
Japanese Journal of Statistics and Data Science
https://doi.org/10.1007/s42081-022-00165-z

ORIG INAL PAPER

Statistics for COVID-19 Pandemic Data

Exploring the impact of air pollution on COVID-19 admitted
cases

Evidence from vector error correction model (VECM) approach in
explaining the relationship between air pollutants towards COVID-19
cases in Kuwait

Ahmad R. Alsaber1,2,3,4 · Parul Setiya1,2,3,4 · Ahmad T. Al-Sultan1,2,3,4 ·
Jiazhu Pan1,2,3,4

Received: 28 June 2021 / Revised: 10 May 2022 / Accepted: 24 May 2022
© The Author(s) 2022

Abstract
In urban areas, air pollution is one of the most serious global environmental issues.
Using time-series approaches, this study looked into the validity of the relationship
between air pollution and COVID-19 hospitalization. This time series research was
carried out in the state of Kuwait; stationarity test, cointegration test, Granger causality
and stability test, and test on multivariate time-series using the Vector Error Correc-
tion Model (VECM) technique. The findings reveal that the concentration rate of air
pollutants (O3, SO2, NO2, CO, and PM10) has an effect on COVID-19 admitted cases
via Granger-cause. The Granger causation test shows that the concentration rate of
air pollutants (O3, PM10, NO2, temperature and wind speed) influences and predicts
the COVID-19 admitted cases. The findings suggest that sulfur dioxide (SO2), NO2,
temperature, and wind speed induce an increase in COVID-19 admitted cases in the
short term according to VECM analysis. The evidence of a positive long-run asso-
ciation between COVID-19 admitted cases and environmental air pollution might be
shown in the cointegration test and the VECM. There is an affirmation that the usage
of air pollutants (O3, SO2, NO2, CO, and PM10) has a significant impact on COVID-
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19-admitted cases’ prediction and its explained about 24% of increasing COVID-19
admitted cases in Kuwait.

Keywords Air pollution · COVID-19 · Cointegration · Long-run relationship ·
Kuwait

1 Introduction

Healthcare systems must have sufficient resources to meet demand from COVID-19
cases during the epidemic. One of the most essential planning measures is to examine
the association between the daily cases of COVID-19 patients to the concentrations of
five major air pollutants: Ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO),
nitrogen dioxide (NO2), and particulate matter (PM10). Only a few articles use leading
indicators within multivariate time-series models (Nguyen et al., 2021). We used a
multivariate framework called the Vector Error Correction Model to create 30-day-
ahead forecasts using a leading indicator, the local COVID-19 infection incidence, as
well as the rising or decreasing level of daily concentrations of air pollutants (O3, SO2,
NO2, CO, and PM10). This model is also used to generate 60-day scenario estimates
based on various pandemic trajectories. The two-time-series show a steady long-run
relationship, according to our findings. In comparison to a more traditional model
based solely on medical data, the model exhibits a strong fit for the data and good
forecasting performance. Our study proposes a novel model for precise short-term
forecasts and practical scenario-based long-term forecasts of COVID-19 daily cases
in Kuwait utilizing daily air pollution concentrations (O3, SO2, NO2, CO, and PM10)
to aid healthcare decision-making.

The need for hospital administrators to have timely and precise air pollution pro-
jections to plan for surges in hospital demand due to the epidemic spurred our effort.
When hospitals surpass their historical capacity, adequate preparation can help mini-
mize or mitigate demands on hospital resources COVID-19. As a result, a model that
predicts the number of COVID-19-positive patients who will be admitted to a hos-
pital or health system in the short and long term is critical. This COVID-19 hospital
census is vital for making decisions that involve a lot of forethought, such as hiring
more people, building physical beds and rooms, and purchasing critical equipment
(for instance, personal protective equipment and ventilators).

Using univariate time-series models such as Seasonal Autoregressive Integrated
Moving Average (SARIMA), Autoregressive Integrated Moving Average (ARIMA),
and exponential smoothing, past research has shown the utility of forecasting hospital
demands (e.g., hospital admissions, intensive care unit census, and overall hospital
census) (Capan et al., 2016; Earnest et al., 2005; Jones et al., 2008; Konarasinghe,
2020; Nguyen et al., 2021; Roy et al., 2021; Tyagi et al., 2020; Yonar et al., 2020).

In this paper, we seek to acquire further evidence to establish a link between air pol-
lution concentrations of O3, SO2, NO2, CO, and PM10 with daily COVID-19 admitted
cases in Kuwait. Our study’s essential contribution and innovation are as follows:

• To our knowledge, the majority of the existing literature focuses on examining
the relationship between COVID-19 admitted cases and other climatology factors
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like average humidity (Fareed et al., 2020) or examine the correlation between
the average daily temperature and the rate of coronavirus epidemic growth in the
affected regions (Pirouz et al., 2020). However, there is a paucity of literature
that examines the association between daily COVID-19 admitted cases and air
pollution.

• Most notably, this study seeks to explore the dynamic causality between air pollu-
tants (O3, SO2, NO2, CO, and PM10) concentrations rate and the daily COVID-19
admitted cases using the panel Granger causality test based on the vector error
correction model (VECM).

