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Abstract

Although Poisson processes are widely used in various applications for modeling of recur-

rent point events, there exist obvious limitations. Several specific mixed Poisson processes

(which are formally not Poisson processes any more) that were recently introduced in the lit-

erature overcome some of these limitations. In this paper, we define a general mixed Poisson

process with the phase-type (PH) distribution as the mixing one. As the PH distribution is

dense in the set of lifetime distributions, the new process can be used to approximate any

mixed Poisson process. We study some basic stochastic properties of the new process and

discuss relevant applications by considering the extreme shock model, the stochastic failure

rate model and the δ-shock model.

Keywords: Mixed Poisson process; non-homogeneous Poisson process; phase-type distribu-

tion; shock models.

1 Introduction

The non-homogeneous Poisson process (NHPP) and its specific version, the homogeneous Pois-

son process (HPP), are widely used in various applications for modeling of recurrent point
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events. These processes are mathematically tractable and hence, the corresponding explicit re-

sults, e.g., in the area of reliability can be effectively obtained at many instances (see Ross [35],

Grandell [15], Beichelt [4], Cha and Finkelstein [7, 8], Lam and Zhang [22], to name a few).

However, they have important limitations in modeling of the real world phenomena. For exam-

ple, these processes are characterized by the independent increments, which is often not realistic

in practice. Moreover, the mean and the variance for the number of events in (0, t] are equal,

which is also restrictive.

Some generalizations for overcoming these limitations were suggested in the literature in

the form of various point processes, namely, the compound Poisson process, the filtered Pois-

son process, two dimensional Poisson process, marked Poisson process, etc. (see Kao [20],

and Milne [27]). Apart from these, there are other important generalizations of point processes,

such as semi-Markov processes that generalize both the Markov processes as well as the renewal

processes (see Limnios and Oprişan [25], and Barbu and Limnios [3]). Neuts [30] discussed a

versatile class of point processes which is closely related to finite Markov processes. Several im-

portant point processes (namely, renewal processes of phase-type, Markov-modulated Poisson

processes, and specific semi-Markov point processes), appear as the particular cases of this class.

The switched Poisson processes and the rational arrival processes are two other important class

of point processes. The first ones deal with the alternating (stepwise) constant rate switched

at random times governed by the alternating renewal process (see, e.g., Bhat [6]) whereas the

second ones are used to model in a specific way (using matrix exponential distributions) the

dependence between the arrival times in queuing models (see, e.g., Asmussen and Bladt [2]).

From the brief literature review, it follows that the above mentioned models are based on

the Markovian (or the semi-Markovian) assumptions, which are restrictive in some applications.

For example, the shock models, considered in this paper, are described by the point processes

having dependent increments property and the history that takes into account the number of

shocks that were previously survived by a system. The mixed Poisson processes are often used

in such scenarios as they can posses the desired properties. Note that, although the conditional

intensities of the mixed Poisson processes are fixed, their intensity processes (distinct from the

HPP and the NHPP) are random. Moreover, the structures of these intensity processes de-

pend, as already mentioned (amid other parameters), on the number of events in the preceding

intervals of time. This type of dependency on the past (which is very important for reliability

applications), as far as we know, was not considered in the literature apart from the mixed

Poisson processes. Recently, Konno [21] have introduced the generalized Pólya process (GPP),

characterized by Cha [9] that contains both the HPP and the NHPP as the particular cases.

Later, Cha [10] have defined the Poisson-Lindley process (PLP), which is the mixed NHPP with

the Lindley mixing distribution. For the PLP, the variance of the number of events in (0, t] is

strictly greater than the corresponding mean. In addition, this process has positively dependent

increments (i.e., the larger number of events in the past yields the same in the future). However,

the Lindley distribution with one parameter is very specific and, therefore, non-flexible enough.
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By considering the generalized gamma distribution as a mixing one, Cha and Mercier [11] have

recently introduced a new point process, which they have called the Poisson-generalized gamma

process (PGGP). This process contains the HPP, the NHPP, the GPP and the PLP as the par-

ticular cases. Although the generalized gamma distribution is rather flexible, the corresponding

mixed Poisson process is still based on the specific mixing distribution and, therefore, can be

not suitable in some applications. This motivates us to consider a more general set up based

on a mixing distribution that can approximate any continuous lifetime distribution.

In this paper, we introduce a new counting process to be called the Poisson phase-type

process (PPHP), which is the mixed NHPP with the continuous phase-type (PH) mixing dis-

tribution. It is well known that “The set of PH distributions is dense in the set of probability

distributions on the non-negative half-line” (see He [19]). It means that every lifetime distribu-

tion can be approximated by the PH distribution and consequently, any mixed Poisson process

can also be approximated by the PPHP. This unique property of the PPHP makes it special

among other mixed Poisson processes considered in the literature. Furthermore, the PH dis-

tribution functions and other statistical measures (e.g., mean, variance, etc.) can be written

in matrix forms that are convenient in computations when using the relevant mathematical

packages (see, e.g., Eryilmaz [13]). Thus, the PH distribution is mathematically tractable and

consequently, the PPHP, as it will be shown, presents a convenient and efficient general tool in

various real-life applications. To show this, the corresponding methodology has to be developed

in our paper.

As a meaningful, practically sound application that, as we believe, has also its own merit, we

consider in detail generalizations of the popular in the literature shock models to the case when

the shock arrival process is PPHP. These generalizations are not straightforward and require

proper stochastic analysis. Note that, shock models play an important role in describing the

lifetime behavior of systems operating in a random environment. There are numerous papers

on this topic (see Gut and Hüsler [17, 18], Shanthikumar and Sumita [38, 39], A-Hameed and

Proschan [1], Gut [16], Mallor and Omey [26], Li et al. [23], Li and Kong [24], Eryilmaz and

Tekin [14], Montoro-Cazorla et al. [28], to name a few). Most of the studies consider shocks

arriving in accordance with the the HPP or the NHPP.

Our approach results in a more adequate and precise stochastic description for the real

world settings providing, for example, more trustworthy reliability characteristics. Moreover, it

can be applied to any system subject to shocks (external or internal). It should be noted that

shocks can be understood generally as some jumps in load or stress as, e.g., voltage surges in

power generation systems, wind gusts for wind turbines, earthquakes for various structures (for

example, bridges), failures of cooling systems that result in a sharp rise of temperature of the

main system etc.

The rest of the paper is organized as follows. In Section 2, we provide notations, definitions

and also some new results with respect to the PH distributions that will be used in the main part

of the paper. In Section 3, we define the PPHP and derive some of its important properties. In
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Section 4, we present some applications of the PPHP describing different shock models, namely,

the extreme shock model, the stochastic failure rate model and the δ-shock model. Finally, the

concluding remarks are given in Section 5.

2 Preliminaries: definitions and new properties of PH distri-

butions

We start with notations and definitions for the PH distributions followed by some new results

on stochastic comparisons and aging properties of these distributions to be used in the main

part of the paper.

For any random variable U , we denote the cumulative distribution function by FU (·), the

survival function by F̄U (·), the probability density function by fU (·), the failure rate function by

rU (·) and the mean residual life function by mU (·); here F̄U (·) = 1−FU (·), rU (·) = fU(·)/FU (·)

and mU (t) = E(U − t|U > t). We write a matrix A as A = [Aij ], where Aij represents the ij-th

element of A. For any two matrices A = [Aij ] and B = [Bij ], A⊗B is defined as [AijB], where

“⊗” stands for the Kronecker product.

Neuts [29] have defined the set of PH-distributions as a generalization of the exponential

distribution. These distributions have a large number of applications in various stochastic

modellings (see Neuts [31], Neuts et al. [32], Pérez-Ocón and Montoro-Cazorla [33], to name a

few). Below we give the formal definitions (see He ([19], pp. 10, 77), and Neuts ([31], p. 46)).

