DM² Platform II: AI-Assisted Optimization of Oral Solid Dosage Form Development

Salehian M, Moores J, Abbas F, Markl D Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC) & Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS),

University of Strathclyde

Introduction to DM² Platform II

Platform II uses Al to develop autonomous workflow for drug product manufacturing and testing system bv identifying critical material attributes (CMAs) and associated critical process parameters (CPPs) that result in targeted critical quality attributes (CQAs). We aim to collect and use database of 100s historical/new experiments to de-risk and accelerate drug product development while reducing experiments. development time, and materials use by 30%.

Overview of Manufacturing Optimisation

The goal is to maximize the value of information from each experiment while minimizing the material consumption in order to 1) make the right material and 2) test the right property at the right time. The iterative, model-based optimization consists of smartly designing the experiments that drive the automated manufacturing and testing system, collecting multi-scale and –point data, and updating the model to learn from the experiments. Bayesian optimization will be employed to execute this loop and it continues until the targets are achieved.

23

Outcomes

Modelling of Tablet & Capsule Attributes

To predict the product attributes, a hybrid machine is being developed to utilize historical data of raw material and blends imported into both domain knowledge (empirical/mechanistic models) and Al-based models (where domain knowledge is not provibele (click)).

Problem Definition for Manufacturing Optimisation

Different use cases were identified based on the specified input parameters, constraints, objectives and decision parameters. The framework is divided into two sub-problems, process and formulation optimization, where an outer loop (process optimization) is followed by an inner loop (formulation optimization). The goal is to enable flexible choice of different objectives/constraints at each level based on their relative importance.

Figure 4: Schematic representation of the optimization workflow based on hybrid machine, including different decision and input parameters, objectives, constraints, and objectives.

Figure 5: Flow diagram of the multi-level optimization framework for iterative, simultaneous optimization of process

Use Case 1: Optimization of Tablet Porosity

In the use case 1, compaction data is used to predict porosity based on the peak compression pressure. The Gurnham (empirical) model is used to fit the historical (existing) data. A smart experiment planning procedure is designed to minimize experimental workload and material use while estimating the model parameters. Analysing the uncertainty of fit (i.e. confidence interval) shows that adding 1 data point results in 20-fold improvement in the accuracy of prediction, while adding 8 more data points leads to minimal improvement, highlighting the significance of here-developed smart experimental planning procedure in achieving good prediction accuracy at minimal experimental cost. The historical/existing data will be used to compute the model parameters for different

The historical/existing data will be used to compute the model parameters for different blends and create a database, for which a data-driven model will be developed to estimate the model parameters of new blends (figure 3). Research is ongoing to utilize mixture models to account for raw material data with different properties such as type of component, concentrations, bulk/true density, flowability, surface energy, etc.

INNOVATION

Digital Medicines

Manufacturing