• The VECM was chosen for this study for the following reasons: The method can
allow endogenous variables; theVECMmethodology can provide alternative anal-
ysis channels to analyze causality that is disregarded by the traditional Granger
causality test due to the error correction term (ECM) (Azlina et al., 2014). Mean-
while, the VECM is capable of distinguishing between short-run and long-run
causality (Azlina et al., 2014).

2 Literature review

2.1 Relationship between air pollution and human health

Numerous studies have indicated themajor air pollutants causing adverse health effects
in Saudi Arabia including O3, SO2, NO2, CO and PM10 (Al Mulla et al., 2015; Argy-
ropoulos et al., 2016).

It has been discovered that incomplete burning of Arabian incense produces emis-
sions of CO, PM10, PM2.5, black carbon, and polycyclic aromatic hydrocarbons
(PAHs), all of which have negative health effects on the population who are exposed
to these emissions (Du et al., 2018). Ischemic heart disease (IHD), chronic obstructive
pulmonary disease (COPD), and lung cancer have all been linked to these air pollutants
(Amoatey et al., 2018).

2.2 Impact of air pollution as risk factor to COVID-19 patients

During COVID-19, air pollution was identified as a risk factor in several Italian
research. Among the areas of Northern Italy, a correlation with higher levels of pollu-
tants such as PMs has a considerable impact on human health (Domingo et al., 2020;
Martelletti & Martelletti, 2020). It has also been discovered that people who live in
areas with high levels of air pollution are more likely to acquire chronic respiratory
illnesses and are more susceptible to any infectious agent (Distante et al., 2020).

In China, air pollution has been proven to be positively associated with SARS mor-
tality (Cui et al., 2003). Although COVID-19 risk factors are still being investigated,
it is probable that environmental variables such as air pollution could substantially
impact the epidemic’s spread among the population. In the case of SARS-CoV-2,
many studies have found a significant relationship between air pollution and the rate
at which the virus spreads. Six air pollutants (PM2.5, PM10, SO2, CO, NO2, and O3)
were significantly linked to confirmed cases in 120 Chinese cities from January 23 to
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February 29, 2020, according to the Zhu et al. (2020). The most badly afflicted region
in Europe is the same as the one with the highest concentrations of PM10 and PM2.5,
according to Martelletti and Martelletti (2020). In addition, the majority of fatality
cases were in areas with the highest NO2 concentrations (Ogen, 2020). According to
Bashir et al. (2020) and Sharma et al. (2020), the associations were also confirmed in
California, the United States, and India.

The relationship between atmospheric variables and COVID-19 cases

Finally, for other coronavirus epidemics, it is well documented in the literature how
climatic circumstances can influence transmission, either promoting or reducing it.
Atmospheric variables such as ambient temperature and humidity, as well as sun
irradiation, have various impacts on coronavirus survival, for example, Casanova et
al. (2010) andLauc et al. (2020). This indicates that the coronavirus spread is facilitated
in dry and cold weather. Nonetheless, it is still unknown if and how the SARS CoV-2
virus spreads or is impacted by meteorological factors like other seasonal viruses.
Several recent studies looked at the role of meteorological variables in COVID-19
transmission all over the world. As shown in Pani et al. (2020), studies from China
(Liu et al., 2020; Ma et al., 2020; Shi et al., 2020; Xie & Zhu, 2020), Iran (Ma et al.,
2020), Spain (Briz-Redón & Serrano-Aroca, 2020), USA (Bashir et al., 2020; Gupta
et al., 2020), Indonesia (Tosepu et al., 2020), Norway (Menebo, 2020), and also over
the global (Sobral et al., 2020;Wu et al., 2020) are controversial and TheWorld Health
Organization (WHO) has stated that more research should be focus on how to quantify
how the weather affects the virus’s spread.

2.3 Time-series analysis to predict COVID-19 cases

It is clear from previous research that time-series models such as exponential smooth-
ing, ARIMA, and SARIMA performed well and provided adequate results for
COVID-19 prediction. Many scholars have researched COVID-19 virus infection pre-
dictions. All previous research has established that the ARIMA model is the most
effective for forecasting (Benvenuto et al., 2020; Jain et al., 2021; Murugesan et al.,
2020; Mustafa & Fareed, 2020; Sahai et al., 2020; Sulasikin et al., 2020). Sulasikin
et al. (2020) used three approaches to predict the COVID-19 instances (Holt’s method,
Holt–Wintersmethod, andARIMA). Among the othermodels, theARIMAmodelwas
deemed the best by the author. Furthermore,Nguyen et al. (2021) demonstrated that the
COVID-19 infection incidence could be effectively incorporated locally into a VECM
with the COVID-19 hospital data to improve the existing forecast models and produce
precise short-term forecasts and practical situation-based long-term trajectories.

3 Theoretical notions and themodel

The vector autoregressive model (VAR) for analysis was used to evaluate the hypothe-
sis of the influence of industrial pollution on public health. VAR was chosen, because
it does not need the assumption of exogeneity of variables a priori and allows each
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variable to self-interact and interact with other variables without imposing a theoret-
ical structure on the estimates. A Vector Error Correction Model (VECM) is used to
approximate the impulse response functions if all variables in our VAR cointegrate
with order I (1) and if there are cointegration associations between them. The fol-
lowing multivariate model was studied in the study utilizing the VECM to test the
long-run associations.