Definition 2.1 A non-negative random variable X is said to have a phase-type (PH) distribu-

tion if

FX(x) = 1−α exp{Tx}e = 1−α

(

∞
∑

n=0

xn

n!
T n

)

e, x ≥ 0, (2.1)

where

(i) e is the column vector with all elements being one;

(ii) α is a substochastic vector of order m, i.e., α is a row vector, all elements of α are

nonnegative, and αe ≤ 1, where m is a positive integer; and

(iii) T is a subgenerator of order m, i.e., T is an m × m matrix such that: (a) all diagonal

elements are negative; (b) all off-diagonal elements are nonnegative; (c) all row sums are

non-positive; and (d) T is invertible. ✷

We call T and the pair (α, T ) the PH generator and the phase-type (PH) representation of

order m, respectively. We write X ∼ PH(α, T ) to indicate that X follows the PH distribution

with the PH-representation (α, T ). Further, the the corresponding pdf is given by

fX(x) = α exp{Tx}T 0, x ≥ 0, (2.2)
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where T 0 = −Te.

Definition 2.2 A random variable X is said to have a discrete PH distribution if its (m+ 1)

state Markov chain P is given by

P =

(

Q Q0

0 1

)

,

where Q is a sub-stochastic matrix such that I−Q is nonsingular, and (α, 1−αe) is the initial

probability vector. Further, the probability mass function of X is given by

P (X = n) =







1−αe, if n = 0

αQn−1Q0, if n = 1, 2, . . . ,

where Q0 = (I −Q)e, and α and e are the same as in Definition 2.1. ✷

We write X ∼ DPH(α, Q) to indicate that X follows a discrete PH distribution with PH

representation (α, Q).

Remark 2.1 The following helpful observations can be made (He [19], p. 16).

(i) A PH distribution with the PH representation (α, T ), where α = 1 and T = −θ, is the

exponential distribution with parameter θ;

(ii) A PH distribution with the PH representation (α, T ), where

α =
(

0 0 · · · 0 1
)

1×m
and T =



















−θ 0 · · · 0 0

θ −θ · · · 0 0
...

...
. . .

...
...

0 0 · · · −θ 0

0 0 · · · θ −θ



















m×m

,

is the Erlang distribution with the set of parameters {m, θ}. ✷

Some useful for our further discussion properties of the PH distributions are given in the

following lemma (see He [19], pp. 18, 21-22, 25).

Lemma 2.1 Let X follow the PH distribution with the PH representation (α, T ). Then

(i)
∫∞
0 exp{T t}dt = −T−1;

(ii) The moment generating function of X is given by

MX(s) = (1−αe)−α (sI + T )−1
T 0, T 0 = −Te;

(iii) E(Xn) = (−1)nn!αT−ne, n = 1, 2, 3, . . . ;
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(iv) If C and D are two PH generators of X, then C ⊗ I + I ⊗D is also a PH-generator of

X; here the size of the identity matrix I depends on the context.

(v) X−t|X ≥ t has a PH distribution with the PH representation (α exp{T t}/(α exp{T t}e), T ),

for t ≥ 0. ✷

We will also need the following definitions on ordering and aging notions.

Definition 2.3 Let u = (ui) and v = (vi) be two real vectors of the same dimension. Then, u is

said to be greater (resp. less) than v in the component order, denoted by u ≥comp (resp. ≤comp)

v, if ui ≥ (resp. ≤) vi for all i. We say that u is equal to v in the component order, denoted

by u =comp v, if both u ≥comp v and u ≤comp v hold.

Definition 2.4 Let Y1 and Y2 be two absolutely continuous non-negative random variables.

Then Y1 is said to be grater than Y2 in the

(i) mean residual life order, denoted by Y1 ≥mrl Y2, if mY1(x) ≥ mY2(x) for all x > 0;

(ii) hazard rate order, denoted by Y1 ≥hr Y2, if F̄Y1(x)/F̄Y2(x) is increasing in x > 0;

(iii) likelihood ratio order, denoted by Y1 ≥lr Y2, if fY1(x)/fY2(x) is increasing in x > 0.

Definition 2.5 A non-negative random variable Y is said to have the

(i) increasing (resp. decreasing) likelihood ratio (ILR) (resp. DLR) property if fX(x) is

log-concave (resp. log-convex);

(ii) increasing (resp. decreasing) failure rate (IFR) (resp. DFR) property if rY (x) is increas-

ing (resp. decreasing) in x ≥ 0;

(iii) decreasing (resp. increasing) mean residual life (DMRL) (resp. IMRL) property if mY (x)

is decreasing (resp. increasing) in x ≥ 0. ✷

In the following proposition, we discuss the likelihood ratio ordering, the hazard rate order-

ing and the mean residual life ordering for two PH-distributed random variables with different

PH representations.

Proposition 2.1 Let X1 and X2 be two PH distributed random variables with the PH-representations

(α1, T1) and (α2, T2), respectively.

(i) If (T2 ⊗ T 2
1 )e ≥comp (T

2
2 ⊗ T1)e, then X1 ≥lr X2;

(ii) If (I ⊗ T1)e ≥comp (T2 ⊗ I)e, then X1 ≥hr X2;

(iii) If (I ⊗ T−1
2 )e ≥comp (T

−1
1 ⊗ I)e, then X1 ≥mrl X2.
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Proof: We have
fX1(x)

fX2(x)
=

α1 exp{T1x}T
0

1

α2 exp{T2x}T
0

2

, x > 0,

where T 0

1
= −T1e and T 0

2
= −T2e. Differentiating the above, we get

(

fX1(x)

fX2(x)

)′

=
(α2 exp{T2x}T

0

2
)(α1 exp{T1x}T1T

0

1
)− (α1 exp{T1x}T

0

1
)(α2 exp{T2x}T2T

0

2
)

(α2 exp{T2x}T
0

2
)2

,

which is nonnegative if and only if

(α2 exp{T2x}T
0

2
)(α1 exp{T1x}T1T

0

1
)− (α1 exp{T1x}T

0

1
)(α2 exp{T2x}T2T

0

2
) ≥ 0.

Now, consider

(α2 exp{T2x}T
0

2
)(α1 exp{T1x}T1T

0

1
)− (α1 exp{T1x}T

0

1
)(α2 exp{T2x}T2T

0

2
)

= (α2 ⊗α1)(exp{T2x} ⊗ exp{T1x})(T2 ⊗ T 2
1 )(e⊗ e)

− (α2 ⊗α1)(exp{T2x} ⊗ exp{T1x})(T
2
2 ⊗ T1)(e ⊗ e)

= (α2 ⊗α1)(exp{(T2 ⊗ I + I ⊗ T1)x})(T2 ⊗ T 2
1 − T 2

2 ⊗ T1)e

= exp{−cx}(α2 ⊗α1)(exp{(cI + T2 ⊗ I + I ⊗ T1)x})(T2 ⊗ T 2
1 − T 2

2 ⊗ T1)e,

where c is greater than or equal to the absolute value of any diagonal element of the matrix

T2 ⊗ I + I ⊗ T1. Thus, cI + T2 ⊗ I + I ⊗ T1 and exp{(cI + T2 ⊗ I + I ⊗ T1)x} are nonnegative

matrices. Again, from the assumption, we have that (T2⊗T 2
1 ) ≥comp (T

2
2 ⊗T1)e. On combining

these, we get

(α2 exp{T2x}T
0

2
)(α1 exp{T1x}T1T

0

1
)− (α1 exp{T1x}T

0

1
)(α2 exp{T2x}T2T

0

2
) ≥ 0

and hence, the result given in part (i) follows. The proof of part (ii) follows in the same line as

in part (i) and hence, omitted. Now, we prove part (iii). Note that, from Lemma 2.1(iii) and

(v), we have

mX1(x) = −
α1 exp{T1x}T

−1
1 e

(α1 exp{T1x}e)
and mX2(x) = −

α2 exp{T2x}T
−1
2 e

(α2 exp{T2x}e)
, x > 0.

Now, mX1(x) ≥ mX2(x) holds if and only if

α1 exp{T1x}T
−1
1 e

(α1 exp{T1x}e)
≤

α2 exp{T2x}T
−1
2 e

(α2 exp{T2x}e)
,

or equivalently,

(α1 exp{T1x}T
−1
1 e)(α2 exp{T2x}e) ≤ (α1 exp{T1x}e)(α2 exp{T2x}T

−1
2 e).

