Lreg
(

y, ŷ
) = 1

N

N
∑

n=0

∣
∣y(n) − ŷ(n)

∣
∣
2 + 1

2
λ

Nw∑

i=0

w2
i , (5)

where λ is the regularization factor, Nw is the number of
weights, and w is the weights vector that contains all the
weight values of the neural network. In this case λ is a
hyper parameter, as it is not learned, and has to be manually
adjusted. The regularization term penalizes the network if the
weights of the convolutional filters grow too large, preventing
it from developing a bias towards a single input feature.
For FCN validation we used simulated data with higher

SNR than the training set, with no carrier offsets. This is dif-
ferent from the usual method where the validation dataset is
obtained by slicing off a portion of the training set. The goal
of this approach was to ensure that the resulting networks
are capable of generalizing to milder channel conditions and
are not only functional when affected by very specific chan-
nel impairments that may have been over-represented in the
training set. A variety of combinations for training and val-
idation datasets can be deployed, and finding the optimal
strategy is an ongoing research problem to be considered
for future work.

B. CNN
Instead of having the last convolutional layer compress all
the previous feature maps into a single output, the CNN
uses a flattening layer to convert all previous feature maps
into a vector that can be fed into fully connected layers.
The final layer is another fully connected layer that matches
the input length of the captured waveform, followed by a
softmax activation function. The softmax activation for the
j-th neuron of the output defined in (6) is given by

σ(z)j = ezj
∑K

k=1 e
zk

, (6)

where σ is the softmax activation function, z represents the
outputs of the final fully connected layer and K is the number
of outputs. A convenient property of the softmax function
is that the output vector is transformed into a probability
distribution where the sum of all outputs equals 1. This has
a useful effect of being more easily interpretable, and makes
it easier to work with certain logarithmic loss functions.
A very commonly applied loss function for classification

tasks after the softmax normalization is categorical cross-
entropy loss [24], or log loss. Similarly to (5), we define the
cross-entropy loss as Lc with an L2 penalty applied in (7).

Lc
(

y, ŷ
) = −

∑

i

yi log ŷi + 1

2
λ

Nw∑

i=0

w2
i . (7)

As in previous equations, y and ŷ represent the labels
and model predictions respectively, whereas w represents
the weights of the network. This has been the choice of
loss function for similar previous works [14]. Applying L2

FIGURE 6. Example of CNN overfitting to the training set. With early stopping, the
model should be saved at the ideal stopping point, where validation loss is lowest.

TABLE 3. Training hyper-parameters.

penalization is similar to (4), where the regularization term
λ and weights of the neural network are added to the main
loss function.
Over time large DNNs can start memorizing the training

set, including the noise of each sample, which results in a
loss of ability to generalize to unseen inputs. To combat this,
validation loss monitoring and early stopping are often used
to improve model robustness. Typically an additional loss
metric is evaluated on a separate validation set (which is
not used to update the weights of the DNN) and training is
stopped once the validation loss stops improving, as shown
in Figure 6.

C. TRAINING PARAMETERS
Every FCN network was trained on 8k training examples, and
every CNN on 32k. The CNN had to be trained on 4 times
as much data to match the performance of the FCN, because
it requires every classs instance (or offset) to be represented
in the dataset in order to be able to make predictions on the
training dataset window of 200 samples. This is one of the
downsides of using a classification method such as a CNN,
rather than a filter-like regression.
The training parameters for both networks are summarized

in Table 3. For both networks the ADAM [25] optimizer
was used in PyTorch [26]. The training batch size was 32,
learning rate α = 1e−3, regularization factor λ = 1e−2, and
training lasted a maximum of 30 epochs, with early stopping
employed to avoid overfitting by monitoring the validation
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FIGURE 7. Confusion matrices of the different frame synchronization models. a) shows the classifications for the baseline correlation method, where failures are only seen
where preamble repeats in the payload. b) the CNN performs well in the range of offsets it was trained for, but because it has never seen past τ = 100 it cannot generalize to
longer offsets. c) the FCN was trained on the same dataset as the CNN, but because it acts as a filter, using a sliding window approach, it can still generalize to new offsets. It
also outperforms correlation, because it is less likely to misclassify a preamble found inside the payload, resulting in a cleaner diagonal.

loss. For 8, 16 and 32-bit preamble lengths the training SNR
levels were 10dB, 5dB and −5dB respectively – requiring
roughly 5dB less for each additional byte in the preamble
sequence.