The cointegration rank in VECM indicates the number of cointegrating vectors. A
rank of two, for example, suggests that two linearly independent combinations of the
non-stationarity variable are stationary. Any short-term variations between the inde-
pendent variables and the dependent variable will create a stable long-run relationship
between the variables if the error correction model (ECM) coefficient is negative and
significant.

3.1 Data and variables

The data utilized for the study span the months of March 10, 2020 and December
31, 2020. Kuwait Environment Public Authority provided statistics on air pollutants
(O3, SO2, NO2, CO, and PM10) (K-EPA). Kuwait’s Ministry of Health provided the
daily COVID-19 cases (MOH). (https://corona.e.gov.kw/en) presented summary of
the daily COVID-19 cases in Kuwait. All of the variables were converted to their
natural logarithms before using the model.

3.2 Air Quality Index (AQI)

The Air Quality Index (AQI) is a numerical indicator of a region’s air quality. The
AQI scale has the range 0 to 500, with a higher AQI value indicating poor air quality
and a lower AQI (< 100) signifying good air quality in a given area. AQI values
were calculated using 24-h average PM10 and PM2.5, 8-h average CO and O3, and 1-h
average NO2 and SO2 levels in the current study. The maximum AQI observed for a
city was used as the overall AQI.

3.3 Stationarity test

The ability of a series’ stationarity to impact its behaviour is a significant phenomenon.
If the x and y series are non-stationary random processes (integrated), modelling the x
and y relationship as a simpleOLS relationship, as in Eq. (1), will result in amisleading
regression

Yt = α + βXt + εt . (1)

The statistical features of a series over time, such as its mean and variance, are
known as time-series stationarity. The series is considered to be a stationary process
(that is, not a randomwalk/has no unit root) if both are constant across time; otherwise,
the series is defined as a non-stationary process (that is, a random walk/has unit root)
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[see Eq. (2)]

x level xt
x1st-differenced value ∇xt = xt − xt−1

x2nd-differenced value ∇2xt = (∇xt − ∇xt−1) = xt − 2xt−1 + xt−2.

(2)

If a series is stationary without any differencing, it is designated as I (0), or integrated
of order 0. On the other hand, a series that has stationary first differences is designated
I (1), or integrated of order one (1). Augmented Dickey–Fuller test suggested by
Dickey and Fuller (1979), and the Phillips–Perron test recommended by Phillips and
Perron (1988) have been used to test the stationarity of the variables.

3.4 Unit-root test

Spurious regression can be reduced by conducting a unit-root test for each variable
before analysis, because data are used as an all-time-series. Phillips–Perron (PP),
Dickey–Fuller (ADF), and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests were
used, and the results are available in Tables 4, 5, 6, and 7. Non-stationary variables
in an estimated model can lead to spurious results that cannot be used for inferences.
The PP test does not assume homoscedasticity in the error term, but this assumption
is required for the ADF test.

3.4.1 Dickey–Fuller tests (DF test and ADF test)

Dickey–Fuller test (Dickey & Fuller, 1979) is one of the best known and most widely
used unit-root tests. It is based on the model of the first-order autoregressive process
(Box et al., 1970)

yt = φ1yt−1 + εt , t = 1, . . . , T , (3)

where φ1 is the autoregression parameter, and εt is the non-systematic component of
themodel that meets the characteristics of the white noise process. The null hypothesis
is H0 : φ1 = 1, i.e., the process contains a unit root, and therefore, it is non-stationary,
and is denoted as I (1), alternative hypothesis is H1 : |φ1| < 1, i.e., the process does
not contain a unit root and is stationary, I (0). To calculate the test statistic for DF test,
we use an equation that we get if yt1 is subtracted from both sides of Eq. (3)

Δyt = β yt−1 + εt , (4)

where β = φ1 − 1. The test statistic is defined as

tDF = φ̂1 − 1

s
φ̂1

, (5)

where φ̂1 is a least square estimate ofφ1 and sφ̂t is its standard error estimate. Under the
null hypothesis, this test statistic follows the Dickey–Fuller distribution, and critical
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values for this distribution were obtained by a simulation and have been tabulated in
Dickey (1976) and Fuller (1976).

Model (3) can be expanded by a constant or a linear trend

yt = β0 + φ1yt−1 + εt

yt = β0 + β1t + φ1yt−1 + εt . (6)

In the case when a non-systematic component in DF models is autocorrelated,
the so-called Augmented Dickey–Fuller test is constructed (Dickey & Fuller, 1981).
Model (3) is then transformed as

yt = φ1yt−1 +
p−1∑

i=1

γiΔyt−i + εt , (7)

and the following equation is used to calculate the test statistic of the ADF test:

Δyt = (φ1 − 1) yt−1 +
p−1∑

i=1

γiΔyt−i + εt . (8)

3.4.2 Phillips–Perron test (PP test)

There is typically a problem selecting lag p in the regression model when unit-root
testing time-series generated by a process with the autocorrelated and heteroscedastic
non-systematic component. Instead of using appropriate autocorrelation models to
describe the autocorrelation structure of the generating process, Phillips and Perron
(1988) employed the usual Dickey–Fuller test with non-parametrically adjusted test
statistics. This test is also founded on the models (3) and with the variation being that
the linear trend in the last model is replaced by a time variable that is centred.

3.4.3 KPSS test

The null hypothesis states that the time-series yt is integrated of order one, I (1), as
tested by all of the following tests. The KPSS test describes the opposite case, namely
testing the null hypothesis that the time-series yt is I (0) (Kwiatkowski et al., 1992).