Further, the above inequality can equivalently be written as

(α1 ⊗α2)(exp{T1x} ⊗ exp{T2x})(T
−1
1 ⊗ I − I ⊗ T−1

2 )e ≤ 0,
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which holds by using the same argument, as in part (i), with the help of (I ⊗ T−1
2 )e ≥comp

(T−1
1 ⊗ I)e. Thus, mX1(x) ≥ mX2(x) holds, for all x > 0, and hence the result given in part

(iii) follows. �

The following example illustrates the result given in Proposition 2.1.

Example 2.1 Let X1 and X2 be two PH distributed random variables with the PH represen-

tations (α1, T1) and (α2, T2), respectively, where

α1 =
(

0.2 0.8
)

, T1 =

(

−1 0

0 −2

)

, and α2 =
(

0.3 0.7
)

, T2 =

(

−2 0

0 −3

)

.

Clearly, (T2⊗T 2
1 )e ≥comp (T

2
2 ⊗T1)e, (I⊗T1)e ≥comp (T2⊗I)e and (I⊗T−1

2 )e ≥comp (T
−1
1 ⊗I)e

hold and consequently, X1 ≥lr X2, X1 ≥hr X2 and X1 ≥mrl X2 follows from Proposition 2.1,

respectively.

In the next proposition, we discuss some stochastic aging properties of a PH distribution.

We prove only part (i), whereas the rest can be done in a similar way and hence, omitted.

Proposition 2.2 Let X be a random variable with the PH representation (α, T ).

(i) If (T 2 ⊗ T 2)e ≥comp (resp. ≤comp) (T ⊗ T 3)e, then X is ILR (resp. DLR);

(ii) If (T ⊗ T )e ≥comp (resp. ≤comp) (I ⊗ T 2)e, then X is IFR (resp. DFR);

(iii) If e ≥comp (resp. ≤comp) (T−1 ⊗ T )e, then X is DMRL (resp. IMRL).

Proof: Not that X has ILR (resp. DLR) property if −
f ′

X
(x)

fX(x) is increasing (resp. decreasing) in

x > 0. Now, from (2.2), we have

−
f ′
X(x)

fX(x)
= −

α exp{Tx}TT 0

α exp{Tx}T 0
,

where T 0 = −Te. Differentiating the above, we get

(

−
f ′
X(x)

fX(x)

)′

=
−(α exp{Tx}T 0)(α exp{Tx}T 2T 0) + (α exp{Tx}TT 0)2

(α exp{Tx}T 0)2
.

Clearly,
(

−
f ′

X
(x)

fX(x)

)′
≥ (resp. ≤) 0 holds if and only if

−(α exp{Tx}T 0)(α exp{Tx}T 2T 0) + (α exp{Tx}TT 0)2 ≥ (resp. ≤) 0,

or equivalently,

(α⊗α)(exp{(T ⊗ I + I ⊗ T )x})(T 2 ⊗ T 2 − T ⊗ T 3)e ≥ (resp. ≤) 0,

which holds by using the same argument, as in Proposition 2.1 (i), with the help of (T 2 ⊗

T 2)e ≥comp (resp. ≤comp) (T ⊗ T 3)e. Thus,
(

−
f ′

X
(x)

fX(x)

)′
≥ (resp. ≤) 0 holds, for all x > 0,

and hence the result follows. �
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3 Poisson PH process and its properties

Before defining the process, we introduce some additional notations.

For an orderly counting process {N(t) : t ≥ 0}, we write {N(t) : t ≥ 0} ∼ NHPP (λ(t)) to

indicate that {N(t) : t ≥ 0} is the NHPP with the intensity function λ(·). Further, we define

τ (n) =
(

0 0 · · · 0 1
)

1×(n+1)
and K(n, l) =



















−l 0 · · · 0 0

l −l · · · 0 0
...

...
. . .

...
...

0 0 · · · −l 0

0 0 · · · l −l



















(n+1)×(n+1)

.

Throughout the paper we also denote the cumulative intensity function as Λ(t) =
∫ t

0 λ(v)dv.

Definition 3.1 A counting process {N(t) : t ≥ 0} is said to be the Poisson PH process (PPHP)

with the set of parameters {λ(t),α, T} if

(i) {N(t) : t ≥ 0}|(X = x) ∼ NHPP (xλ(t));

(ii) X ∼ PH(α, T ),

where λ(t) > 0 and (α, T ) is the PH representation of X. ✷

Below we give a proposition that follows from Remark 2.1.

Proposition 3.1 The following results hold:

(i) The PPHP with the set of parameters {1,α, T}, where α = 1 and T = −1/λ, λ > 0, is

the geometric process with the intensity λ (see Di Crescenzo and Pellerey [12] (p. 204),

for the definition of the geometric process);

(ii) The PPHP with the set of parameters {1,α, T}, where

α =
(

0 0 · · · 0 1
)

1×m
and T =



















−λ 0 · · · 0 0

λ −λ · · · 0 0
...

...
. . .

...
...

0 0 · · · −λ 0

0 0 · · · λ −λ



















m×m

,

is the Pólya process with the set of parameters {m,λ} (see Teugels and Vynckier [40],

and Beichelt ([4], p. 133)). ✷

The proof of the following proposition is obvious and hence, is omitted.

Proposition 3.2 {M(t) : t ≥ 0} is the PPHP with the set of parameters {1,α, T} if and only

if {N(t) = M(Λ(t)) : t ≥ 0}is the PPHP with the set of parameters {λ(t),α, T}. ✷
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In the next basic theorem, we derive the distribution of the number of events in a given time

interval.

Theorem 3.1 Let {N(t) : t ≥ 0} be the PPHP with the set of parameters {λ(t),α, T}. Then,

for t > 0 and 0 ≡ t0 < t1 < · · · < tm, the following results hold.

(i) P (N(t) = n) = (1−αe)10(n)−
1

Λ(t)

[

(β ⊗α) (S ⊗ I + I ⊗ T )−1 (S ⊗ T )e
]

,

where β = τ (n), S = K(n,Λ(t)), n = 0, 1, 2, 3, . . . , and

10(n) =







1, for n = 0,

0, for n = 1, 2, . . . ;

(ii) P (N(t2)−N(t1) = n) = (1−αe)10(n)−
1

Λ(t2)−Λ(t1)

[

(β ⊗α) (S ⊗ I + I ⊗ T )−1 (S ⊗ T )e
]

,

where β = τ (n), S = K(n,Λ(t2)−Λ(t1)), n = 0, 1, 2, 3, . . . , and 10(n) is the same as in

(i);

(iii) P (N(ti)−N(ti−1) = ni, i = 1, . . . ,m) = (1−αe)10(ni, i = 1, . . . ,m)

+ (−1)m
[

(ρ
m
⊗α)(Am⊗I+I⊗T )−1(φm⊗T )e∏

m

i=1(Λ(ti)−Λ(ti−1))

]

,

where

Aj = Aj−1 ⊗ I + I ⊗ Sj, A1 = S1, j = 2, 3, . . . ,m,

ρm = β1 ⊗ β2 ⊗ · · · ⊗ βm, φm = S1 ⊗ S2 ⊗ · · · ⊗ Sm, for all m = 1, 2, . . . ,

Si = K(ni,Λ(ti)− Λ(ti−1)), βi = τ (ni), ni = 0, 1, 2, 3, . . . , for i = 1, 2, 3, . . . ,m,

and

10(ni, i = 1, . . . ,m) =







1, for ni = 0, i = 1, 2, . . . ,m

0, otherwise.

Proof: From Definition 3.1, we have

P (N(t) = n) = E(P (N(t) = n|X)) =

∫ ∞

0

(xΛ(t))n exp{−xΛ(t)}

n!
dFX(x). (3.1)

Obviously,
(xΛ(t))n exp{−xΛ(t)}

n!
=

β exp{Sx}S0

Λ(t)
,

where β = τ (n), S = K(n,Λ(t)) and S0 = −Se. On using this in (3.1), we get

P (N(t) = n) =
1

Λ(t)

∫ ∞

0
β exp{Sx}S0dFX(x)

=
1

Λ(t)

∫ 0+

0
βS0dFX(x) +

1

Λ(t)

∫ ∞

0+
β exp{Sx}S0dFX(x), (3.2)
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where the last equality holds because exp{O} = I, where the O denotes the zero matrix.

