
reSearch: Enhancing Information Retrieval with Images

Martin Hugh Goodfellow, Ela Hunt, Daniel McCafferty
University of Strathclyde

26 Richmond Street
Glasgow, Scotland

{martin.goodfellow, ela.hunt, dmccaffe}@cis.strath.ac.uk

ABSTRACT

Combining image and text search is an open research ques-
tion. The main issues are what technologies to base this so-
lution on, and what measures of relevance to employ. Our re-
Search prototype mashes up papers indexed using informa-
tion retrieval techniques (Terrier) with Google image search
for faces and Google book search. The user can interactively
employ query expansion with additional terms suggested by
Terrier, and use those terms to expand both the text and
image search. We test this solution with a selection of re-
cent publications and queries concerning people engaged in
research. We report on the effectiveness of this solution.
It seems that the combination works to a large extent, as
testified by our observations.

1. INTRODUCTION
Mashups combine data from various internet sources, or

from local data repositories and the internet. The current
state of Internet mashups can be seen at
ProgrammableWeb.com. We briefly discuss some of the mashups
available in different areas. In this introduction we also give
a brief overview of DBLife [5] and CompleteSearch [4] as
this is the most relevant work in our area of interest. Be-
side those, we discuss the work of Alonso and Baeza-Yates
[1] who demonstrate the integration of data from different
search engines, and some underlying database management
techniques which support mashups [13]. Example mashups
in other areas include biology, see BioXMash [7] which al-
lows data from an XML file repository to be integrated with
a genome map. Our work and [1] are general frameworks,
whereas DBLife and CompleteSearch combine only very spe-
cific information for a specific purpose. To make our work
easier to evaluate, we limited our analysis to data of rele-
vance from our community, i.e. a combination of an earlier
version of DBLife and recent DBLP CompleteSearch.

There is an abundance of work on integration of informa-
tion retrieval and database technologies to perform data in-
tegration. Vancea et. al. [13] propose a generic proxy mech-

submitted to USETIM (Using Search
Engine Technology for Information
Management) workshop at VLDB
ACM 000­0­00000­000­0/00/00.

anism to perform integration, inside the database, of inter-
nal and external data. Information management systems
are generally split into one of three categories: text retrieval
systems, relational/object database systems, or semistruc-
tured/XML database systems. However, generally most sys-
tems contain a mixture of data from all three categories. A
brief but informative survey of integration and inter-operating
of these different types of information management systems
can be found in [12]. Work by Norrie and Signer [10] intro-
duces web-based server technologies to provide integration
of printed and digital information. Norrie [9] has also per-
formed work in integration approaches for Computer Inte-
grated Manufacturing (CIM). This involves coordinating en-
gineering tasks and exchanging data between the specialised
tools.

DBLife [5] was conceived as ‘A Community Information
Management Platform for the Database Research Commu-
nity’. It has been live on the Web for almost 4 years but
does not seem to have been updated since the summer of
2008. DBLife monitored a few hundered data sources, and
crawled many web pages daily. It provided a variety of ser-
vices that exploit the generated entity-relationship graph,
including a daily community newsletter, entity superhome-
pages (pages that aggregate all detected and inferred in-
formation about an entity), and community event tracking.
DBLife attempted to provide an image of the author as well
as links to relevant authors and topics. It was based on
automatic methods, such as PageRank and TF-IDF to ex-
tract relevant information from it’s sources and form links
between entities. DBLife also harnessed the critical power
of its users, in allowing them to vote out irrelevant im-
ages. Although the success of DBLife’s image retrieval is
not clear, it should be noted that the image retrieval fea-
ture has been removed, possibly due to inconsistent results.
DBLife also formed links between entities, which allowed
it to offer a facet-like interface, including related people,
topics, service, publications, organisations and co-authors.
Discussions with researchers included in the database indi-
cate that the relevance of these links was sometimes poor.
Limited personal experimentation has confirmed that ‘su-
perhomepage’ links - especially those that link to related
topics appear to be irrelevant.