The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test determines whether a time-
series is stationary or non-stationary around a mean or linear trend due to a unit root.
A stationary time-series has statistical qualities that remain constant across time, such
as the mean and variance.

The KPSS test is based on linear regression. It breaks up a series into three parts:
a deterministic trend (βt ), a random walk (rt ), and a stationary error (εt ), with the
regression equation

xt = rt + βt + ε1. (9)
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If the data are stationary, it will have a fixed element for an intercept or the series will
be stationary around a fixed level (Wang, 2006).

The test uses ordinary least squares (OLS) find the equation, which differs slightly
depending on whether you want to test for level stationarity or trend stationarity
(Kočenda & Černỳ, 2015). A simplified version, without the time trend component,
is used to test level stationarity.

Data are normally log-transformed before running the KPSS test, to turn any expo-
nential trends into linear ones.

3.5 Johansen and Juselius cointegration test

Johansen procedures (Johansen & Juselius, 1990) use two tests to determine the num-
ber of cointegration vectors: the Maximum Eigenvalue test and the Trace test. The
Maximum Eigenvalue statistic tests the null hypothesis of r cointegrating relations
against the alternative of r + 1 cointegrating relations for r = 0, 1, 2 . . . n − 1. This
test statistics are computed as

LRmax(r/n + 1) = −T ∗ log(1 − λ̂), (10)

whereλ is themaximumeigenvalue andT is the sample size. Trace statistics investigate
the null hypothesis of r cointegrating relations against the alternative of n cointegrating
relations, where n is the number of variables in the system for r = 0, 1, 2 . . . n − 1.
Its equation is computed according to the following formula:

LRtr(r/n) = −T ∗
n∑

i=r+1

log(1 − λ̂i ). (11)

In some cases, trace and maximum eigenvalue statistics may yield different results,
and Alexander (2001) indicates that in this case, the results of trace test should be
preferred.

3.6 Granger causality test

Initially, we will assume that all variables are stationary. If the original variables have
unit roots, then we assume that differences have been taken, such that the model
includes the changes in the original variables (which do not have unit roots).

When we investigated Granger causality between X and Y , we began with an
Autoregressive Distributed Lag Model ADL(p, q) model for Y as the dependent vari-
able.

An ADL(p, q) model assumes that a time-series Yt can be represented by a linear
function of p of its lagged values and q lags of another time-series Xt

Yt = β0 + β1Yt−1 + β2Yt−2 + · · · + βpYt−p

+δ1Xt−1 + δ2Xt−2 + · · · + δq Xt−q + ut (12)
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is an autoregressive distributed lag model with p lags of Yt and q lags of Xt , where

E (ut | Yt−1,Yt−2, . . . , Xt−1, Xt−2, . . .) = 0. (13)

We used this model to investigate if X Granger caused Y . We then went on to consider
causality in the other direction, which involved switching the roles of X and Y in the
ADL. In particular, X became the dependent variable. We can write the two equations
as follows:

Yt = α1 + δ1t + φ11Yt−1 + · · · + φ1pYt−p + β11Xt−1 + · · · + β1q Xt−q + ε1t

Xt = α2 + δ2t + φ21Yt−1 + · · · + φ2pYt−p + β21Xt−1 + · · · + β2q Xt−q + ε2t .

(14)

The first of these equations tests whether X Granger causes Y ; the second, whether
Y Granger causes X . Note that now the coefficients have subscripts indicating which
equation they are in. The errors now have subscripts to denote the fact that they will
be different in the two equations.

3.7 Cointegration andVECM

Whencointegration is identifiedbetween series, it is known that there exists a long-term
equilibrium relationship between them, so we use VECM to evaluate the cointegrated
series’ short-run features. If there is no cointegration, we skip VECM and go straight
to Granger causality tests to determine the causal associations between variables. The
regression equation form for VECM is as follows:

ΔYt = α1 + p1e1 +
n∑

i=0

βiΔYt−i +
n∑

i=0

δiΔXt−i +
n∑

i=0

γi Zt−i

ΔXt = α2 + p2et−1 +
n∑

i=0

βi Yt−i +
n∑

i=0

δiΔXt−i +
n∑

i=0

γi Zt−i . (15)

All variables are transformed in their log forms to mitigate inconsistency in the
data and ease interpretation of the results via elasticities, the following is the empirical
specifications for the model can be quantified as:

COVID19t = β0+β1[O3]t−1+β2[CO]t−1 + β3[SO2]t−1+β4[PM10]t−1+β5[SO2]t−1

+β6[NO2]t−1 + β7[Temp]t−1 + β8[RH]t−1 + β9[WS]t−1 + εt , (16)

where COVID-19 admitted cases are the dependent variable, while O3, SO2, NO2, CO,
PM10, temperature, relative humidity (RH), and wind speed (WS) are the explanatory
variables in days t , εt is the error term, and β0, β1, β2, β3, β4, β5, β6, β7, β8 and β9
are the elasticities to be estimated.
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However, a linear function can be used to express the relationship between number
ofCOVID-19 cases and air pollution inKuwait, as showed in the following expression:

COVID19t = f (O3t ,COt ,PM10t ,SO2t ,NO2t ,Temp,RH,WS) . (17)

Vector autoregression (VAR) model is first considered in the study following the work
of Asumadu-Sarkodie and Owusu (2016), Chang (2010) and Gul et al. (2015).