Further, note that

βS0

Λ(t)
= 10(n) =







1 n = 0

0 n = 1, 2, . . .

On using this in (3.2), we get

P (N(t) = n) = [FX(0+)− FX(0−)]10(n) +
1

Λ(t)

∫ ∞

0+

(

β exp{Sx}S0
) (

α exp{Tx}T 0
)

dx

= (1−αe)10(n) +
1

Λ(t)

∫ ∞

0+
(β ⊗α)(exp{Sx} ⊗ exp{Tx})(S0 ⊗ T 0)dx

= (1−αe)10(n) +
1

Λ(t)

∫ ∞

0+
(β ⊗α) exp{(S ⊗ I + I ⊗ T )x}(S0 ⊗ T 0)dx

= (1−αe)10(n) +
1

Λ(t)

[

(β ⊗α)

(
∫ ∞

0+
exp{(S ⊗ I + I ⊗ T )x}dx

)

(

S0 ⊗ T 0
)

]

= (1−αe)10(n)−
1

Λ(t)

[

(β ⊗α)(S ⊗ I + I ⊗ T )−1(S ⊗ T )e
]

,

where the last equality follows from Lemma 2.1(i) and (iv). Thus, (i) is proved. The proof of

(ii) follows in the same line by replacing Λ(t) by Λ(t2) − Λ(t1). We will prove (iii) now. By

using the independent increment property of the NHPP,

P (N(ti)−N(ti−1) = ni, i = 1, . . . ,m|X = x)

=

m
∏

i=1

(x(Λ(ti)− Λ(ti−1)))
ni exp{−x(Λ(ti)− Λ(ti−1))}

ni!

=
m
∏

i=1

(

βi exp{Six}S
0

i

)

(Λ(ti)− Λ(ti−1))

=

(

m
∏

i=1

−1

(Λ(ti)− Λ(ti−1)

)

ρm exp{Amx}φme, (3.3)

where S0

i
= −Sie, for all i = 1, . . . ,m. Again, note that

P (N(ti)−N(ti−1) = ni, i = 1, . . . ,m|X = 0) = 10(ni, i = 1, . . . ,m). (3.4)

Now,

P (N(ti)−N(ti−1) = ni, i = 1, . . . ,m)

= E(P (N(ti)−N(ti−1) = ni, i = 1, . . . ,m|X))

=

∫ ∞

0
P (N(ti)−N(ti−1) = ni, i = 1, . . . ,m|X = x)dFX(x)

=

∫ 0+

0
P (N(ti)−N(ti−1) = ni, i = 1, . . . ,m|X = 0)dFX (x)

+

∫ ∞

0+
P (N(ti)−N(ti−1) = ni, i = 1, . . . ,m|X = x)dFX(x)

11



0 5 10 15 20 25

0.
0

0.
1

0.
2

0.
3

n

P(
N

(4
) =

 n
)

Figure 1: Plot of the probability mass function of N(4) over n = 0, 1, . . . , 25.

= (1−αe)10(ni, i = 1, . . . ,m)

+

(

m
∏

i=1

−1

(Λ(ti)− Λ(ti−1)

)

∫ ∞

0+
(ρm exp{Amx}φme)

(

α exp{Tx}T 0
)

dx

= (1−αe)10(ni, i = 1, . . . ,m)

+

(

m
∏

i=1

−1

(Λ(ti)− Λ(ti−1)

)

∫ ∞

0+
(ρm ⊗α) (exp{Amx} ⊗ exp{Tx}) (φme⊗ T 0)dx

= (1−αe)10(ni, i = 1, . . . ,m)

+(−1)m

(

m
∏

i=1

1

(Λ(ti)− Λ(ti−1)

)

[

(ρm ⊗α) (Am ⊗ I + I ⊗ T )−1 (φm ⊗ T )e
]

,

where the fourth equality follows from (3.3) and (3.4), and the sixth equality follows from

Lemma 2.1(i) and (iv). Thus, (iii) is proved. ✷

The following example illustrates the result given in Theorem 3.1(i).

Example 3.1 Let {N(t) : t ≥ 0} be the PPHP with the set of parameters {λ(t),α, T}, where

α =
(

0.2 0.8
)

, T =

(

−2 1

0.5 −10

)

and λ(t) = 3, for all t ≥ 0.

In Figure 1, we plot the probability mass function for N(4) over n = 0, 1, . . . , 25. ✷

In the next theorem, we derive the distribution of inter-arrival times for the PPHP.

Theorem 3.2 Let Ti, i = 0, 1, 2, . . . , denote the arrival time of the i-th event, and let Xi =

Ti − Ti−1, i = 1, 2, . . . denote the inter-arrival time between the i-th and the (i − 1)-th events,

where T0 = 0. Assume that events occur according to the PPHP with the set of parameters

{λ,α, T}. Then the cumulative distribution function and the probability density function of Xi

are given by

FXi
(t) = αe+α(−λtI + T )−1T 0

12



and

fXi
(t) = λα(−λtI + T )−2T 0,

respectively, where T 0 = −Te.

Proof: Note that, on condition X = x, the PPHP with the set of parameters {λ,α, T} is the

same as the HPP with the rate xλ. Therefore,

P (Xi > t|X = x) = exp{−λtx}, i = 1, 2, 3, . . . .

Then

F̄Xi
(t) =

∫ ∞

0
exp{−λtx}dFX(x)

=

∫ 0+

0
exp{0}dFX (x) +

∫ ∞

0+
exp{−λtx}dFX (x)

= (1−αe) +

∫ ∞

0+
α exp{(−λtI + T )x}T 0dx

= (1−αe)−α(−λtI + T )−1T 0,

and hence, the result follows. �

In the following theorem, we discuss some properties of the PPHP. Note that, the second

result gives an alternative representation for the probabilities in Theorem 3.1(i).

Theorem 3.3 Let {N(t) : t ≥ 0} be the PPHP with the set of parameters {λ(t),α, T}. Then

the following results hold.

(i) The probability generating function (pgf) of N(t) is given by

φN(t)(z) = (1−αe) +α(Λ(t)(1 − z)I − T )−1T 0, T 0 = −Te;

(ii) The probability mass function (pmf) of N(t) is given by

P (N(t) = n) =







(1−αe) +α(Λ(t)I − T )−1T 0, n = 0

(Λ(t))nα(Λ(t)I − T )−(n+1)T 0, n = 1, 2, . . . ,

where T 0 = −Te;

(iii) The moment generating function (mgf) of N(t) is given by

MN(t)(s) = (1−αe)−α ((Λ(t)(exp{s} − 1))I + T )−1
T 0,

where T 0 = −Te;

13



(iv) The n-th order raw moment of N(t) is given by

E(N(t)n) =
n
∑

i=1

(−Λ(t))i(i!)αT−neSi,n, n = 1, 2, 3, . . .

where Si,n stands for the Stirling number of second kind;

(v) The mean and the variance of N(t) are given by

E(N(t)) = (−Λ(t))αT−1e = Λ(t)E(X)

and

V ar(N(t)) = (−Λ(t))αT−1e+(Λ(t)2)
(

2αT−2e− (αT−1e
)2
) = E(N(t))+(Λ(t)2)V ar(X),

respectively.

Proof:

(i) The pgf of N(t) is given by

φN(t)(z) = E(zN(t)) =

∞
∑

n=0

znP (N(t) = n)

=

∞
∑

n=0

∫ ∞

0

(zxΛ(t))n

n!
exp{−xΛ(t)}dFX (x)

=

∫ ∞

0
exp{−xΛ(t)(1 − z)}dFX (x)

= (1−αe) +α(Λ(t)(1 − z)I − T )−1T 0,

where the fourth equality holds due to the Dominated Convergence Theorem.

