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Deep Neural Network Hard Parameter Multi-Task
Learning for Condition Monitoring of an Offshore Wind
Turbine

Abstract

Breaking the curse of small datasets in machine learning is but one of the major challenges
that cause several real-life prediction problems. In offshore wind application, for instance, this
issue presents when monitoring an asset in an attempt to reduce its infant mortality failures.
Another challenge could emerge when reducing the number of sensors installed in order to limit
the investment in monitoring systems. To tackle these issues, the aim of this article is to
investigate the impact of small data-set on conventional machine learning methods, and to
outline the improvement achievable by the implementation of transfer learning approach. It
provides a solution to mitigate this issue by applying a hard parameter multi-task learning
approach to the supervisory control and data acquisition data from an operational wind turbine,
allowing for smaller datasets to efficiently predict the status of the gearbox’s vibration data.
Two experiments are carried out in this paper. The first is to envisage the possibility of using
hard parameter transfer on the operational data from two wind turbines. The second is to
compare the results of this model to the findings from a conventional deep neural network
model trained on the data from a single turbine.
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1 Introduction

Consistency is a great way of de-risking offshore wind, but unfortunately, some failures are inherent.
As the popularity of wind turbines increases globally so do the varying effects which make the
failures of the structure more difficult to predict. Furthermore, new technologies and optimised
designs can suddenly fail due to quality or stress related failures, respectively. This type of failure is
termed infant mortality failure, causing a potential significant loss in revenue, especially if employed
in the offshore wind sector.
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Anomalies detection and failure modes diagnosis can be utilised to identify the structural health of
offshore wind turbine components, by using intelligent computing such as artificial neural networks.
Richmond et. al [10] performs a stochastic assessment of the aerodynamics of an offshore wind
turbine using an artificial neural network among other machine methods to determine wind speeds
and directions. By extending this work, one could make assumptions on the fatigue life of an
offshore wind turbine. Bao et al. [1] utilise a one-dimensional convolutional neural network to
determine the occurrence of damage to the support structure of an offshore wind turbine. In this
example, the examination looks at localised damage to a jacket support structure under regular
waves with an incredibly high accuracy of 98.4%.

Artificial neural networks have been used to examine the ‘life percentage’ of an offshore wind
turbine based on the failure time distributions. Yang et al. [15] apply a two-level failure probability
procedure for the gearbox, the rotor, the pitch mechanism and the generator. This simplified
method has shown that condition-based maintenance schemes can reduce the cost of preservation
compared to classic time-based maintenance, where regular intervals are used to assess the asset. A
breakdown of convectional models suited to wind turbine maintenance is discussed in [2] . The
components of the drive-train have the potential highest impact on the maintenance cost of the
next generation of offshore wind farms [3]. These are among the most expensive components for an
offshore wind turbine, and are continuously undergoing remodelling where innovations are to
accommodate bigger power outputs [4] with larger loads. Condition Monitoring (CM) signals, in
combination with high-frequency Supervisory Control and Data Acquisition (SCADA) data have
been extensively used to train machine learning (ML) models to predict failures in the drive-train
components [11] [12]. In [11], Stetco et al. document the state-of-the-art ML methods and
processes for the wind turbine condition monitoring. Tautz-Weinert and Watson [12] examine and
discuss the effectiveness of the numerous ML methods based on the type and amount of data
available. However, the information available from the literature mainly focuses on training the
algorithms based on the availability of relatively big sets of data – generally for at least more than
three years. The authors, thus, identified a knowledge gap in the field of offshore wind applications
regarding the investigation of a detection algorithm suitable for small datasets.

1.1 Conventional Machine Learning Versus Multi-Task Learning
Conventional ML typically involves optimising for a particular task T = (y, f(x)), where y is the
output feature domain and f(x) is the predicative function made up of X feature data. The model
is trained for a single task, this generally may achieve an acceptable performance for a single
domain D = (x, p(x)) of marginal probability distrabution p(x), but by focusing on one signal task
we ignore information that may help us do better on other metrics relating to that task. By sharing
representations of a global task trained on the source domain Ds and target domain Dt, with a
similar probability distribution, we may be-able to better represent our general task. This is
Multi-Task Learning.

A benefit of multi-task learning is that knowledge can be transferred. Inductive transfer learning is
a sub category of transfer learning. Where an accurate model is usually trained on the source
domain Ds to determine the hypothesis space, this article implements the hard-parameter transfer
technique of inductive transfer. The hypothesis space generated by hard parameter transfer can
help improve the target task results. Particularly, if there are small amounts of data or class labels
for the target task. Performing inductive transfer learning using source domain data to train the
general model and applying the target task data for fine tuning can lead to a more accurate
model[9].