Which can be expressed as

Yt = δ + A1Yt−1 + · · · + ApYt−p + εt . (18)

The corresponding VEC model can be expressed as

Δyt = βy0 + βy1Δyt−1 + · · · + βypΔyt−p + γy1Δxt−1

+ · · · + γypΔxt−p − λy (yt−1 − α0 − α1xt−1) + v
y
t (19)

Δxt = βx0 + βx1Δyt−1 + · · · + βxpΔyt−p + γx1Δxt−1

+ · · · + γxpΔxt−p − λx (yt−1 − α0 − α1xt−1) + vxt , (20)

where yt = α0 + α1xt is the long-run cointegrating relation existing between two
variables of interest, and λy and λx are the error correction parameters measuring the
reaction of y and x towards the deviations from long-run equilibrium

Long run and cointegration between variables can be examined via several methods
[e.g., Engle&Granger 1987, Johansen’s method (Johansen, 1995), Dynamic Ordinary
Least Squares (DOLS), Fully Modified Ordinary Least Squares (FMOLS), and VEC
models] for which variables need to be either I (1) or there needs to be prior knowledge
and specification of variables as I (0) and I (1).AnARDLmodel can be used to estimate
cointegration among variables at either I (0) or I (1) without the need to pre-specify
which variables are I (0) or I (1) (Pesaran et al., 1995). Furthermore, an ARDL model
does not require symmetry lag lengths and can have different number of lag terms
unlike other cointegration estimation methods (Pesaran et al., 1995). In the present
study, the long-run equilibrium relationship between number of COVID-19 cases
and the independent variables (SO2 and O3) was estimated using the VEC model of
cointegration.

4 Results and discussion

4.1 The descriptive statistics

Table 1 shows the descriptive statistics for the air pollutant variables. The mean value
corresponding to O3, CO, PM10, SO2 and NO2 was 24.82 ± 7.20, 9.11 ± 3.61,
79.51 ± 24.45, 11.24 ± 5.21, and 26.72 ± 13.00, respectively. It is also evident that
except O3, all the pollutants were positively skewed, i.e., mean values of these pollu-
tants were high as compared to the median value. Moreover, Shapiro–Wilk test shows
that the distributions of the variableswere significantly differ fromnormal distribution.
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Table 1 Descriptive statistics

O3 CO PM10 SO2 NO2

Mean 24.818 9.112 79.511 11.239 26.719

Median 25.398 8.184 76.334 10.001 24.529

Std. deviation 7.202 3.611 24.452 5.214 12.996

Skewness 0.026 1.969 2.542 1.383 0.514

Kurtosis 0.514 6.324 11.931 2.325 0.521

Shapiro–Wilk (SW) 0.991 0.844 0.813 0.895 0.959

P-value of (SW) 0.066 < 0.001 < 0.001 < 0.001 < 0.001

Minimum 9.250 3.791 35.357 3.802 5.154

Maximum 42.226 28.445 234.057 34.443 64.515

25th percentile 19.249 6.618 67.104 7.523 15.502

50th percentile 25.398 8.184 76.334 10.001 24.529

75th percentile 29.755 10.936 87.004 13.906 35.561

Therefore, log-transformation will be applied on the variables to convert the distribu-
tion of the variable to be normal distribution, before performing any further analysis.
Minimum, maximum and percentile values of the pollutants are also shown in Table 1.

Descriptive statistics for daily climatology variable (RH, Temp, WD, and WS),
COVID-19 cases, and COVID-19 deaths are shown in Table 2. Themean value for RH,
Temp, WD, and WS is 35.51 (SD = 20.06), 30.26 (SD = 7.96), 206.138 (SD = 54.48),
and 2.18 (SD = 0.66), respectively. Moreover, on an average, 506 cases of COVID-
19 and 3 deaths due to COVID-19 were reported in the study period. Results of
Shapiro–Wilk test shows that the distributions of the climatology parameters, COVID-
19 cases, andCOVID-19 deathswere different from the normal distribution. Therefore,
log-transformation will be applied on the variables to convert the distribution of the
variables to be normal. The value of other test statistics, i.e., median, skewness, kur-
tosis, minimum, maximum, and percentile for each variable is also shown in Table 2.

4.2 Correlation analysis

Table 3 present results of the correlation analysis for air pollutants, climatology param-
eters, and COVID-19 cases. A strong significant positive correlation was observed
between temperature and COVID-19 cases (rp = 0.61), indicated that as the value of
temperature increases, COVID-19 cases also increase, whereas a negative significant
correlation was observed between RH and COVID-19 cases (rp = −0.49), indicated
that as the value of relative humidity (RH) increases, COVID-19 cases decrease.More-
over, a small effect of O3 (rp = 0.25), CO (rp = 0.24), PM10 (rp = 0.18) and NO2
(rp = 0.22) was also observed on COVID-19 cases.
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4.3 Results of Granger causality test

Granger causality test has been conducted to check if the series of independent vari-
ables is useful for making prediction or not. Results of the Granger causality test have
been shown in the following subsection.