CompleteSearch [4] develops the DBLife idea further, based
on DBLP data. The CompleteSearch engine differs from tra-
ditional engines. It uses prefix search - all query words are
always interpreted as prefixes, rather than full words. It has
no search button - a search is initiated automatically after
a short delay, whenever the user stops typing. It produces

two result lists - every search produces a list of matching
documents, sorted by relevance, and a list of suggestions to
narrow down the search. CompleteSearch is more proactive
than traditional search engines, as it actively tries to sug-
gest to the user ways of further refining their search. This
proactive feature may also be a cause of irritation and con-
fusion. Discussions with researchers show that they were
surprised that when clicking on an author name in the list
of documents, it delivered the author page, as normal, while
clicking on the same author’s name in the list of suggestions
for narrowing down, produces just the subset of those, as
filtered by the name on the left hand side. Although the
interface clearly says what it will deliver, and the search se-
mantics appear to be obvious, it is still confusing even to
a computer scientist. To deliver the new semantics, Com-
pleteSearch uses a faceted interface [14].

Our aim was to develop a generic desktop application sim-
ilar to DBLife but applicable to any topic and including
images. reSearch searches both local and external informa-
tion. Local information consists of text documents which
the user specifies and indexes using Terrier [11]. As exter-
nal information we tested Google image search and Google
book search. Terrier creates a local index of user specified
document directories. The external information is collected
by issuing web queries to the Google search API. We were
interested in the quality of the results which we measured
by assessing the relevance of the results.

Our contributions are as follows. We implemented re-
Search which mashes up local and web search results. This
allows users to collect information about a researcher or re-
search topic and enhance it with image data. We evalu-
ated the solution to determine the quality of the results and
discovered that they were all of high relevance. We pro-
pose future research directions which will further enhance
the quality of the results and increase usability.

The remainder of the paper is structured as follows. Sec-
tion 2 describes reSearch. Section 3 presents our quality
results and Section 4 presents an example of our system in
operation. Finally, in Section 5 we conclude and present
future directions.

2. RESEARCH
reSearch is a desktop search application which generates

a mashup of local text query results and web search results.
We first discuss the application architecture. We then move
on to how it handles web queries. Then, we discuss the
Terrier search engine and explain how the quality of results
is improved by means of query expansion.

2.1 Application Architecture
Figure 1 shows the architecture of reSearch. reSearch uses

Terrier to index a document collection or uses an existing
Terrier index. Terrier can index, among other types, XML,
.doc or pdf files. Terrier normally performs query expansion
on the user’s original query. The expanded query, gath-
ered from Terrier, is then used to query Google for rele-
vant images. The returned information is then collated and
presented to the user. reSearch allows the user to refine
the search by adding Terrier’s suggested query expansion
term(s), and the option to remove them, should the new
search return no results.

2.2 Web Queries

Figure 1: reSearch System Architecture

Google’s search API was chosen for the image search due
to it offering face detection, unlike other services consid-
ered. The search API can be used to query Google’s many
search services. The main API is intended for use in a
Javascript environment. It also provides an interface for
‘Flash and other Non-Javascript Environments’, which was
required for reSearch as it is a Java desktop application.
The interface is based on a request-response system, where
the request is a HTTP GET request containing a specific
URL and the response is in a JavaScript Object Notation
(JSON) format 1. JSON is a ligthweight data-interchange
format. In simple terms, the Google API is a web service
provided through the HTTP protocol. A standard request is
shown in Figure 2. Two arguments can be seen in the URL
in this figure, ‘?v=1.0’ which specifies the API version and
‘&q=Google’ which is the query term itself. There are
many other arguments that can be used in relation to an
image search. For example, to indicate that only images
of faces are required, we would append ‘&imgtype=face’.
A full listing of all possible arguments can be found at the
Google Code website. 2

To further illustrate how the API is used, an example is
provided in Figure 3. We show an HTTP GET request spec-
ifying two keywords; CIS and Strathclyde. The request
also contains the argument ‘&imgtype=faces’ so the re-
sults are restricted to images that are identified by Google
as containing a face. The response that is shown is a single
result from the four that are returned for this query. The
response is in JSON format. Google returns a wide range of
information for each result. reSearch only uses some of this
information. The following attributes are used:

• tbWidth & tbHeight - the dimensions of Google’s
thumbnail of the image. reSearch uses this to deter-
mine if the image needs to be scaled to fit in the GUI.

