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(CPPs) that result in targeted critical quality
attributes (CQAs). We aim to collect and use
a database of 100s historical/new
experiments to de-risk and accelerate drug
product development while reducing
experiments, development time, and
materials use by 30%.
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Different use cases were identified based on the specified input parameters, constraints,
objectives and decision parameters. The framework is divided into two sub-problems,
process and formulation optimization, where an outer loop (process optimization) is
followed by an inner loop (formulation optimization). The goal is to enable flexible choice of
different objectives/constraints at each level based on their relative importance.

Overview of Manufacturing Optimisation

The goal is to maximize the value of information from each experiment while minimizing
the material consumption in order to 1) make the right material and 2) test the right
property at the right time. The iterative, model-based optimization consists of smartly
designing the experiments that drive the automated manufacturing and testing system,
collecting multi-scale and —point data, and updating the model to learn from the
experiments. Bayesian optimization will be employed to execute this loop and it continues
until the targets are achieved.
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Figure 1: Challenges and the diagram of iterative drug product development process.

Modelling of Tablet & Capsule Attributes

To predict the product attributes, a hybrid machine is being developed to utilize historical
data of raw material and blends imported into both domain knowledge
(empirical/mechanistic models) and Al-based models (where domain knowledge is not
available/reliable). 1
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Figure 2: The proposed hybrid machine based on machine
empirical/mechanistic models to predict tablet/capsule attributes.
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Figure 3: Hybrid use of raw material/blend data for compaction modelling and optimization.
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Figure 4: Schematic representation of the optimization workflow based on hybrid machine,
including different decision and input parameters, objectives, constraints, and objectives.
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Figure 5: Flow diagram of the multi-level optimization framework for iterative, simultaneous
optimization of process

Use Case 1: Optimization of Tablet Porosity

In the use case 1, compaction data is used to predict porosity based on the peak
compression pressure. The Gurnham (empirical) model is used to fit the historical
(existing) data. A smart experiment planning procedure is designed to minimize
experimental workload and material use while estimating the model parameters. Analysing
the uncertainty of fit (i.e. confidence interval) shows that adding 1 data point results in 20-
fold improvement in the accuracy of prediction, while adding 8 more data points leads to
minimal improvement, highlighting the significance of here-developed smart experimental
planning procedure in achieving good prediction accuracy at minimal experimental cost.
The historical/existing data will be used to compute the model parameters for different
blends and create a database, for which a data-driven model will be developed to estimate
the model parameters of new blends (figure 3). Research is ongoing to utilize mixture
models to account for raw material data with different properties such as type of
component, concentrations, bulk/true density, flowability, surface energy, etc.

06
os Addling 1 data Saving 60%
i i ing 1 aata .
SO g experimental
04 Interval Region point 04 kload
z z workloa
> z0-fold %,
H s it parameters: improvemente st it parameters:
02 o (Fos b4 s02 02 o SherTs
K= 584704 e 3 K- 596+/023
01 01
0.0 0.0
50 100 150 200 250 300 350 s0 100 150 250 300 350
e comprasion pressure (1pa) Peak compresson pessure (Mpa)
Addling 8 data points

2 minimal improvemen:

Figure 6: Example for smart experimentation
planning by analysing uncertainty of fit and
suggesting the next experiment to improve the
accuracy of fit as much as possible.
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