4.3.1 Results of the unit-root tests

Unit-root tests for each variable were conducted before the main analysis to avoid
spurious regression in time-series research (Mahadeva & Robinson, 2004). Some air
pollutant and climatology parameters were significantly associated with COVID-19,
so VECM analysis was done to assess the short- and long-term relationship of these
variables. Since non-stationary series may also product spurious regression results for
VECM (Asari et al., 2011; Latief et al., 2021), stationary tests on the time-series data
were performed using the conventional Augmented Dickey–Fuller (ADF-GLS), and
Phillips–Perron (PP) and KPSS Tests. ADF results are shown in Tables 4 and 5, and
PP and KPSS tests are shown in Tables 6 and 7.

Tables 4 and 5 present the results of the ADF-GLS unit roots test in levels and first
differences (results with constant are presented in Table 4, and results with constant
and trend are presented in Table 5). The results of test confirm that all variables used
in research (COVID-19 cases, O3, SO2, NO2, CO, and PM10) are integrated of first
order I (1). The ADF-GLS test results for COVID-19 cases, CO, PM10 and SO2 where
the null hypothesis of non-stationarity is rejected for levels (test with constant), what
means that recreation COVID-19 cases because of air pollution (CO, PM10 and SO2)
could be a stationary process. In addition to that, the ADF-GLS (test with constant and
trend (c + t)) results for O3, SO2, NO2, CO, and PM10 where the null hypothesis of
non-stationarity are rejected for levels, what means that recreation COVID-19 cases
because of air pollution (O3, SO2, NO2, CO, and PM10) could be a stationary process
over a trend. However, the KPSS test (where the null hypothesis of stationarity is
rejected for levels) suggest the first order of integration (I (1)) for all variables except
SO2 (see Table 6). Because of the inconsistency in ADF test, we diced to take the
KPSS test results under consideration. Hence, all variables except SO2 in levels are
I (1) variables, and then, the cointegration analysis were conducted in next step.

ADF root test with constant shows that the time-series for pollutants CO, PM10,
SO2 and series of COVID-19 cases is stationary at 5%-level Dickey–Fuller criterion,
whereas series of O3 and NO2 was stationary at first difference (Table 4). The results
of ADF test with constant and trend demonstrate that the series of all the pollutants
are stationary at level, whereas series of COVID-19 was stationary at first difference
(Table 5). The results of PP unit-root test shows that the series of all the pollutant
variables and COVID-19 cases is stationary at level as well as on the first difference
(Table 7). The results of KPSS test shows that the series of all the pollutants (except
SO2) and COVID-19 cases are non-stationary at level, though all the series are found
to be stationary at first difference (Table 6).
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Table 8 Lag selection criterion VAR test using trend model with the endogenous series Log(COVID-19
Kuwait), Log(O3), Log(SO2), Log(NO2), Log(CO), and Log(PM10) with weather factors (temperature,
relative humidity, and wind speed)

Lags Loglik p(LR) AIC BIC HQC

1 −1325.47546 10.322286 11.620908* 10.843401*

2 −1214.66729 0.00000 10.106285 12.467416 11.053767

3 −1130.15629 0.00000 10.080843* 13.504483 11.454692

4 −1067.99268 0.00141 10.217338 14.703487 12.017554

5 −1012.44854 0.01490 10.401801 15.950459 12.628384

6 −946.13449 0.00026 10.508221 17.119388 13.161171

7 −902.00189 0.27205 10.775376 18.449052 13.854693

8 −850.35647 0.04809 10.988090 19.724275 14.493774

9 −771.15278 0.00000 11.001107 20.799801 14.933158

10 −706.61080 0.00055 11.120368 21.981571 15.478786

LogLik log-likelihood, p(LR) likelihood ratio test (LR), AIC Akaike criterion, BIC Schwarz Bayesian
criterion, HQC Hannan–Quinn criterion
*Stationarity at 5% significance levels,**stationarity at 1% significance levels

4.3.2 Estimation of VARmodel

After checking the stationarity of the series, the next step is to determine the number
of optimal lags. To choose the number of lags need to be included in the VAR model,
VARselect function has been taken into consideration. This function calculates three
different information criteria across a number of different lags (up to a maximum
specified within the function) and chooses the lag that has the lowest information
criteria for each of the three statistics. The asterisks symbol indicate the best values
under the respective information criteria, AIC = Akaike criterion, BIC = Schwarz
Bayesian criterion, and HQC = Hannan–Quinn criterion. Table 8 illustrates the results
of lag order statistics. Akaike information criteria statistics suggests that the optimal
lag order for the model is 3.

4.3.3 Johansen cointegration tests

The long-term relationship among variables was checked with the Johansen cointe-
gration test (Johansen, 1995) by max-eigenvalue and trace methods (Table 9). Based
on these results and a 5% significance level, we reject the null hypothesis of no coin-
tegration (r = 0, trace test = 252.42, p = 0.00) and fail to reject the null hypothesis
that there are one or two cointegrating equations in the multivariate model.