• tbUrl - the URL of Google’s thumbnail of the image.
This is used to load the images into the GUI.

1http://www.json.org/
2http://code.google.com/

Standard Request

http://ajax.googleapis.com/ajax/services/search/images?v=1.0&q=Google

Figure 2: Google API Standard Request

Request

http://ajax.googleapis.com/ajax/services/search/images?v=1.0....&q=CIS%20Strathclyde&imgtype=faces

Response

{“responseData”: {“results”:[{“GsearchResultClass”:“GimageSearch”, “width”:“136”, “height”:“142”,
“imageId”:“ZUyDyPjDSGRXIM”, “tbWidth”:“90”, “tbHeight”:“94”, “unescapedUrl”:“http://local.cis.strath.ac.uk/

images/people/mv.png”, “url”:“http://local.cis.strath.ac.uk/images/people/ mv.png”, “visibleUrl”:“www.cis.strath.ac.uk”,
“title”:“mv.png”, “titleNoFormatting”:“mv.png”, “originalContextUrl”:“http://www.cis.strath.ac.uk/cis/staff/

index.php?uid\u003dmv”, “content”:“University of \u003cb\u003eStrathclyde \u003c/b\u003e Edit”,

“contentNoFormatting”:“University of Strathclyde Edit”, ‘̀tbUrl”:“http://images.google.com/images?q
\u003dtbn:ZUyDyPjDSGRXIM:local.cis.strath.ac.uk/images/people/mv.png”},....

[snip]....“estimatedResultCount”:“293”...[snip]}

Figure 3: Example Google Search API Request and Response

Figure 4: Google Image API results for ’q=CIS Strathclyde’ and ’imgtype=face’

Figure 5: Search Results for “Gregory Grefenstette”

Figure 6: Search Results for “Information Retrieval”

• originalContextUrl - the URL of the image.

• visibleUrl - the URL of the root domain of the image.

2.3 Terrier
Terrier [11], Terabyte Retriever, is a scalable, high per-

formance search engine that supports fast development of
large-scale retrieval applications. It provides a test-bed for
experimentation and research in Information Retrieval (IR).

Terrier is written in Java and offers a variety of features:
a range of weighting models, alteration of document scores
and a query language. It also supports various ways of
word stemming and query expansion. It includes numer-
ous weighting models, including BM25, TF-IDF, eight mod-
els from the Divergence from Randomness (DFR) frame-
work and Ponte-Croft’s language model [6]. It also allows
the score of individual terms or retrieved documents to be
modified. Its query language allows additional operations
to be specified by the user on top of the normal proba-
bilistic queries. Finally, Terrier includes automatic pseudo-
relevance feedback, by providing query expansion (QE). QE
used in reSearch was Bo1 [2, 8].

Terrier provides several document parsers. It can index
HTML, plain text, Microsoft Word, Excel and Powerpoint,
and Adobe PDF. It also allows users to add support for other
document types by including a Document plugin which ex-
tracts the terms from the document. Before indexing, Ter-
rier passes terms through a ‘Term Pipeline’, which performs
term transformations. As with document parsers, Terrier
provides various Term Pipeline plugins, including stopword
removal, two variants of Porter’s stemming algorithm and
the snowball stemming algorithm. Users can include their
own Term Pipeline plugins, similar to the Document plug-
ins. The index used is a Block Index.

The index consists of four main data structures:

• a lexicon containing information for each term;

• an inverted index containing the postings lists of each
term;

• a document index containing information for each doc-
ument;

• a direct index containing the terms that appear in each
document.

2.4 Query Expansion
An integral feature of reSearch is the refinement of ex-

ternal results. This refinement is achieved through refor-
mulation of the user’s original query, based on Terrier QE.
When a user performs a search, Terrier determines addi-
tional terms that are relevant to the local document re-
sults, as described in Section 2.1. The user can then add
these terms in order of relevance (determined by Terrier) to
the original query, to obtain new refined results. In most
searches it is possible to add too many terms to the search,
in which case no results will be returned. To allow greater
control over the results, users can add terms as well as re-
move them. Although this interface supports a reasonable
level of control and feedback, there remain opportunities for
improvement, as discussed in the future work section.

