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Abstract

We consider the stochastic heat equation on [0, 1] with periodic boundary conditions
and driven by space-time white noise. Under various natural conditions, we study
small ball probabilities for the Holder semi-norms of the solutions, and provide near
optimal bounds on these probabilities. As an application, we prove a support theorem
in these Holder semi-norms.
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1 Introduction and main results

We consider the stochastic heat equation (SHE) on T := [0, 1] with periodic boundary
condition and driven by space-time white noise (we identify T as the one-dimensional
torus, i.e., T := R/Z). This is the real-valued random field u(¢,x), t €e R4, x € T
which solves
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oru(t,x) = l8214(t X) +a(t x, u(t, x)) W(t,x), teRy, xeT, (L1

with given initial profile u(0, -) = up : T — R and satisfying u(z, 0) = u(¢, 1) for
all 7 € Ry. The space-time white noise W is a centered generalized Gaussian random
field with E[W (z, x)W (s, y)] = 8o(x — ¥)80(r — 5). We will make the following two
assumptions on the function o : R x T x R — R.

Assumption 1.1 The function o is uniformly elliptic, that is, there are constants ¢} > 0
and %> > 0 such that

61 <o(t,x,u) <% forallt, x, u. (1.2)

Assumption 1.2 The function o is Lipschitz continuous in the third variable, that is
there is a constant & > 0 such that

lo(t,x,u) —o(t,x,v)| < Dlu—v| forallt, x, u, v. (1.3)

The existence and uniqueness of solutions to (1.1) under the above assumptions are
well known. See for example [6] or [18] for the proofs and various other properties.
It is also known that the solutions are Holder( % —) in space and H()'lder(}‘—) in time.

In this paper we study the probabilities of the events that the SHE (1.1) is unusually
regular, as measured in certain Holder semi-norms, up to a fixed time. To the best of
our knowledge, our paper is the first to carry out such a study even though regularity
properties of SPDEs have been very well studied. See for instance [7] and [17] where
very precise information about the modulus of continuity is given.

Our study will be framed as small ball probabilities of these semi-norms. Small
ball probabilities have been very well studied in many different settings but most of
the results in the literature are for Gaussian processes; see [ 13] for an extensive survey
on various developments and applications of small ball probabilities for Gaussian
processes. However there has not been much progress for non-Gaussain processes.
Only a handful of papers have looked at these types of questions for SPDEs. The
paper closest to ours is that of the very recent [1] where the sup norm is considered.
In another recent paper [11], heat equations with additive noise are considered under
different norms and in [14], the stochastic wave equation is studied.

To phrase our results precisely we need some notations. Fix 0 < 6 < % and a
terminal time 7 > 0. For a function f : [0, T] x T — R and for every ¢t € [0, T] and
x €T,let

er)(f) — sup [ f@, x)— f(t, )l
X#y Ix—yl2

be the spatial Holder semi-norm and let

%(9)(f) = sup |f(t’x) - ]f‘(sv-x)|
0<s#t<T |t —s|1_7
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be the temporal Holder semi-norm. The Hﬁlder(% —) regularity in space and the
Hblder(}¥ —) regularity in time of u imply that sup, ¢ 7 H,(e) (u) and sup, 1 A9 (u)
are finite a.s.

The above quantities provide a quantitative way of measuring regularity of func-
tions. This is a natural measure; indeed the smaller H;e) (f)isthecloser f(z,-)istoa
constant function, and similarly for %(9) (f). We investigate the probability that they
are exceptionally small for solutions to the stochastic heat equations.

There have been a few papers which investigate small ball probabilities for Holder
norms and various Sobolev norms, see for example [2, 4, 8, 9] and the references in
[13]. We emphasize that the above results are for Gaussian processes but in general
the SPDEs that we consider here will be non-Gaussian. Another novel feature of our
work is that we are able to obtain bounds on the probabilities that the H,(Q)( f) (resp.
%’}(9)( f) ) are uniformly small in time (resp. space), whereas [4, 8, 9] find bounds on
the small ball probabilities of the Holder norms of Gaussian processes X (¢) indexed
by only one parameter ¢ € Ry

Before we state the main result, we introduce one more notation. For each 6 €
0, 1/2), we let A = A(0) be given by

-]

1 22
AB) = 1, 0w ="oT1-9), 14
®) /Rp( w)|w| w N ( ) (1.4)

where p(t, x) is the Gaussian density (2.1) and I'(¢) is the Gamma function.
Theorem 1.1 Let 0 < 0 < % and 0 < € < 1. Suppose that the initial profile

satisfies H(ge)(u) <5 (1 A %) Then for any n > 0 there exist positive constants
Ci, C3, C3, Cq4 > 0 dependent on 61, 62, 2, 0, n such that