(ii) The proof immediately follows from part (i) by using the fact that P (N(t) = n) =

φ
(n)
N(t)(0)/n!, where φ

(n)
N(t)(0) represents the n-th order derivative of the pgf of N(t) at

point z = 0.

(iii) The mgf of N(t) is given by

MN(t)(s) = E(exp{sN(t)}) = E(E(exp{sN(t)}|X)),

where [N(t)|X = x] is the Poisson distribution with parameter Λ(t)x. Now, on using the

mgf of the Poisson distribution (see Ross [36], p. 63), we get

MN(t)(s) = E(exp{Λ(t)(exp{s} − 1)X}) = MX(Λ(t)(exp{s} − 1))

= (1−αe)−α ((Λ(t)(exp{s} − 1))I + T )−1
T 0,

where the last equality holds due to Lemma 2.1(ii).
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(iv) The n-th order moment of N(t) about zero is given by

E(N(t)n) = E(E(N(t)n|X))

=
n
∑

i=1

E((Λ(t)X)i)Si,n

=

n
∑

i=1

(−Λ(t))i(i!)αT−ieSi,n, for n = 1, 2, . . . ,

where the second equality follows from the expression of moments of the Poisson distri-

bution (see Riordan [34], p. 105), and the last equality follows from Lemma 2.1(iii).

(v) The proof immediately follows from the definition of variance of a random variable and

the fact that S1,1 = S1,2 = S2,2 = 1. ✷

The following corollary immediately follows from Theorem 3.3 (ii).

Corollary 3.1 Let X follow the PH distribution with the PH representation (α, T ). If αe = 1

then N(t) + 1 ∼ DPH(α,Q), where Q =
(

I − Λ(t)−1T
)−1

.

In the following theorem, we give a characterization result of the PPHP.

Theorem 3.4 Let {N(t) : t ≥ 0} be a PPHP with the set of parameters {λ(t),α, T}. Then the

stochastic intensity λt of {N(t) : t ≥ 0} is given by

λt =
−(g ⊗α)(G⊗ I + I ⊗ T )−1(G⊗ T )e

(Λ(t))2[(1 −αe) +α(Λ(t)I − T )−1T 0]
λ(t), for N(t−) = 0,

where t > 0, g = (0, 1), G = K(1,Λ(t)), T 0 = −Te and

λt =

(

N(t−) + 1

Λ(t)

)

(g1 ⊗α)(G1 ⊗ I + I ⊗ T )−1(G1 ⊗ T )e

(g2 ⊗α)(G2 ⊗ I + I ⊗ T )−1(G2 ⊗ T )e
λ(t), for N(t−) = 1, 2, 3, . . . ,

where t > 0, g1 = τ (N(t−) + 1), g2 = τ (N(t−)), G1 = K(N(t−) + 1,Λ(t)) and G2 =

K(N(t−),Λ(t)).

Proof: Let {M(t) : t ≥ 0} be a PPHP with the set of parameters {1,α, T}. Now, from

Proposition 4.1 of Grandell [15], the stochastic intensity λ̂t of the point process {M(t) : t ≥ 0}

is given by

λ̂t =

∫∞
0 xN(t−)+1 exp{−xt}dFX(x)
∫∞
0 xN(t−) exp{−xt}dFX(x)

. (3.5)

By proceeding in the same line as in the proof of Theorem 3.1, for t > 0 and n = 0, 1, 2, . . . , we

can write
∫ ∞

0
xn exp{−xt}dFX (x) =

n!

tn

∫ ∞

0

(xt)n

n!
exp{−xt}dFX (x)
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=
n!

tn

[

(1−αe)10(n)−
1

t

{

(β ⊗α)(S ⊗ I + I ⊗ T )−1(S ⊗ T )e
}

]

,

where β = τ (n), S = K(n, t) and 10(n) is the same as in Theorem 3.1. Now, by using the

above equality in (3.5), we get

λ̂t =
−(g ⊗α)(G ⊗ I + I ⊗ T )−1(G⊗ T )e

t2[(1 −αe) +α(tI − T )−1T 0]
, for N(t−) = 0,

where t > 0, g = (0, 1), G = K(1, t), T 0 = −Te and

λ̂t =

(

N(t−) + 1

t

)

(g1 ⊗α)(G1 ⊗ I + I ⊗ T )−1(G1 ⊗ T )e

(g2 ⊗α)(G2 ⊗ I + I ⊗ T )−1(G2 ⊗ T )e
, for N(t−) = 1, 2, 3, . . . ,

where t > 0, g1 = τ (N(t−)+1), g2 = τ (N(t−)), G1 = K(N(t−)+1, t) and G2 = K(N(t−), t).

From Proposition 3.2, the PPHP with the set of parameters {λ(t),α, T} can be recovered by

considering {N(t) = M(Λ(t)) : t ≥ 0}. Thus, the stochastic intensity λt of {N(t) : t ≥ 0} can

be written as

λt = λ̂Λ(t)λ(t),

(see Grandell [15], p. 79) and hence, the result is proved. �

Due to the complicated expression of the stochastic intensity, the monotonic behaviour of

λt with respect to N(t−) cannot be analytically studied. Below we give a numerical example.

Example 3.2 Let {N(t) : t ≥ 0} be a PPHP with the set of parameters {λ(t),α, T}, where

α =
(

0 1
)

, T =

(

−2 0

2 −2

)

and λ(t) = 1, t ≥ 0.

In Figure 2, we plot the stochastic intensity λt against N(t−), for fixed t = 4. This shows that

λt increases as N(t−) increases. ✷

In the next theorem, we study some stochastic ordering properties of the PPHP.

Theorem 3.5 Let {Ni(t) : t ≥ 0} be a PPHP with the set of parameters (λ(t),αi, Ti), for

i = 1, 2. Then the following results hold.

(i) If (T2 ⊗ T 2
1 )e ≥comp (T

2
2 ⊗ T1)e, then N1(t) ≥lr N2(t);

(ii) If (I ⊗ T1)e ≥comp (T2 ⊗ I)e, then N1(t) ≥hr N2(t).

Proof: Let {Mi(t), t ≥ 0} be a PPHP with the set of parameters {1,αi, Ti}, for i = 1, 2. Then

{Mi(t) : t ≥ 0}|(Xi = x) ∼ HPP (x), for i = 1, 2,
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Figure 2: Plot of λt against N(t−) for fixed t = 4

where Xi ∼ PH(αi, Ti). Consequently, [Mi(t)|Xi = x], for any fixed t ≥ 0, follows the Poisson

distribution with parameter xt, for i = 1, 2. Now, by using the result given in Table 2.5 of

Belzunce [5], we get

[M1(t)|X1 = x1] ≥lr [M2(t)|X2 = x2], for all x1 ≥ x2 and for fixed t ≥ 0, (3.6)

which further gives

[M1(t)|X1 = x1] ≥hr [M2(t)|X2 = x2], for all x1 ≥ x2 and for fixed t ≥ 0. (3.7)

Since (T2⊗T 2
1 )e ≥comp (T

2
2 ⊗T1)e, we have, from Proposition 2.1 (i), that X1 ≥lr X2. Further,

by using this together with (3.6) in Theorem 1.C.17 of Shaked and Shanthikumar [37], we

get that M1(t) ≥lr M2(t) for all t ≥ 0. Again this, in view of Proposition 3.2, implies that

M1(Λ(t)) ≥lr M2(Λ(t)) or equivalently, N1(t) ≥lr N2(t). Hence part (i) is proved. Again,

by using Proposition 2.1 (ii), (I ⊗ T1)e ≥comp (T2 ⊗ I)e implies X1 ≥hr X2. Further, by

using this together with (3.7) in Theorem 1.B.14 of Shaked and Shanthikumar [37], we get that

M1(t) ≥hr M2(t) for all t ≥ 0. Finally, the result given in part (ii) follows from Proposition 3.2.✷

In the following theorem, we discuss an ageing property of the PPHP.