D. DATASET CONSTRAINTS OF CNNS
One issue that is very commonly encountered in classifiers,
such as the CNN, is that sometimes classes in a dataset
can be under-represented, stifling the training and causing
poor test accuracy. We often see this in other fields as a
class imbalance problem [27]. In the field of wireless com-
munications, we have rich software libraries that allow us
to generate large quantities of data, so this issue does not
manifest as a class imbalance. However, for the case of
frame synchronization being approached as a classification
problem, especially when long input sizes are considered,
this can cause complications in training and deployment
from a scaling perspective. For long input frames we will
require more data to represent all possible offsets within
a captured waveform, which adds to complexity, required
network size and training time. The FCN architecture does
not have this limitation, because it acts as a filter and can
generalize to longer sequences having been trained on much
smaller inputs.
An example of the effects missing class labels can have on

model performance is shown in Figure 7, where the frame
synchronization method confusion matrices are plotted. The
confusion matrix is a useful tool for evaluating classification
models by giving insight into which classes are getting mis-
classified, by helping to identify specific cases, rather than
just looking at overall accuracy or DER. Ideally the result
should be a perfect diagonal, meaning that each prediction
corresponds to the correct label. In this example we trained
both the CNN and FCN on a dataset where the waveform
input lengths were 200 samples, and only had packet time
offsets represented in the range of τ ∈ {0, 100}, meaning
that there were no examples where a packet preamble was
intercepted past a time offset of τ = 100. The confusion

matrices were obtained by testing on the entire range of
possible time offsets τ ∈ {0, 184} where the full pream-
ble can be found. Looking at the CNN confusion matrix in
Figure 7b, we can observe that it cannot generalize to offsets
that have not been represented in the training set. Shown in
Figure 7c, the FCN acts in a very similar way to standard
correlation (Figure 7a), even though it was subjected to the
same constrained dataset as the CNN. In fact, as mentioned
earlier, the CNN had to be trained on 4 times as much data
(32k waveforms) to match the performance of the FCN (8k
waveforms) in this narrow range of offsets.

IV. SIMULATION RESULTS
FCN models for each preamble length were trained offline
using simulated data, then compared against analytical meth-
ods in terms of Detection Error Rate (DER) under different
SNRs with random carrier phase offset and frequency off-
set. In each simulation, 128-bit payload packets prepended
with 8, 16 and 32-bit preambles were used for frame detec-
tion. Robustness to Carrier Frequency Offset (CFO) was
evaluated by comparing both DL models to the correlation
based baseline approaches, showing the maximum tolerance
of each method.
The FCNs showed improved performance over correlation

based methods in terms of DER, especially when detecting
shorter preambles, and generalized well to longer capture
lengths without having to be retrained. FCNs and CNNs
showed similar tolerance to CFO, as long as the CNN was
constrained to the τ distribution that was used in the training
set, but both heavily outperformed the baseline models. The
FCN was also evaluated under different flat and multipath
fading channels, and showed consistently better results for
the shorter preambles, however for the 32-bit preamble we
saw little to no improvement.
In most of the DER experiments we saw a high error floor

for the 8-bit preamble sequences of the correlation based
methods, similarly, but not as extremely for the 16-bit pream-
bles. This can be explained by the fact that for very short
preambles, the likelihood of them appearing in the payload is
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FIGURE 8. Correlation and FCN inference on a 600 sample input containing multiple
packets.

quite high, resulting in false positives from the correlation
output. In the following experiments we will see that the
FCN approach does not have the same error floor because
it learned to use more features than just the correlation to
perform the detection.