The Science of Making Torque from Wind (TORQUE 2022)
Journal of Physics: Conference Series 2265 (2022) 032091

IOP Publishing
doi:10.1088/1742-6596/2265/3/032091

3

The multi-task learning (MTL) theory has been employed across many fields of application requiring
a supervised prediction of one or more classes; two-stage facial recognition [14], quality assessment
of fetal head ultrasonic assessment [8], or for bandwidth allocation for multiple mobile users [6].
The MTL models come in a plethora of forms: joint learning, learning to learn, and learning with
an auxiliary task, are among some of the names that have been allocated to its predictive
assignment. To generalise the need for its application, it can be stated that a MTL approach is
worth being investigated as soon as the problem requires optimising for more than one task.

1.2 Problem statement and scope of the analysis
The availability data from offshore wind turbines is limited, with CMS data on the generators is less
accessible. When wind turbines are installed this restricts the amount of data available. This is a
sensitive period where novel failure events are more likely to happen in the early stages of the
structure (infant mortality failures). Additionally, low-cost monitoring campaigns might be
preferred to reduce the cost related to the hardware and the storage of data, limiting the amount of
assets with SCADA or CMS systems. To address this issue, this work aims to apply a data-driven
multi-task learning approach to monitoring the health status of an offshore wind turbine
gearbox.

The purpose is to demonstrate how a hard parameter transfer model can achieve greater results
than a conventional machine learning model when applied to a limited amount of training data.
Therefore, the scope of this paper is to make a step towards understanding of the setup of a
suitable monitoring algorithm based on CMS with a small set of data of an offshore wind turbine
gearbox.

The remainder of this article provides a discussion of the literature and the theoretical basis the of
MTL method in Section 1. In Section 2, the methodology of this study is introduced, with details
on the methods applied for the data pre-processing, the model training, and the evaluation metrics
used to determine the effectiveness of the detection. Section 3 includes the results highlighting the
main findings and showing the clear context for which MTL is effective, to finally closes with a
discussion and conclusion.

2 Methodology

This section introduces the methodology for training and comparing models predicting, in binary
form, the status of an offshore wind turbine gearbox. The data collected, pre-processing, and their
division into data-sets for the training of a conventional and a MTL algorithm are introduced. The
overall workflow for the training of the models is described in detail. Finally, the metrics used for
the evaluation of the models are defined.

2.1 Data Collection
The analysis presented in this paper is built on time-series data from one MW offshore wind
turbines, in normal operation. The signals from the SCADA and condition monitoring (CM)
systems consist of eight monitoring channels, recorded with a ten-minute resolution. These
channels include meteorological information, the operational data of the wind turbine, and the
vibration data from the gearbox, with the associated flag warning raised in case of anomalies. This
latter provides the (binary) label targeted in the training of the classification models.

There are two data-sets, the source domain data contains 31804 time-steps (220 operational days)
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is collected from a turbine. From another turbine of the same population, considered homogeneous.
The target domain data, has a reduced length of 8141 time-steps These two data-sets are, thus,
representative of an existing wind turbine and a newly installed turbine. Both wind turbines have
the same form and hence similar distributions in each of the identical features. The source domain
data has alarm signatures for total of 19% of the data set and the target domain data has a similar
a portion with 18%.

2.2 Data Pre-processing
The data-sets used for the training and testing of a machine learning algorithm generally require
some pre-processing to ensure satisfactory performances of the prediction model. The application
in this paper consists of a two-step procedure. First, a data cleaning process is performed for
removing outliers and missing values. For the treatment of missing values, time instances of the
database are removed from the analysis if over 50% of the data is missing. The outlier removal is
processed by removing vector instances where the values should be scalar. For the remainder of the
data, a K-nearest neighbours (K-NN) imputation method is applied [13].

The last step is to split the data into training, and testing sets. In the specific of this experiment,
80% of the data is employed for the training of the models, while the remaining 20% is used for the
final testing.

Figure 1: Flowchart detailing the data flow and construction of the conventional model on the left
and the multi-task learning model on the right.

2.3 Models
The MTL model is built up in two training stages, with information being leveraged from two
data-sets. The knowledge acquired from the source domain data Ds with a greater number of
samples is used to train, a feature extractor (regression model). Taking the SCADA data, and
making predictions on the vibration data from the gearbox. A classifier is connected to this first
model, and uses a hard parameter transfer to merge the last neurons from the artificial neural
network to the first layer of the convolutional neural network (classification model). The weights of
the neurons of the regression model are fixed, and the remaining weights of the model are trained
using the small target domain Dt data-set.