Theorem 3.6 Let {N(t) : t ≥ 0} be a PPHP with the set of parameters {λ(t),α, T}. If

(T ⊗ T )e ≥comp (resp. ≤comp) (I ⊗ T 2)e then N(t) is IFR (resp. DFR).

Proof: From Proposition 7.2 of Grandell [15], we have that N(t) is IFR (resp. DFR) if and

only if X is IFR (resp. DFR). Hence, the result follows from Proposition 2.2 (i).

4 Application: Shock models

In this section, we apply our results obtained in the previous sections for describing the popular

extreme shock model, the stochastic failure rate model and the δ-shock model when the shock

process is the PPHP.
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4.1 Extreme shock model

Let L be the lifetime of a system subject to external shocks that occur according to the PPHP

with the set of parameters {λ(t),α, T}. Let 0 = T0 < T1 < T2 < · · · < Tn be the sequence of

random variables representing the arrival times of n shocks. Assume that the system survives

from a shock, occurred at time t, with probability q(t) and fails with probability p(t) = 1−q(t).

Further, assume that the system is absolutely reliable in the absence of shocks.

Theorem 4.1 The survival function for the defined extreme shock model is given by

P (L > t) = (1−αe) +α

((∫ t

0
p(x)λ(x)dx

)

I − T

)−1

T 0, (4.1)

where T 0 = −Te.

Proof: We have

P (L > t|T1, T2, . . . , TN(t), N(t)) =

N(t)
∏

i=1

q(Ti),

where
∏0

i=1(·) ≡ 1. Now,

P (L > t) =

∞
∑

n=0

P (L > t,N(t) = n) =

∞
∑

n=0

P (N(t) = n)P (L > t|N(t) = n). (4.2)

Note that, for any mixed Poisson process with arrival rate λ(·), the conditional joint distribution

of arrival times (T1, T2, . . . , TN(t)), given that N(t) = n, is (see, e.g.,Cha and Mercier [11])

fT1,T2,...,TN(t)|N(t)(t1, t2, . . . , tn|n) = (n!)

n
∏

i=1

(

λ(ti)

Λ(t)

)

, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn,

where Λ(t) =
∫ t

0 λ(v)dv.

Using this general result we can write

P (L > t|N(t) = n) =
n!

Λ(t)n

∫ t

0

∫ tn

0
· · ·

∫ tn

0

n
∏

i=1

q(ti)λ(ti)dt1dt2 . . . dtn

=
1

Λ(t)n

(∫ t

0
q(v)λ(v)dv

)n

.

By using the above equality along with (3.1) in (4.2), we get

P (L > t) =

∞
∑

n=0

∫ ∞

0

xn exp{−xΛ(t)}

n!

(
∫ t

0
q(v)λ(v)dv

)n

dFX(x)

=

∫ ∞

0

(

∞
∑

n=0

xn

n!

(∫ t

0
q(v)λ(v)dv

)n
)

exp{−xΛ(t)}dFX (x)

=

∫ ∞

0
exp

{

−x

∫ t

0
p(v)λ(v)dv

}

dFX(x)

18



=

∫ 0+

0
exp{0}dF (x) +

∫ ∞

0+
exp

{

−x

∫ t

0
p(v)λ(v)dv

}

α exp{Tx}T 0dx

= (1−αe) +

∫ ∞

0+
α exp

{

x

(

−I

∫ t

0
p(v)λ(v)dv + T

)}

T 0dx

= (1−αe) +α

((
∫ t

0
p(v)λ(v)dv

)

I − T

)−1

T 0,

where the second equality holds due to the Dominated Convergence Theorem, and the last

equality follows from Lemma 2.1 (i) and the fact that −sI+T is invertible for all s ≥ 0. Hence,

the result is proved. �

The next corollary, presents a simple practical example and follows from Theorem 4.1.

Corollary 4.1 If T = −1, αe = 1 and p(t) = p (independent of time). Then

P (L > t) =
1

1 + Λ(t)p
,

where Λ(t) =
∫ t

0 λ(t). ✷

Another corollary of Theorem 4.1 is stated as follows.

Corollary 4.2 If T is a diagonalizable matrix of order m then

P (L > t) = (1−αe) +αPT̂P−1e,

where

T̂ =

















−λ1∫
t

0
p(x)λ(x)dx−λ1

0 · · · 0

0 −λ2∫
t

0 p(x)λ(x)dx−λ2
· · · 0

...
...

. . .
...

0 0 · · · −λm∫
t

0 p(x)λ(x)dx−λm

















m×m

,

and λi is the i-th eigenvalue of T , i = 1, 2, . . . ,m, and P is a non-singular matrix whose i-th

column is the eigenvector corresponding to the eigenvalue λi, for i = 1, 2, . . . ,m.

Proof: Since T is a diagonalizable matrix, we can write T = PDP−1, where

D =













λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λm













m×m

,

and λi is the i-th eigenvalue of T , for i = 1, 2, . . . ,m, and P is a non-singular matrix whose

i-th column is the eigenvector corresponding to the eigenvalue λi, for i = 1, 2, . . . ,m. Now, by

replacing T = PDP−1 in (4.1), we get

P (L > t) = (1−αe)−α

((
∫ t

0
p(x)λ(x)dx

)

PP−1 − PDP−1

)−1

PDP−1e
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= (1−αe)−αP

((∫ t

0
p(x)λ(x)dx

)

I −D

)−1

P−1PDP−1e

= (1−αe)−αP

((
∫ t

0
p(x)λ(x)dx

)

I −D

)−1

DP−1e.

As D is a diagonal matrix,
((

∫ t

0 p(x)λ(x)dx
)

I −D
)

is a diagonal matrix with the i-th diag-

onal entry 1/
(

∫ t

0 p(x)λ(x)dx− λi

)

and hence, T̂ = −
((

∫ t

0 p(x)λ(x)dx
)

I −D
)−1

D is also a

diagonal matrix with the i-th diagonal entry −λi/
(

∫ t

0 p(x)λ(x)dx− λi

)

. Thus, the result is

proved. �

In the following theorem, we derive the failure rate function for the defined model. The

proof is trivial and hence, omitted.

Theorem 4.2 The failure rate function for the defined extreme shock model is given by

rL(t) =
p(t)λ(t)α

((

∫ t

0 p(x)λ(x)dx
)

I − T
)−2

T 0

(1−αe) +α
((

∫ t

0 p(x)λ(x)dx
)

I − T
)−1

T 0

, t ≥ 0,

where T 0 = −Te. ✷

For illustration of Theorems 4.1 and 4.2, let

α =
(

0.2 0.8
)

, T =

(

−2 1

0.5 −10

)

, q(t) = exp{−t} and λ = 2.

In Figure 3, we plot the system’s survival function over t ∈ [0, 45] and the system’s failure rate

function over t ∈ [0, 200]. We see that as q(t) asymptotically tends to 0 and λ = 2, the failure

rate, obviously, tends to the same value.

We will now discuss some relevant stochastic comparisons. But first, we formulate the

following lemma.

Lemma 4.1 Let D be any diagonal matrix of order m with non-negative diagonal entries di,

i = 1, 2, . . . ,m. Then, for any non-singular matrix P , we have PDP−1e ≥comp dmine, where

dmin = min{di|i = 1, 2, . . . ,m}.

Proof: For i = 1, 2, . . . ,m and j = 1, 2, . . . ,m, let the ij-th entry of the matrices P and P−1

be denoted by Pij and P−1
ij , respectively. Clearly, PDP−1e ≥comp dmine holds if and only if

each row sum of the matrix PDP−1 is greater than or equal to dmin. Note that the i-th row

sum of PDP−1 is equal to
∑m

k=1

∑m
j=1 djPijP

−1
jk , for i = 1, 2, . . . ,m. Now,

m
∑

k=1

m
∑

j=1

djPijP
−1
jk ≥ min{dj : j = 1, 2, . . . ,m}

m
∑

k=1

m
∑

j=1

PijP
−1
jk
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Figure 3: Plot of the system’s survival function over t ∈ [0, 45] and the system’s failure rate

function over t ∈ [0, 200], respectively.