A. ROBUSTNESS TO DIFFERENT CAPTURE LENGTHS
One of the main strengths of using FCNs instead of other
neural network architectures is the ability to deploy these
models to data of arbitrary length Ltest, even after training
on relatively short waveforms of length Ltrain, where Ltrain <

Ltest. In Figure 8 we compare the FCN output against the
output of a correlation detector on waveforms containing
multiple packets. The test waveform contains three 128-bit
packets of BPSK modulated data, with a 16-bit preamble –
a total capture length of Ltest = 600 samples.

Even though the FCN was trained on waveforms con-
taining only a single packet with captures of Ltrain = 200
samples, it is capable of generalizing and making predictions
on extended data configurations, previously not seen in the
training set. In Figure 8, we observe that the neural network
performs a significant amount of denoising when compared
to a simple correlation output, which is helpful when min-
imizing the number of false positives and finding good
detection threshold values.

B. AWGN AND PHASE OFFSET
It is important to consider random phase offsets when obtain-
ing these results to ensure that the trained FCN is not
overfitting to a particular carrier phase. DNN models are
highly susceptible to overfitting (this is why regularization,
as discussed in Section III, is important), however no amount
of regularization can replace a good training dataset repre-
sentative of the rich array of channel conditions that the
model may encounter.
In Figure 9 an FCN trained on a dataset with no phase

offsets is evaluated at offset φ = 0 and φ = π/3. Because
noncoherent correlation is not affected by phase offsets

FIGURE 9. DER comparison under different phase offsets of an FCN trained on
carrier phase offset φ = 0.

FIGURE 10. DER under AWGN, with random phase offsets, for preamble lengths of
8, 16 and 32 bits.

it is only evaluated at a single phase. We see that the
network performance at a fixed φ = 0 is stellar, and actu-
ally outperforms the baseline. However, if the carrier phase
changes, which is an unavoidable real world occurence, the
performance of the FCN deteriorates greatly when intro-
duced to a phase it has not been trained on. For this reason,
all networks in this paper have been trained on random
distributions of phase offsets.
For the AWGN DER results, the FCN models are tested at

an SNR range of {−10,15}, with a phase offset φ randomly
sampled from the range {−π, π}. The results are compared
with baselines calculated by the standard correlation method
and the method described in [20], and these baselines are
denoted in Figures 10-12 as ‘ref’.
It is evident that the correlation methods have an error

floor no matter how high the SNR. This is most clearly seen
in the 8 bit sequence correlation results. The FCN performs
much better in this scenario because it has learned to not
only perform correlation, but also to undertake other useful
tasks, such as energy detection, for extracting a variety of
features which assist in the detection of a packet.
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FIGURE 11. Detection error rates with carrier frequency offset CFO = 10kHz, for
preamble lengths of 8, 16 and 32 bits.

We can see a general improvement over correlation meth-
ods, but the gains of using an FCN diminish as the preamble
length increases – we observe little to no advantage at 32 bits.
However AWGN is a relatively simple channel to over-
come. The advantage of using DL is when faced with more
challenging channel impairments.

C. DETECTION UNDER CARRIER FREQUENCY OFFSET
While carrier phase offset is very important for training
DNNs for FS. It has little to no effect on the performance of
correlation methods, as shown in Figure 9. CFO does affect
correlation methods, which typically would necessitate more
synchronization steps. Frequency offsets are also typically
unavoidable in realistic communications channels, which is
why it is necessary for the FCN model to be able to adapt
to these types of impairments.
For CFO DER tests, the FCN models are tested at an SNR

range of {−10,15}, with a phase offset φ randomly sam-
pled from the range {−π, π}, as well as an added Carrier
Frequency Offset (CFO) of 10kHz (which corresponds to
the highest offset in the training set), with a sample rate
of 1MHz. We observe that the FCNs show robustness to
phase and frequency offsets, and the performance is espe-
cially improved when compared to the analytical methods
for the shorter preamble lengths.
While an 8-bit preamble may not be enough for detec-

tion using correlation based methods, the FCN model shows
similar performance to that which would be achieved using
a 16-bit preamble using standard correlation.