3. RESULTS
reSearch was user tested and evaluated using a question-

naire and then directly by the authors. As subjects we used
four students from the Computer and Information Sciences
department. Each user was asked to perform an author and
research area search task. The author to be searched for
was one of six options from the department, for whom doc-
uments were part of the local index. The research area to
be searched for was one of the selected individuals’ research
areas. The users were asked to assess the quality of the re-
sults returned both before and after query expansion. The
quality was recorded on a five-point Likert scale where 1 was
‘completely irrelevant’ and 5 was ‘completely relevant’ and
for improved results after the query expansion was 1 for ‘no
improvement’ and 5 for ‘large improvement’.

Judging by the results from our questionnaire, we claim
reSearch was successful. All outcomes were at least a 4 on
the Likert scale before query expansion and at least 3 on
the Likert scale after query expansion. The reason for this
could be that the initial results were somewhat saturated
with relevant results, leaving very little to be improved upon.
Although query expansion has not appeared to result in huge
improvements, it was not detrimental to relevance.

The authors tested the system using this workshop’s (USE-
TIM) program committee chair names along with some of
their research areas. The queries and results can be seen in
Table 1. Table 2 shows the results after 1 and 2 query expan-
sion terms have been added to the search terms. We have
defined relevance for text documents as any document that
contains the person as an author or discusses the research
area being searched for. For images relevance is defined as
an image of the person or relating to the research area being
searched for. However, pictures from a page mentioning a
person or research area are also deemed relevant, e.g. col-
leagues or co-authors of the person being searched for. As
can be seen from the results, our solution was a success.
This is due to all results having a high degree of relevance.

David Simmen returns two images of who we are look-
ing for but also two other David Simmens. In our results
we haven’t defined these as being relevant, however, with
respect to the query terms they are in fact relevant.

Query
Text Images

Rele- Irre- Rele- Irre-
vant levant vant levant

Gregory Grefenstette 6/6 0/6 4/4 0/4
Wolfgang Nejdl 23/23 0/23 4/4 0/4
David Simmen 5/5 0/5 2/4 2/4

Mashup 6/6 0/6 4/4 0/4
Image Retrieval 6/6 0/6 4/4 0/4

Table 1: Query Result Quality

4. EXAMPLE
The following shows an example of the application in oper-

ation. The first example to be shown is a search for ‘Gregory
Grefenstette’ and the second shows a search for ‘Information
Retrieval’.

The search results for ‘Gregory Grefenstette’ can be seen
in Figure 5. In the diagram, the files listed at the top of the
screen are local files which match the query. The bottom

Query
Text Images

+1 +2 +1 +2
Gregory Grefenstette 6/6 6/6 4/4 4/4

Wolfgang Nejdl 23/23 23/23 4/4 4/4
David Simmen 5/5 5/5 4/4 4/4

Mashup 6/6 3/3 4/4 4/4
Image Retrieval 6/6 6/6 4/4 4/4

Table 2: Query Expansion Results Quality

left column shows results from Google image search and the
bottom right column shows results from Google books. The
results from the second example can be seen in Figure 6.

5. DISCUSSION, CONCLUSIONS AND FU­

TURE WORK
reSearch aimed to repair the image search deficiencies ob-

served in DBLife. We believe that our solution improves
on the image relevance. This is due to two factors. The
main improvement comes from the use of query expansion
in Terrier. Papers indexed locally provide relevant query
expansion terms and those terms are used to query the im-
ages indexed by Google. The second source of improvement
is the fact that the Google image search API allows us to
query for faces specifically. It needs to be noted though, that
although we attempted to query for book covers in Google
books, we found some technical problems which did not al-
low us to add book covers to our interface, although this
should have been possible.

reSearch is a desktop search application. It allows users
to search for a specific researcher or research area and col-
lates information from various sources to produce more in-
formative results than from a single source. It incorporates
stemming, weighting models and query expansion into its
design. Initial testing results have been positive and have
introduced directions for further research. The solution is
generic, and given an appropriate image query API, could
be used for any other mashup, based on text and images.