This reveals that there exists at least one level of cointegration equation, which
indicated that the variables have long-term relationship. Furthermore, the results of
cointegration test show that exist at most two level of cointegration (r ≤ 2, trace
test = 134.04, p = 0.0127) between the times series of Log(COVID-19 Kuwait),
Log(O3), Log(SO2), Log(NO2), Log(CO), and Log(PM10) (Table 9).
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Table 9 Johansen test for selecting the number of cointegration that reflect linear combination of underlying
series to form a stationary series for Log(COVID-19 Kuwait), Log(O3), Log(SO2), Log(NO2), Log(CO),
and Log(PM10) with weather factors (temperature, relative humidity and wind speed)

Rank Eigenvalue Trace test p-value Lmax test p-value

r = 0 0.19194 252.42 0.0000 62.016 0.0169

r ≤ 1 0.17608 190.40 0.0003 56.361 0.0143

r ≤ 2* 0.14023 134.04 0.0127 43.969 0.0335

r ≤ 3 0.10147 90.070 0.1142 31.136 0.3658

r ≤ 4 0.072278 58.934 0.2709 21.832 0.6292

r ≤ 5 0.053531 37.102 0.3469 16.010 0.6704

Table 10 Cointegration regression for the times series of Log(COVID-19 Kuwait), Log(O3), Log(SO2),
Log(NO2), Log(CO), and Log(PM10)withweather factors (temperature, relative humidity, andwind speed)
using the model with constant and trend term

Coefficient Std. error t-ratio p-value

Const 1.86215 0.982174 1.896 0.0590

Log(O3) 0.515990 0.161498 3.195 <0.001**

Log(CO) 0.218875 0.158709 1.379 0.1689

Log(PM10) 0.383031 0.151655 2.526 0.0121*

Log(SO2) −0.00739348 0.101779 −0.07264 0.9421

Log(NO2) −1.21305 0.114179 −10.62 <0.001 **

Log(RH) −0.00947287 0.00369657 −2.563 0.0109*

Log(Temp) 0.102469 0.00816087 12.56 <0.001 **

Log(WS) −0.440439 0.0673461 −6.540 <0.001 **

Time 0.0115185 0.000844428 13.64 <0.001**

Dependent is Log(COVID-19 Kuwait), *stationarity at 5% significance levels, **stationarity at 1% signif-
icance levels. R-squared = 0.791, adjusted R-squared = 0.785, Akaike criterion = 537.269, Durbin–Watson
= 0.797

Moreover, Engle and Granger (1987) suggested a two-step process to test the coin-
tegration (an OLS regression and a unit-root test). According to Engle and Granger
(1987), if a set of variables are cointegrated, then there exists a valid error correction
representation of the data, and vice versa. Therefore, an analysis of OLS regression
and error correctionmodel has been performed to testing the cointegrating relationship
(r = 2) in a system of k = 2, I (1) variables. The results of cointegration regres-
sion analysis (Table 10) confirm that there is a long relationship between the series
Log(COVID-19 Kuwait), Log(O3), Log(SO2), Log(NO2), Log(CO), and Log(PM10).
Figure 1 shows the simultaneous variation of Log(COVID19) with Log(O3) and
Log(SO2).
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Table 11 VECM equation that predicting COVID19 cases with restricted trend, lag order = 3, and cointe-
gration rank order = 2

Coefficient Std. error t-ratio p-value

Const 0.345343 0.487003 0.7091 0.4789

Δ log(COVID19)lag=1 −0.312405 0.0623067 −5.014 <0.0001***

Δ log(COVID19)lag=2 −0.143473 0.0579692 −2.475 0.0139**

Δ log(O3)lag=1 −0.122409 0.114960 −1.065 0.2879

Δ log(O3)lag=2 0.007500 0.112985 0.06638 0.9471

Δ log(CO)lag=1 −0.113318 0.124636 −0.9092 0.3641

Δ log(CO)lag=2 −0.026752 0.120734 −0.2216 0.8248

Δ log(PM10)lag=1 −0.178503 0.111194 −1.605 0.1096

Δ log(PM10)lag=2 −0.141589 0.0928460 −1.525 0.1284

Δ log(SO2)lag=1 −0.152499 0.0670539 −2.274 0.0237**

Δ log(SO2)lag=2 0.045896 0.0670338 0.6847 0.4941

Δ log(NO2)lag=1 0.348294 0.109700 3.175 0.0017***

Δ log(NO2)lag=2 0.147046 0.0987793 1.489 0.1377

Δ log(Temp)lag=1 0.053360 0.0166922 3.197 0.0016***

Δ log(Temp)lag=2 0.001178 0.0168422 0.06994 0.9443

Δ log(RH)lag=1 0.006932 0.00281235 2.465 0.0143**

Δ log(RH)lag=2 −0.002858 0.00296389 −0.9642 0.3358

Δ log(WS)lag=1 0.051015 0.0524016 0.9735 0.3312

Δ log(WS)lag=2 0.118484 0.0467846 2.533 0.0119**

EC1 −0.056697 0.027537 −2.059 0.0405**

EC2 −0.014895 0.013930 −1.069 0.2859

Mean dependent var 0.012207 SD dependent var 0.356198

Residual sum of squares 27.82260 SS.E. of regression 0.320416

R-squared 0.249 Adjusted R-squared 0.191

rho −0.0381 Durbin–Watson 2.0428

*, **, *** imply that we can reject the null hypothesis at 10%, 5% and 1% significant levels, respectively

4.4 Determination of optimal VECM

VECM analysis with restricted constant and restricted trend results is shown in
Table 11. Past COVID-19 cases, NO2, SO2, Temp, RH and WS, were significantly
associated with future COVID-19 cases in Kuwait. The Error CorrectionModel (ECT)
shows how fast variables return to long-run equilibrium when a cointegration rela-
tionship exists. EC1 is negative and significant indicating a long-run causality of
future COVID-19 cases with past COVID-19 cases. The error correction term explains
5.102% disequilibrium of COVID-19 cases in Kuwait compared to other variables.
The speed of adjustment at 5.102% towards the long run is also explained at the 1%
significance level.
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Fig. 1 Daily time-series for Log COVID-19 Kuwait compared with Log(O3), Log(SO2), Log(NO2),
Log(CO), and Log(PM10)

Figure 2 shows the future trend of COVID-19 using VECM. From Fig. 2, it can be
observed that the forecasted value shows a linear trend and the predicted value lies
within 95% the confidence interval.