D. MODEL SENSITIVITY TO CFO
In order to further evaluate how robust the FCN approach
is to CFO, both baseline models and neural network models
are compared over a range of CFOs. For this experiment we
choose the FCN trained on data containing 32-bit preambles,
and the same baseline correlation methods presented earlier.
To better visualize the FCN’s robustness to CFO, the accu-

racy of each model is computed at frequency intervals of

FIGURE 12. Packet detection accuracy for a 32-bit preamble as CFO increases.

1kHz. In this case the accuracy is simply the inverse of the
DER. The results are shown in Figure 12.
It is clear that both deep learning approaches (CNN and

FCN) maintain a 100% detection accuracy rate from no CFO
to 24kHz, whereas the traditional approaches start losing
accuracy at a CFO of 15kHz. This shows that any DNN
should be able to cope with CFO if the training data includes
examples with this impairment. While the FCN does not
outperform the CNN in this instance, it is still a good result,
because the FCN was trained on a much smaller dataset and
is a more flexible architecture due to its filter-like nature.

E. FADING CHANNEL
We further analyze the model performance with a flat fading
channel following a Rayleigh distribution, modelling a non-
line-of-sight (NLOS) link. In Figure 13, similarly to the
previous results, we see that for the shortest 8-bit pream-
ble configuration the DER improvement is the greatest,
and at very high SNR even exceeds the 16-bit correlation
performance, whereas the correlation method seems to reach
an error floor. Similarly, the FCN performance on the 16-bit
preambles also shows improvement at high SNR, when com-
pared to the reference methods. However the performance
on the 32-bit preamble is comparable across all methods.
It is important to note, however, that the FCNs were not

explicitly trained on this type of fading channel and are
generalizing purely based on the training data that contained
carrier phase and frequency offset impairments.

F. MULTIPATH FADING
Finally, we investigate an even more challenging, multipath
channel. This channel follows a Rician distribution with
relative time offsets of [0, 5e-6, 10e-6] seconds and aver-
age channel gains [0dB, −3dB, −6dB], with a sample
rate of 1MHz. Consistently with the previous tests, based
on the results in Figure 14, we can see that the most
marked performance improvement is in the shorter preamble
lengths. Interestingly, in this instance the 32-bit FCN DER
performance was actually worse than the reference meth-
ods. Another observation we can make from these results
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FIGURE 13. Detection error rates under a Rayleigh fading channel.

FIGURE 14. Detection error rates under a multipath fading channel.

is that all 3 FCN results converge to the same error floor
as SNR increases. These unexpected results can likely be
explained by the fact that the FCNs are unaccustomed to
multipath components at high SNR because they have not
encountered such effects in the training set.
Note that the DER values are above 10e−2, which is not

practical in most communications systems. However, even
though the DERs are high, the FCN approach still shows
a considerable improvement over the correlation methods at
lower preamble lengths. This is a promising result for future
exploration of FCNs in more challenging multipath channels.

V. COMPLEXITY ANALYSIS
Model complexity, especially in deep learning, is diffi-
cult to quantify because of a variety of available hardware
implementations and optimizations that can be incorporated.
However, some aspects can be evaluated with certainty, such
as the number of parameters required to represent the neu-
ral network architecture. In order to implement a neural
network on hardware, the computational complexity and
memory requirements of such a model must be considered.
Depending on the application, the chosen architecture can
consume a large amount of on-chip memory just to store all
of the parameters (or weights).