= dmin

m
∑

k=1

m
∑

j=1

PijP
−1
jk

= dmin,

where the last equality holds because the i-th row sum of PP−1 is equal to 1, i.e.,
∑m

k=1

∑m
j=1 PijP

−1
jk =

1. Hence, the result is proved. �

In the following theorem, we compare the lifetimes of two systems operating under different

random environments.

Theorem 4.3 Let L1 and L2 be the lifetimes of two systems subject to random shocks that occur

according to the PPHP with the sets of parameters {λ1(t),α, T} and {λ2(t),α, T}, respectively.

Further, let q1(t) = 1 − p1(t) and q2(t) = 1− p2(t) be the survival probabilities of the first and

the second systems under a shock, occurred at time t, respectively. Let Hi(t) =
∫ t

0 pi(x)λi(x)dx,

i = 1, 2. If T is a diagonalizable matrix with real eigenvalues and H1(t) ≤ H2(t), for all t, then

L2 ≤st L1.

Proof: From Corollary 4.2, we have

F̄Li
(t) = (1−αe) +αPT̂iP

−1e,

where

T̂i =















−λ1
Hi(t)−λ1

0 · · · 0

0 −λ2
Hi(t)−λ2

· · · 0
...

...
. . .

...

0 0 · · · −λm

Hi(t)−λm















m×m

, i = 1, 2.

Since T is a PH-generator, all eigenvalues, λj , j = 1, 2, . . . ,m, of T are negative. Then, from

the assumption ‘H1(t) ≤ H2(t) for all t ≥ 0’, we get −λj/(H2(t)− λj) ≤ −λj/(H1(t)− λj),
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for j = 1, 2, . . . ,m and for all t ≥ 0. Further, this implies that T̂1 − T̂2 is a diagonal matrix

with non-negative entries and hence, αP (T̂1 − T̂2)P
−1e ≥ 0 follows from Lemma 4.1. Thus,

the result is proved. �

The following two corollaries immediately follow from Theorem 4.3.

Corollary 4.3 Suppose that λ1(t) = λ2(t) for all t. If T is a diagonalizable matrix with real

eigenvalues and p1(t) ≤ p2(t) for all t, then L2 ≤st L1.

Corollary 4.4 Suppose that p1(t) = p2(t) for all t. If T is a diagonalizable matrix with real

eigenvalues and λ1(t) ≤ λ2(t) for all t, then L2 ≤st L1.

4.2 Stochastic failure rate model

Let L0 be the lifetime of a system in a baseline (without shocks) environment, and let F̄0(·) and

r0(·) be the corresponding survival and failure rate functions, respectively. Further, let L be the

lifetime of an identical system under the influence of random shocks that occur according to the

PPHP with the set of parameters {λ(t),α, T}. As earlier, let 0 = T0 ≤ T1 ≤ T2 ≤ · · · ≤ Tn ≤ . . .

be the arrival times of shocks. Assume that each shock increases the system’s failure rate by

the fixed value µ > 0. Then

P (L > t|T1, T2, . . . , TN(t), N(t)) = exp







−





∫ t

0
r0(x) +

N(t)
∑

i=1

µ1[Ti,∞)(x)



 dx







, t ≥ 0,

where

1[Ti,∞)(x) =







1 if x ∈ [Ti,∞),

0 otherwise,

for i = 1, 2, . . . .

Theorem 4.4 The survival function of a system for the defined stochastic failure rate model

is given by

P (L > t) = F̄0(t)
[

(1−αe) +α (M(t)I − T )−1
T 0

]

,

where M(t) = Λ(t)− exp{−µt}
∫ t

0 exp{µx}λ(x)dx and T 0 = −Te.

Proof: Note that,

µ

N(t)
∑

i=0

∫ t

0
1[Ti,∞)(x)dx = µtN(t)− µ

N(t)
∑

i=1

Ti,

we can write

P (L > t|T1, T2, . . . , TN(t), N(t)) = F̄0(t) exp{−µtN(t)}





N(t)
∏

i=1

exp{µTi}



 .
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On using this and similar arguments as in the proof of Theorem 4.1,

P (L > t|N(t) = n) =
n!F̄0(t) exp{−µtn}

Λ(t)n

∫ t

0

∫ tn

0
· · ·

∫ t3

0

∫ t2

0

(

n
∏

i=1

exp{µti}λ(ti)

)

dt1dt2 . . . dtn

=
n!F̄0(t) exp{−µtn}

Λ(t)n

(

∫ t

0 exp{uv}λ(v)dv
)n

n!

=
F̄0(t)

(

exp{−µt}
∫ t

0 exp{µv}λ(v)dv
)n

Λ(t)n
.

Further, by using this along with (3.1), we get

P (L > t) = E(P (L > t|N(t)))

= F̄0(t)

∞
∑

n=0

∫ ∞

0

xn exp{−xΛ(t)}

n!

(

exp{−µt}

∫ t

0
exp{µv}λ(v)dv

)n

dFX(x)

= F̄0(t)

∫ ∞

0

∞
∑

n=0





(

x exp{−µt}
∫ t

0 exp{µv}λ(v)dv
)n

n!



 exp{−xΛ(t)}dFX (x)

= F̄0(t)

∫ ∞

0
exp

{

−x

(

Λ(t)− exp{−µt}

∫ t

0
exp{µv}λ(v)dv

)}

dFX(x)

= F̄0(t)

[

(1−αe) +α

((

Λ(t)− exp{−µt}

∫ t

0
exp{µx}λ(x)dx

)

I − T

)−1

T 0

]

= F̄0(t)
[

(1−αe) +α (M(t)I − T )−1
T 0

]

,

where the third equality holds due to the Dominated Convergence Theorem and the last equality

holds because
∫ t

0 exp{µx}λ(x)dx ≤ exp{µt}Λ(t) for all t ≥ 0. Hence, the result is proved. �

The following corollary immediately follows from Theorem 4.4.

Corollary 4.5 If T is a diagonalizable matrix of order m, then

P (L > t) = F̄0(t)
[

(1−αe) +αPT̂P−1e
]

,

where

T̂ =















−λ1
M(t)−λ1

0 · · · 0

0 −λ2
M(t)−λ2

· · · 0
...

...
. . .

...

0 0 · · · −λm

M(t)−λm















m×m

,

and λi is the i-th eigenvalue of T , for i = 1, 2, . . . ,m, and P is a non-singular matrix whose

i-th column is the eigenvector corresponding to the eigenvalue λi, for i = 1, 2, . . . ,m. ✷

In the next theorem, we obtain the failure rate function for the defined model. The proof is

omitted.
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Figure 4: Plot of the system’s survival function over t ∈ [0, 10] and the system’s failure rate

function over t ∈ [0, 50], respectively.

Theorem 4.5 The failure rate function of a system for the defined stochastic failure rate model

is given by

rL(t) = r0(t) +
{α (M(t)I − T )−2

T 0} × µ× (Λ(t)−M(t))

(1−αe) +α (M(t)I − T )−1
T 0

, t ≥ 0,

where M(t) and T 0 are the same as in Theorem 4.4.

The following example illustrates results of Theorems 4.4 and 4.5. Let

α =
(

0.2 0.8
)

, T =

(

−2 1

0.5 −10

)

, F̄0(t) = exp{−t}, λ = 3 and µ = 1.

In Figure 4, we plot the survival function and the failure rate function of a system both for the

normal and the random environments. We can see that the failure rate initially increases and

then decreases. The latter behavior is due to ’heterogeneity’ in the corresponding sample paths

of the stochastic failure rate (the weaker populations are dying out first).

The proof of the next theorem is similar to that in Theorem 4.3 and hence, omitted.

Theorem 4.6 Let L1 and L2 be the lifetimes of two systems subject to random shocks that occur

according to the PPHP with the sets of parameters {λ1(t),α, T} and {λ2(t),α, T}, respectively.

Assume that each shock increases the failure rates of the first and the second systems by µ1

and µ2, respectively. For i = 1, 2, let Mi(t) = Λi(t) − exp{−µit}
∫ t

0 exp{µix}λi(x)dx, where

Λi(t) =
∫ t

0 λi(x)dx. If T is a diagonalizable matrix with real eigenvalues and M1(t) ≤ M2(t) for

all t, then L2 ≤st L1.