5 Conclusion and recommendations

The primary goal of the current study is to look into the association between
changes in daily admitted COVID-19 cases and air pollution levels during the Corona
pandemic from March to December 2020. Medical analysts, policymakers, environ-
mental decision-makers, and anyone interested in measuring the causality relationship
between daily admitted COVID-19 cases and air pollution, such as the World Health
Organization (WHO), through a series of policies for this situation. Based on a descrip-
tive analysis of the variables, the association between air pollutants (O3, SO2, NO2,
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CO, and PM10) and daily admitted COVID-19 patients has been established; this is
consistent with the literature reviewed. This research used the vector error corrected
model (VECM) with cointegration technique to look at the long- and short-run associ-
ation between the effect of air pollution (O3, SO2, NO2, CO, and PM10) and the daily
admitted COVID-19 cases. We discovered that for COVID-19 patients, a greater AQI
was linked to a higher number of hospitalizations.

The outcomes for COVID-19 patients showed that increasing the air quality index
has a positive and significant effect on increasing the admitted number of COVID-
19 patients. The lags of the dependent variable are significant until the second lags,
implying that increasing the air quality index, particularly for O3 and SO2, affects
increasing the number of COVID-19 patients with long delays. The model for cor-
recting errors revealed that about 7% of the short-term imbalance is rectified in the
event of a shock to achieve long-term balance in just one day. In the long run, boosting
the air quality index for O3 and SO2 has been successful in increasing the admitted
number of COVID-19 patients.

The coefficient of the air pollution index is positive and substantial for COVID-19
patients who are hospitalized. This suggests that raising the air quality index (O3 and
SO2) can increase the number of COVID-19 patients that are admitted to the hospital.
This is in line with a study that found a link between COVID-19 infection and air
pollution, which has a significant impact on infection and mortality rates (Frontera
et al., 2021). Using a time-series method, another study in Chile, Dales et al. (2021),
found a significant association between acute IQR increases in CO, NO2, and PM2.5
and increases of around 6% in daily COVID-19 associated deaths.
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When the health variables were examined, it was shown that themajority of the peo-
ple infected with COVID-19 were already exposed to air pollution, because Kuwait’s
regions have significant pollution rates. The biggest cause of pollution has been air pol-
lutants emitted by cars and businesses (Hamoda et al., 2020). COVID-19 impacts the
human respiratory system, and people who are already susceptible to the respiratory
disease have a propensity to be affected by the pandemic (Ghanim, 2021).

COVID-19’s lockdown analyzed human activities, mostly involving vehicle usage
and public transportation, as well as industrial processes (Gautam, 2020; Pata, 2020;
Shehzad et al., 2020). The importance of air pollution andCOVID-19 has been demon-
strated in numerous studies. The spread of COVID-19 has been found predominant
through airborne bio-aerosol droplets together with various aspects of urban air pol-
lution (Fareed et al., 2020). Past exposure to air pollution has led to an increase in
the cases of COVID-19. The ability to transfer these viruses is demonstrated by air
pollution.We approximated the error correction model based on the VECM procedure
to obtain short-term coefficients after investigating the long-term findings. The results
show that while O3 and SO2 have an increasing short-term effect, they have a long-
term positive effect on the daily admitted COVID-19 case. The error correction term
(ECT) is statistically significant and has a negative value, indicating that a deviation
from the long-term equilibriumwill be repaired. The findings show that the short-term
coefficients of O3 and SO2 are lower than the long-term coefficients.

Our research has several limitations. We have to revert to the air quality index
as a measure of air pollution level due to inadequate reporting on certain pollutants.
This, however, may obscure the impact of certain contaminants on the number of
hospitalizations. Furthermore, because our estimates focused on a single link between
factors, any ascribed cost estimation should be cautiously approached. Other aspects,
such as humidity, wind speed, and seasonality level, may need to be adjusted in the
model (winter, autumn, spring, and summer). However, because their data were not
available or valid in this study, we did not alter them.

Other time-series methods, such as the vector autoregression (VAR) model, which
is one of the most effective, flexible, and user-friendly models for multivariate time-
series analysis, could be recommended for future investigations. The basic model for
studying a stationary time-series in terms of two polynomials is the autoregressive-
moving average (ARMA) process. Other multivariate time-series analysis techniques
include Vector Autoregression Moving-Average (VARMA), VARMAX (VARMAX
with Exogenous Regressors), and Holt Winter’s Exponential Smoothing (HWES). A
spatial multivariate time-series approach could be used to assess the distance between
a job or a living area and a pollution source. Furthermore, taking critical key elements
like wind speed and air humidity into account can help to minimize the disruption of
damaged components.
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