In this section we compare the proposed FCN architecture
presented in this paper, with a comparable CNN architecture
similar to that seen in the literature [14], and a traditional
matched filter consisting of 32 weights. Each method is
evaluated at input lengths of 200 and 600 samples. For cor-
relation and FCN, the evaluations may simply be re-run for
the new input length, since they are implemented as fil-
ters. However it is important to note that for any approach
containing fully connected layers, such as the CNN, the
network must be re-designed to a new input-output sizing
and re-trained.
Performing a fair comparison between model architectures

is a challenging problem, because optimization steps and loss
functions can differ between approaches. In our analysis best
efforts were made to produce a CNN model that matches the
FCN performance as closely as possible for target lengths,
with the minimum number of weights. However, it cannot
be guaranteed that either is the optimal solution.
Neural network Computational Complexity (CC) in flops

(floating point operations) for the main layer types – con-
volutional and fully connected – can be determined using
equations (8) and (9). The complexity of a convolutional
layer is defined by

CCconv = (2 ∗ (c ∗ l ∗ h)) ∗ k ∗W ∗ H, (8)

where CCconv is the computational complexity of a convo-
lutional layer in flops, c, l and h, are the convolutional layer
filter parameters of input channels, kernel length and height
respectively, k represents the number of filters, and W and H
are the width and height of the input signal, or feature map.
The complexity of a fully connected layer CCfc is calculated
using

CCfc = 2 ∗ win ∗ wout, (9)

where the flops of a fully connected layer are the multiplica-
tion of input vector length win and number of output neurons
wout. Note that this does not take into account other parts
of the architectures, such as activation functions. The flops
associated with correlation can simply be calculated by

CCcorr = 2 ∗ c ∗ l ∗W ∗ H, (10)

where c, l are the number of channels and length of the
filter, and W and H are the width and height of the input
signal. The matched filter only needs to be evaluated once,
since there are no layers. Substituting the parameters of the
evaluated models from Tables 1 and 2 into the equations, we
report the calculated flops in Figure 13(a). While this does
not perfectly reflect the realities of hardware, it provides
a good approximation of the computational costs for these
types of architectures.
Furthermore, we estimate the computational complexity of

each neural network method, as well as the traditional corre-
lation for a baseline, in Figure 13(b), by evaluating them on a
single core of an AMD Ryzen 5 CPU, and recording the run-
time to execute inference on 10,000 waveforms. Obviously,
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FIGURE 15. Complexity analysis.

both DNNs are significantly more costly than the simple
correlation implementation, as they involve multiple con-
volutions and matrix multiplications. The more interesting
comparison is between the two neural network architectures.
In terms of calculated flops, the two are comparable for input
lengths of 200 and 600 samples. However, comparing esti-
mated complexity based on CPU runtime, the CNN appears
to be nearly twice as costly when considering the longer 600
sample input lengths – this can partly be explained by addi-
tional activation functions, such as softmax, and the number
of output neurons scaling in accordance with the input size.
The computational complexity is comparable between the

two neural network models, because they both involve large
convolutional operations, with an increase in computation for
a larger input length. However, in terms of required parame-
ter storage, as shown in Figure 16, the FCN is significantly
less costly than the CNN – this is due to the CNN con-
taining multiple fully connected layers, which usually result
in very large parameter sizes. In a fully connected network
each input value must be multiplied by each weight of the
layer – there is no weight sharing in these layers, which is
an important property of convolutional networks when con-
sidering implementation [30]. Furthermore, while the FCN
is composed of only convolutional layers and is essentially a
deep filter, increasing the input size to the network actually
does not require any additional weights. The proposed FCN
architecture, much like a matched filter, can be applied to
arbitrary signal processing flowgraphs without any re-tuning
or re-training.
Model complexity in its various forms is a very impor-

tant metric to consider, especially when taking into account
edge applications such as wireless receivers. In this analy-
sis we have demonstrated that while both DNN approaches
impose an implementation penalty when comparing to a stan-
dard matched filter, the FCN model is less computationally
intensive than an equivalent CNN operating on the same
input data. Furthermore, the FCN is a highly advantageous
choice when considering storage requirements. Using a CNN