Future work will attempt to improve on the query ex-
pansion and incorporate more data sources in the results.
For QE we have identified two avenues. The first method
to be considered is the use of synonyms. Using a database
such as WordNet 3 synonyms could be added to searches to
broaden the results. A second strategy for the improvement
of query expansion is the use of an ontology (taxonomy)
as in [3]. Using an ontology exploits each word’s ‘parents’
and/or ‘children’ (e.g. cat → ‘mammal’ (parent) ‘Ameri-
can Shorthair’ (child)). This method of query expansion
would require access to a large, up-to-date ontology to be
successful. One such ontology is Wikipedia which organ-
ises all of it’s articles into hierarchical categories. Access to
Wikipedia could be provided through an ongoing Wikipedia
Labs project 4 which aims to provide access to the ontology,
and already provides a Web Services Description Language
(WSDL) document that describes the service. Any combi-
nation of these two approaches and the current approach to
query expansion could be used to improve relevance in local
and web-based results.

Currently, when query expansion terms are added, the

3http://wordnet.princeton.edu/
4http://wikipedia-lab.org/en/index.php/Wikipedia API

most relevant ones are added first as determined by Terrier.
To give the user more control, we could allow the users to se-
lect which query expansion terms to add to the query, using
an improved interface showing those terms interactively.

6. ACKNOWLEDGMENTS
We would like to thank the Terrier team at the University

of Glasgow, particularly Craig McDonald.

7. REFERENCES
[1] O. Alonso and R. A. Baeza-Yates. Integration of

Search Engines with User Interfaces. In WWW
Posters, 2001.

[2] G. Amati. Probabilistic Models for Information
Retrieval based on Divergence from Randomness. PhD
thesis, Department of Computer Science, University of
Glasgow, 2003.

[3] N. Anwar and E. Hunt. Improved Data Retrieval from
TreeBASE via Taxonomic and Linguistic Data
Enrichment. BMC Evolutionary Biology, 9:93, 2009.
doi:10.1186/1471-2148-9-93.

[4] H. Bast and I. Weber. The CompleteSearch Engine:
Interactive, Efficient, and Towards IR & DB
Integration. In CIDR, pages 88–95. www.crdrdb.org,
2007.

[5] P. DeRose et al. DBLife: A Community Information
Management Platform for the Database Research
Community (Demo). In CIDR, pages 169–172.
www.crdrdb.org, 2007.

[6] B. He and I. Ounis. Term Frequency Normalisation
Tuning for BM25 and DFR Models. In ECIR, pages
200–214, 2005.

[7] E. Hunt, J. Jakubowska, C. Bösinger, and M. C.
Norrie. Defining Mapping Mashups with BioXMash.
J. Integrative Bioinformatics, 4(3), 2007.

[8] C. Macdonald, B. He, V. Plachouras, and I. Ounis.
University of Glasgow at TREC 2005: Experiments in
Terabyte and Enterprise Tracks with Terrier. In
Proceedings of the 14th Text REtrieval Conference
(TREC 2005), November 2005.

[9] M. C. Norrie. Integration Approaches for CIM. In
SIGMOD Conference, page 470, 1995.

[10] M. C. Norrie and B. Signer. Web-based Integration of
Printed and Digital Information. In DIWeb, pages
71–85, 2002.

[11] I. Ounis et al. Terrier: A High Performance and
Scalable Information Retrieval Platform. In
Proceedings of ACM SIGIR’06 Workshop on Open
Source Information Retrieval (OSIR 2006), August
2006.

[12] S. Raghavan and H. Garcia-Molina. Integrating
Diverse Information Management Systems: A Brief
Survey. IEEE Data Eng. Bull., 24(4):44–52, 2001.

[13] A. Vancea, M. Grossniklaus, and M. C. Norrie.
Generic Proxies - Supporting Data Integration Inside
the Database. In OTM Workshops (1), pages 5–6,
2007.

[14] R. Villa, N. Gildea, and J. M. Jose. FacetBrowser: A
User Interface for Complex Search Tasks. In MM ’08:
Proceeding of the 16th ACM international conference
on Multimedia, pages 489–498, New York, NY, USA,
2008. ACM.