The conventional model takes the same architectural form as the regression and the convolutional
neural network classifier together, but it is just trained by only using the target domain data Dt,
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smaller data-set. Therefore, the model receives the SCADA data as the input, and it outputs the
anomalous behaviour of the gearbox. Both models have the same desired task but one model uses
hard-parameter transfer to transfer knowledge and increase the amount of knowledge representing
the anomalous behaviour, since it has two outputs the CMS vibration predictions and the binary
error message.

2.3.1 Training of the models

Three distinct models are trained for the purpose of this paper. One is the feature extraction
model, another is the classification model used for the MTL procedure, and the last is a
conventional classification model.

The transfer learning model is built up of three blocks, as it can be observed in Figure 1. The
feature extractor; this takes in input from the meteorological data, the wind turbine operational
data, and the gear oil temperature, and then outputs the gearbox vibration features. This model is
built up with a deep neural netowrk (DNN) architecture. In particular, it consists of 14 sequential
layers all implementing a rectified linear unit (RELu) activation function. Utilising a uniform
variance scaling [5] allows the neural network to train extremely deep rectified models directly from
scratch. The optimiser for the regression feature extraction is called ‘Adam’, which is derived from
the adaptive moment estimation [7]. This is effective for noisy, nonlinear data.

Hard parameter MTL is carried out using the classification model highlighted in Figure 1. This
convolutional neural network (CNN) architecture is exactly the same as the classifier used for the
conventional model. Both classifiers feature one convolutional layers of width 64, and similarly
utilise the RELu activation function. This is followed by a drop out of 0.5 to further four layers of a
one-dimensional convolution, which implements the sigmoid function - commonly used in
classification models. The kernel initialisation of the weights for the CNN uses uniform variance
scaling. A standard gradient descent with Nesterov Momentum is employed to improve the
accuracy while dealing with noisy data from the vibration signals, with a learning rate of 0.1 and a
momentum of 0.9. Lastly, the cross binary entropy loss function is implemented to distinguish the
gearbox status class.

For the consistency of the comparison, the conventional model takes the overall same architecture
of both the feature extraction and the classification model combined. The main differences from
the conventional model to the hard parameter transfer model is:

• The binary cross entropy optimiser is applied to the whole model.

• The entire model is trained in one process and one data-set.

• The model only has one output stream of information representing the gearbox status.

2.4 Evaluation metrics
The regression results are evaluated using the mean absolute percentage error MAPE, which
represents the average absolute percentage error for each time period minus the actual values
divided by actual values.

MAPE = 1
n

n∑
i=1

| ŷi − yi

yi
| (1)

where ŷi is the forecasted value, yi is the actual value and n is the number of samples. The metrics
of the classification models are calculated using F1score and the Accuracy. The F1score metric
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conveys the balance between the precision, the true positive predictive value, the recall, and the
true positive rate, by calculating their harmonic mean. The accuracy represents the percentage the
model correctly calculates.

Accuracy = tp + tn

tp + tn + fp + fn
(2)

F1score = tp

tp + 0.5(fp + fn) (3)

The true positive tp, the false positive fp and the false negative fn are used to calculate the
F1-score and are going to be explicitly reported to judge the quality of the classification. W Yang
et. al. [15] conducted as study on wind turbine monitoring and indicate that predicting more than
60% of a wind turbine faults will reduce the cost of operations and maintenance. This has been
implemented as a threshold for our models.

3 Results

The correlation plot in Figure 2 highlights the Pearson’s correlation of the variables to one another.
The set of features proves the potential advantages of the hard perimeter transfer learning. In
machine learning, the higher the correlation to the data this increases the chances of the the
predicative function describing the task. It can be observed that from the “Power Bin” to “Wind
Speed”, the features have no relation to the gearbox “Error”. On the other hand, the correlation
between the vibration data and the gearbox status is higher. This increased correlation help
improve the predictive function.

3.1 Regression model
This model takes the SCADA data from the “larger” source domain data set and makes predictions
on the CMS vibration data after pre-processing. The training stage is carried out over 1000 Epochs
having a total of 388,803 trainable parameters. To validate the accuracy of the model new, unseen
data from the wind turbine is fed into the model producing a: MAPE = 27.00%, an accuracy =
99.92% and R2 = 68.61%. This model is the highest performing model in the process. The
predictions from the model are highlighted in Figure 3. With an R2 score of 68.61%, this is a more
than acceptable indicator of anomalous behaviour. The plot highlights the feature extractor’s
ability to do so.

Implementing a MTL model, this information would normally be fed into the model or in the worst
case be ignored. This procedure utilises the information to make strong estimations on the
erroneous behaviour and it could be used in another maintenance methods in a multi-agent manor
for predictive trending methods. Where one could monitor the trends of the vibrations vibrations
more closely to determine long term effects.