FIGURE 16. Number of parameters for each evaluated model, showing how the size
of the network scales with fully connected layers vs. only convolutional layers.

the number of weights required to represent the network
will scale with the size of the input it has to operate on.
Regardless of the input size, an FCN, acting as a filter,
will always require a fixed amount of memory to store its
weights.
While we have shown that applying FCNs is advanta-

geous over CNNs for the problem of frame synchronization,
the computational cost is still orders of magnitude higher
than the traditional correlation approaches. There are exist-
ing techniques like pruning and quantization for embedded
DNNs that we did not consider in this work, which could
significantly reduce the complexity here [31]. Also, since
to the best of the authors’ knowledge, this is the first paper
demonstrating FCNs being applied to frame synchronization.
Having proved the concept we anticipate that this paper may
stimulate further implementation-based research. As a result,
future implementations should become much more hardware
efficient as the research in this field progresses.

VI. CONCLUSION
In this paper we have demonstrated the use of FCNs for radio
physical layer frame synchronization. A key advantage of the
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FCN model over other ML architectures is that this type of
network can be applied as a deep filter on input sequences
of arbitrary length, while not being explicitly trained on
such inputs. Simulation results show that the FCN approach
can drastically improve the DER of frames under CFO when
compared to standard analytical models, such as the methods
based on noncoherent correlation. The performance increase
is especially prominent when short preambles of just a couple
bytes are considered.
Reducing the preamble length can be beneficial in IoT

applications, where transmissions can be short and bursty,
with the transmitters of sensors having to carefully budget
the transmission power. Allowing a more complex DL-based
receiver would reduce the synchronization overheads, and as
a result save energy on the transmitter side of the communi-
cation system. The reduction of overheads also reduces the
usage of radio spectrum, which is becoming an increasingly
precious natural resource.

VII. FUTURE WORK
Finding the correct optimization parameters for these
networks is still an ongoing research area, even in the broader
field of ML. In communications signal processing we have
additional domain-specific concerns of SNR, phase offsets,
channel effects, hardware induced nonlinearities, etc. Ideally
a trained model would be robust to the many transformations
that realistic communications signals are subject to – pro-
ducing a good training dataset to achieve this task becomes
an optimization problem of its own. We have shown the
importance of producing a good training set by demonstrat-
ing the dataset constraints that CNNs have and the effects
of phase offset overfitting while training the FCN.
ML for wireless communications, especially in the domain

of frame synchronization, is still in its infancy with ripe
opportunity for further exploration into training methodolo-
gies and model architectures. There are some interesting
possibilities of using an FCN like this to also act as a feature
extractor for other DNNs in the signal processing pipeline,
because it can be one of the very first processing blocks of a
receiver. This includes best training data selection, architec-
ture optimization, as well as hyper parameter tuning (such as
the learning rate, optimizer selection, loss functions, differ-
ent regularization methods, etc.). While we trained the same
model for different preamble sizes, it could be possible to
reduce the memory footprint of the models even further by
optimizing the architecture based on anticipated preamble
length.

ACKNOWLEDGMENT
The authors would like to thank the MathWorks and AMD-
Xilinx for their support on this work.

REFERENCES
[1] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design

of capacity-approaching irregular low-density parity-check codes,”
IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001,
doi: 10.1109/18.910578.

[2] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G
wireless networks: A comprehensive survey,” IEEE Commun.
Surveys Tuts., vol. 18, no. 3, pp. 1617–1655, 3rd Quart., 2016,
doi: 10.1109/COMST.2016.2532458.

[3] F. A. Aoudia and J. Hoydis “Trimming the fat from OFDM:
Pilot- and CP-less communication with end-to-end learning,” 2021,
arXiv:2101.08213.