The following two corollaries immediately follow from Theorem 4.6.

Corollary 4.6 Suppose that λ1(t) = λ2(t) for all t. If T is a diagonalizable matrix with real

eigenvalues and µ1 ≤ µ2, then L2 ≤st L1.
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Corollary 4.7 Suppose that µ1 = µ2. If T is a diagonalizable matrix with real eigenvalues and

λ1(t) ≤ λ2(t) for all t, then L2 ≤st L1.

4.3 δ-shock model

Let L be the lifetime of a system subject to external shocks that occur according to a PPHP

with the set of parameters {λ,α, T}. Further, let 0 = T0 ≤ T1 ≤ T2 ≤ · · · ≤ Tn ≤ . . . be

the arrival times of shocks, and let Xi ≡ Ti − Ti−1 be the inter-arrival time between i-th and

(i − 1)-th shocks, i = 1, 2, . . . . According to the δ-shock model, a system fails if the time lag

between two consecutive shocks is less than a prefixed threshold value δ. Then, we have

P (L > t|T1, T2, . . . , TN(t), N(t) = n) = P (X1 > δ0,X2 > δ0, . . . ,Xn > δ0|N(t) = n).

Theorem 4.7 The survival function of a system for the defined δ-shock model is given by

P (L > t) =

⌊ t

δ
⌋

∑

n=0

(

t− nδ

t

)n

An, t > 0,

where An = (1−αe)10(n)−
1
λt

[

(β ⊗α) (S ⊗ I + I ⊗ T )−1 (S ⊗ T )e
]

; β = τ (n), S = K(n, λt),

n = 0, 1, 2, 3, . . . , and

10(n) =







1, for n = 0,

0, for n = 1, 2, . . . .

Proof: We have

P (L > t) =

∞
∑

n=0

P (L > t,N(t) = n). (4.3)

Note that the system survives n-shocks in [0, t) if X1 > δ,X2 > δ, . . . ,Xn > δ hold or equiva-

lently, T1 > δ, T2 > δ + T1, . . . , Tn > δ + Tn−1 hold. Again, this condition can equivalently be

written as t > Tn > δ + Tn−1 > 2δ + Tn−2 > · · · > nδ. Thus, if t ≤ nδ, then the probability of

the event ’the system survives n shocks till time t’ is zero. Now, for 1 ≤ n ≤
⌊

t
δ

⌋

, we can write

P (L > t,N(t) = n) = P (L > t|N(t) = n)P (N(t) = n). (4.4)

Consider

P (L > t|N(t) = n) = P (X1 > δ,X2 > δ, . . . ,Xn > δ|N(t) = n)

= P (T1 > δ, T2 > δ + T1, . . . , Tn > δ + Tn−1|N(t) = n)

=

∫ t

nδ

∫ tn−δ

(n−1)δ
· · ·

∫ t2−δ

δ

fT1,T2,...,TN(t)|N(t)(t1, t2, . . . , tn|n)dt1dt2 . . . dtn

=

(

n!

tn

)∫ t

nδ

∫ tn−δ

(n−1)δ
· · ·

∫ t2−δ

δ

dt1dt2 . . . dtn
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Figure 5: Plot of the system’s survival function against t ∈ [0, 250]

=

(

t− nδ

t

)n

,

where the fourth equality holds due to the similar arguments as in the proof of Theorem 4.1.

On using the above expression along with (4.4) in (4.3), we get

P (L > t) =

⌊ t

δ
⌋

∑

n=0

(

(t− nδ)

t

)n

P (N(t) = n)

=

⌊ t

δ
⌋

∑

n=0

(

(t− nδ)

t

)n

An,

where the second equality follows from Theorem 3.1(i). Thus, the result is proved. �

The following example illustatrtes this result. Let

α =
(

0.2 0.8
)

, T =

(

−2 1

0.5 −10

)

and λ = 5.

In Figure 5, we plot the system’s survival function over t ∈ [0, 250], for the fixed δ = 2.

In the next theorem we derive the distribution for the number of a fatal shock that causes

the system’s failure. Moreover, we obtain the expected number of shocks that the system had

experienced till the failure. The proof of the second part of this theorem immediately follows

from the first part and hence, is omitted.

Theorem 4.8 Let shocks occur according to the PPHP with the set of parameters {λ,α, T}.

Further, let M be a random variable representing the number of a fatal shock. Then the proba-

bility mass function and the mean of M , for the defined δ-shock model, are given by

P (M = m) = α ((m− 1)δλI − T )−1
T 0 −α (mδλI − T )−1

T 0, m = 1, 2, . . . ,
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and

E(M) =

∞
∑

m=0

α (mδλI − T )−1
T 0,

respectively, where T 0 = −Te.

Proof: From the definition of the δ-shock model, we have

P (M = m) = P (X1 > δ,X2 > δ, . . . ,Xm−1 > δ)

−P (X1 > δ,X2 > δ, . . . ,Xm > δ), m = 1, 2, . . . (4.5)

Note that, on condition X = x, the PPHP with the set of parameters {λ,α, T} is the same

as the HPP with the rate λx. Further, we know that the inter-arrival times for the HPP are

i.i.d. and follow the exponential distribution. Thus, on condition X = x, the inter-arrival times

for the PPHP with the set of parameters {λ,α, T} are also i.i.d. and follow the exponential

distribution with the parameter λx. Thus, we can write

P (X1 > δ,X2 > δ, . . . ,Xm > δ|X = x) = exp{−mδλx},

which gives

P (X1 > δ,X2 > δ, . . . ,Xm > δ) =

∫ ∞

0
exp{−mδλx}dFX (x)

=

∫ 0+

0
exp{−mδλx}dFX (x) +

∫ ∞

0+
exp{−mδλx}dFX (x)

= FX(0+)− FX(0−) +

∫ ∞

0+
exp{−mδλx}α exp{Tx}T 0dx

= (1−αe) +α (mδλI − T )−1
T 0.

On using this in (4.5), we get

P (M = m) = α ((m− 1)δλI − T )−1
T 0 −α (mδλI − T )−1

T 0

and hence, the result is proved. �

5 Concluding remarks

We have introduced a new counting process that was called the Poisson phase-type process

(PPHP), which is the mixed NHPP with the continuous phase-type mixing distribution. As the

set of PH distributions is dense in the set of probability distributions on the non-negative half-

line, every lifetime distribution can be approximated by the PH distribution and consequently,

any mixed Poisson process can also be approximated by the PPHP. This unique property of the

PPHP makes it special among other mixed Poisson processes considered in the literature.
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The PH distribution functions and other statistical measures (e.g., mean, variance, etc.)

can be written in matrix forms that are convenient in computations when using the relevant

mathematical packages. Thus, the PPHP presents a convenient and efficient general tool in

various real-life applications.

In this paper, we characterize the PPHP by describing the corresponding counting measure

and presenting the relationships for the distribution of the number of events in a given inter-

val, distributions of inter-arrival times, etc. Some relevant stochastic comparisons and aging

properties are also considered.

As an important, practically sound application that, as we believe, has also its own merit,

we consider three different setting for shocks modeling with the PPHP process of shocks. In

the future applied research, a combination of these models can be considered, e.g., when each

shock in the random failure rate model results not only in the jump in the failure rate but also

leads to immediate failure with a given probability (as in the extreme shock model).
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[28] Montoro-Cazorla, D., Pérez-Ocón, R. and Segovia, M. C. (2009). Shock and wear models

under policy N using phase-type distributions. Applied Mathematical Modelling, 33, 543-

554.

[29] Neuts M.F. (1975). Probability distributions of phase-type. In: Liber Amicorum Prof.

Emeritus H. Florin, 173–206.

[30] Neuts, M. F. (1979). A versatile Markovian point process. Journal of Applied Probability,

16, 764-779.

[31] Neuts M.F. (1981). Matrix-Geometric Solutions in Stochastic Models: An Algorithmic

Approach. The Johns Hopkins University Press, Baltimore.
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