3.2 Multi-Task Learning Model
Similarly, the MTL classification model participates in training over 1000 Epochs of 83, 329
trainable parameters. This model uses significantly fewer data points compared to the feature
extractor of 8441 producing an accuracy of 91.29%, and an F1-score of 69.54%. The classification
for the anomaly detection utilising MTL is more than acceptable, Yang et al [15] indicate that
predicting more than 60% of wind turbine faults will reduce the cost of operations and
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Figure 2: Linear correlation for all the features, the first five features are the inputs for both the
regression model and the traditional model. The vibration signals are the outputs of the regression
aspect hard parameter transfer model, and the Error is the output of the full hard parameter transfer
model and the conventional model.

maintenance. The classification results are displayed in Figure 4. With anomaly detection, it is
expected that the true negative is the median. The most detrimental prediction is a false positive,
and this presents one significant portion of this model that would need improvements.

For condition monitoring, a false positive reading would highlight to the operator that the machine
is currently running ’normally’ but it is in a state of potential error. In the moment of a failure
event, a chain reaction of issues can lead to catastrophic failure. To prevent this one might call the
machine to turn off. However, this is not possible with a false positive, the machine running in a
state where there is an error but the observation from the model is contradicting reality.
Alternatively, if the anomaly signature is not so serious the machine could be asked to operate at a
reduced rate. False negative does not present as much of a risk as it will not lead to catastrophic
failure .Both scenarios are not ideal, both cause a loss in earnings and the whole objective with
condition-based maintenance is to optimise the up-time of the wind turbine.
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(a) Vibration vs Wind (b) Vibration vs Power (c) Vibration to Generator Speed

Figure 3: Regression model, trained on the large data-set, used as the basis for the MTL. This figure
details the ability to determine the vibration signals from some of the input features.

(a) Conventional classification test results (b) MTL classification test results

Figure 4: Classification results from the MT model, highlighting the true negative, false positive,
false negative, and true positive rates of the test data-set.

3.3 Model Comparison

Table 1: Model comparison of the conventionally trained model vs the hard-parameter MTL model

Accuracy F1 Score
Conventional Model 83.76% 57.56%
Hard Parameter MTL Model 91.29% 69.54%

The conventional model undertook the same treatment as the hard parameter transfer model, with
1000 Epochs. However, the model has suffered from an over-fitting of the result. It is unable to
predict many of the errors leading to failure. A comparison of the results from the conventional
compared to the MTL model is made in table 1. This highlights that with a reduced data-set, the
results can be improved implementing hard parameter transfer with homogeneous dat. The
conventional model training is hindered because there is simply not enough data-points and the
correlation of the data is not as great to fully converge the model to surpass the MTL model
accuracy.
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One significant aspect that is not explored in this paper, is varying the sample size of the data. The
current understanding of machine learning is both the larger the data and the network the greater
the accuracy. With this current understanding, and the results displayed here, there must be a
crossover point where the benefit of transfer learning will diminish, and no longer be a suitable
candidate to determine the anomaly detection of an offshore wind turbine. An examining of this
crossover point where conventional methods are more accurate is would provide a time-frame where
this technique is recommended.

There are two ways in which time-series data varies, firstly the frequency, how many samples are
taken over a specific period. The second is the length. Both are contributing factors to the size of
the time series data used to train the model. In the case of this report, there are 8451 points over a
two-year period. This limiting factor will determine the level of improvement from conventional
model training to hard parameter transfer.

4 Conclusions

This paper has successfully highlighted how MTL accelerates the accuracy of data-driven condition
monitoring of a NN with limited data. This is a novel approach to offshore wind energy but is
consistent with other areas where this methodology is implemented. The main observation is that
the infant mortality failure can be quickly detected, and scheduled maintenance can be
planned.

By implementing the two different cost functions the model is better suited at extracting the
features and classifying through reduced noise and overfitting compared to the traditional method.
One observation is that this model is only suitable for limited period. The longer the wind turbine
is in operation, there is less probability that the components will fail, coupled with an increased
amount of data.

One of the most significant properties of the multi-task learning method is the increased amount of
useable information. You have the vibration and error information both of which can be used in
tandem to authenticate the diction process. One detecting patterns for anomaly detection and
another making time series predictions. This is appose to the classical method which has only one
output, the error evaluation, which is useful but ideally more information is advisable in
maintenance.

A progression from this concept would be to both: investigate the time-frame in which MTL is
most advisable for maximum accuracy of a condition monitoring system during the infant mortality
period. Secondly, comparing varying types of MTL models to determine a baseline model for
continuity in the industry.
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