[4] J. Massey, “Optimum frame synchronization,” IEEE Trans.
Commun., vol. TCOM-20, no. 2, pp. 115–119, Apr. 1972,
doi: 10.1109/TCOM.1972.1091127.

[5] B. Bloessl and F. Dressler, “mSync: Physical layer frame synchroniza-
tion without preamble symbols,” IEEE Trans. Mobile Comput., vol. 17,
no. 10, pp. 2321–2333, Oct. 2018, doi: 10.1109/TMC.2018.2808968.

[6] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4,
pp. 563–575, Dec. 2017.

[7] H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for channel
estimation and signal detection in OFDM systems,” IEEE Wireless
Commun. Lett., vol. 7, no. 1, pp. 114–117, Feb. 2018.

[8] Y. Wang, M. Liu, J. Yang, and G. Gui, “Data-driven deep learn-
ing for automatic modulation recognition in cognitive radios,” IEEE
Trans. Veh. Technol., vol. 68, no. 4, pp. 4074–4077, Apr. 2019,
doi: 10.1109/TVT.2019.2900460.

[9] S. Dörner, S. Cammerer, J. Hoydis, and S. T. Brink, “Deep learn-
ing based communication over the air,” IEEE J. Sel. Topics Signal
Process., vol. 12, no. 1, pp. 132–143, Feb. 2018.

[10] T. J. O’Shea, T. Roy, N. West, and B. C. Hilburn, “Physical layer com-
munications system design over-the-air using adversarial networks,”
2018, arXiv:1803.03145.

[11] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. 44th Annu. Int. Symp. Comput. Archit., 2017,
pp. 1–12.

[12] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and
J. Kepner, “Survey of machine learning accelerators,” in Proc. IEEE
High Perform. Extreme Comput. Conf. (HPEC), 2020, pp. 1–12.

[13] C. Qing, W. Yu, B. Cai, J. Wang, and C. Huang, “ELM-based frame
synchronization in burst-mode communication systems with nonlinear
distortion,” IEEE Wireless Commun. Lett., vol. 9, no. 6, pp. 915–919,
Jun. 2020, doi: 10.1109/LWC.2020.2975651.

[14] E.-R. Jeong, E.-S. Lee, J. Joung, and H. Oh, “Convolutional
neural network (CNN)-based frame synchronization method,”
Appl. Sci., vol. 10, no. 20, p. 7267, 2020. [Online]. Available:
https://doi.org/10.3390/app10207267

[15] T. J. O’Shea, K. Karra, and T. C. Clancy, “Learning approxi-
mate neural estimators for wireless channel state information,” 2018,
arXiv:1707.06260.

[16] S. Kalade, L. Crockett, and R. W. Stewart, “Using sequence
to sequence learning for digital BPSK and QPSK demodula-
tion,” in Proc. IEEE 5G World Forum (5GWF), 2018, pp. 317–320,
doi: 10.1109/5GWF.2018.8517049.

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997,
doi: 10.1162/neco.1997.9.8.1735.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling
in deep convolutional networks for visual recognition,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sep. 2015,
doi: 10.1109/TPAMI.2015.2389824.

[19] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017,
doi: 10.1109/TPAMI.2016.2577031.

[20] M. Chiani, “Noncoherent frame synchronization,” IEEE
Trans. Commun., vol. 58, no. 5, pp. 1536–1545, May 2010,
doi: 10.1109/TCOMM.2010.05.090091.

[21] T. O’Shea and N. West, “Radio machine learning dataset genera-
tion with GNU radio,” in Proc. GNU Radio Conf., vol. 1, 2022,
pp. 1–6.

[22] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Boston, MA, USA, 2015, pp. 3431–3440.

[23] D. George and E. A. Huerta, “Deep neural networks to enable real-
time multimessenger astrophysics,” Phys. Rev. D, vol. 97, no. 4, 2018,
Art. no. 44039.

1074 VOLUME 3, 2022

http://dx.doi.org/10.1109/18.910578
http://dx.doi.org/10.1109/COMST.2016.2532458
http://dx.doi.org/10.1109/TCOM.1972.1091127
http://dx.doi.org/10.1109/TMC.2018.2808968
http://dx.doi.org/10.1109/TVT.2019.2900460
http://dx.doi.org/10.1109/LWC.2020.2975651
http://dx.doi.org/10.1109/5GWF.2018.8517049
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/TCOMM.2010.05.090091


[24] E. Gordon-Rodriguez, G. Loaiza-Ganem, G. Pleiss, and
J. P. Cunningham, “Uses and abuses of the cross-entropy loss:
Case studies in modern deep learning,” in Proc. Int. Conf. Mach.
Learn. Res., Dec. 2020, pp. 1–10.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2014, arXiv:1412.6980.

[26] A. G. Paszke et al., “Automatic differentiation in PyTorch,” in Proc.
NIPS Workshop 2017, pp. 1–4.

[27] J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning
with class imbalance,” J. Big Data, vol. 6, p. 27, Mar. 2019. [Online].
Available: https://doi.org/10.1186/s40537-019-0192-5

[28] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016. [Online]. Available:
http://www.deeplearningbook.org

[29] A. Krogh and J. A. Hertz, “A simple weight decay can improve gen-
eralization,” in Proc. 4th Int. Conf. Neural Inf. Process. Syst. (NIPS),
1991, pp. 950–957.

[30] J. Garland and D. Gregg, “Low complexity multiply accumu-
late unit for weight-sharing convolutional neural networks,” IEEE
Comput. Archit. Lett., vol. 16, no. 2, pp. 132–135, Jul./Dec. 2017,
doi: 10.1109/LCA.2017.2656880.

[31] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning
and quantization for deep neural network acceleration: A survey,”
Neurocomputing, vol. 461, pp. 370–403, Oct. 2021.

SARUNAS KALADE received the B.Eng. degree
(Hons.) in electronic and electrical engineering
from the University of Strathclyde, in 2015, where
he is currently a pursuing the Ph.D. degree
with the Department of Electronic and Electrical
Engineering.

He has completed several internships with the
MathWorks and Xilinx, where he worked on hard-
ware accelerated deep learning applications for
computer vision and wireless communications.
His primary research focus is on applying deep

learning models on wireless communications datasets and implementing
strategies of best data generation metholodogies in this field.

LOUISE H. CROCKETT received the master’s and
Ph.D. degrees in electronic and electrical engineer-
ing from the University of Strathclyde.

She is a Senior Teaching Fellow with the
University of Strathclyde. She has core research
interests in the hardware implementation of Digital
Signal Processing systems, in particular for com-
munications and SDR, and is the principal author
of https://www.zynqbook.com/ “The Zynq Book.”
Her teaching focuses on digital systems design
using hardware description language, Simulink

block-based design, and FPGA/SoC technology, and builds practical skills
to equip graduates for roles in industry.

ROBERT W. STEWART received the bachelor’s
and Ph.D. degrees from the University of
Strathclyde.

He is a Professor of Signal Processing with
the University of Strathclyde, where he served
as the Head of the Department of Electronic
and Electrical Engineering from 2014 to 2017.
He manages a research group working on DSP,
FPGAs, whitespace radio, and low-cost SDR
implementation. He leads the Strathclyde cohort
of the https://scotland5gcentre.org/Scotland 5G

Centre. Building on the work of www.5GRuralFirst.org5GRuralFirst, the
team has a focus on spectrum sharing, SDR eNodeB deployments, and
developing innovative solutions to combat the connectivity issues faced in
rural areas of the U.K.

VOLUME 3, 2022 1075

http://dx.doi.org/10.1109/LCA.2017.2656880


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