C, T u(t,x) —u(s,
Clexp(— 32 >§P sup l(l ) ( y)ll - <€
eotn 0<s,t<T |x—y|§_0+|t—s|1_7
x,yeT
(t,x)#(s,y)
C4T
<Gexp|——5——]- (1.5)
€b|loge|2

One can improve the lower and upper bounds in (1.5) by imposing more restrictions
on o; see Theorems 1.2, 1.3 and 1.4 below, and Remark 6.1. In Sect. 8 below we
provide several support theorems where bounds on the probability that u is close (in
the above Holder semi-norm) to a function 4 in certain classes (such as Holder spaces)
are provided.
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The reader might wonder whether the upper and lower bounds in (1.5) hold when
we consider the Holder norm

lu(t, x) —u(s, y)|
lullo,r == llulloo,r +  sup

1_6 1
0<s,t<T |t —s|472 4+ |x —y|2~
x,yeT

(t,x)£(s,y)

(1.6)

0
2

instead of semi-norm considered in (1.5), where ||u|loo,7 := SUp(; yyefo.77xT 147, X)|.
This is not the case. Indeed, due to the 1 : 2 : 4 scaling of fluctuations, space and
time for the SHE, the Holder semi-norm of the SHE in time-space regions of the

form [¢,t + e%] X [x,x + eé] fluctuates by order €. However in these regions, the
solution u itself fluctuates by order € . Intuitively, what we try to show in this article
is that the Te_g time-space boxes obtained by dividing [0, 7] x T into subintervals
of the form [, + € %] X [x,x+e€ é] can be somewhat viewed as independent regions.
This explains the Te~7 that we obtain in the exponents in (1.5). Moreover, by this
reasoning, one should expect similar bounds on the probability P(||u||co.7 < € %) if
we start at ug = 0, for example. In fact this is what was proved in [1]. Therefore, while

it is not true that we have the same bounds as (1.5) for the Hoélder norm (1.6), we do
have the same bounds for

1 u(t,x) —u(s,

P | llulloo,r < €2,  sup |(1 ) — u y)|l 5
0<s,t<T |x—y|770+|t—s|177
x,yeT

(1. x)F#(s,y)

= ’

1
if we start with ug such that uglles < 2= and H{ () < § (1 A ).

1.1 Results

Instead of looking at the probability of the event in (1.5) directly, we consider the
probabilities of the events {sup,e[o_ﬂ H,(Q)(u) < e} and {supxeT A0 () < E} sep-
arately. The bounds in (1.5) will then follow from the bounds on the probabilities of
these two events (see Sect. 6). It turns out that the regularity in time (as measured
by the smallness of %(9)(u)) is intimately connected to the regularity in space (as
measured by the smallness of H,(Q)(u)). Our arguments indicate that for the solution
to be regular in time it is necessary for it to be regular in space. We now state the

small ball probability estimates for sup, .7 er) (u) and sup o © () with varying
assumptions on the nonlinearity o.

Theorem 1.2 Assume that the function o (t, x, u) is independent of u and satisfies
Assumption 1.1. Let 0 < 0 < % and () <€ < 1.

@ Springer



Small ball probability estimates for the Holder... 557

(a) Suppose that the initial profile satisfies ’H(()e)(u) < 5. Then there exist positive
T
) . (17

constants C1, Cp, C3, C4 > 0 dependent only on 6\, 6>, 0 such that
C, T C
C1 exp (— 2 ) < P| sup H;G) (u) <€) <Czexp <— 43
0<t<T €0

3
€0

(b) Suppose that the initial profile satisfies H(()e) (u) < 5%. Then there exist positive

constants C1, Ca, C3, C4 > 0 dependent only on €1, 6>, 6 such that

CT C4T
Crexp (— 23 ) <P <sup<%‘}(9) (n) < e) < Czexp <— 43 ) (1.8)
€0

€0 xeT

It can be shown that u is a Gaussian random field when o does not depend on u. The
proof of the above theorem takes up a significant part of this paper and hinges on well
known results specific to Gaussian processes, as well as the recently proved Gaussian
correlation inequality ([16]). We next consider the case when ¢ can also depend on u.

Theorem 1.3 Suppose that o (¢, x, u) satisfies both Assumptions 1.1 and 1.2. Let 0 <
9<%and0<e<1.

(a) Assume that the initial profile satisfies ’Hée) (u) < 5. Then for any n > O there exist

positive constants Cy, Cy, C3, C4 > 0 dependent on 61, 62, ¥, 6, n such that

Ciexp (— C;zT > <P ( sup Ht(e) u) < e) < Czexp (—2C4T3> . (1.9

eqtn 0<t<T €0 |loge|?

(B) Assume that the initial profile satisfies H(()g)(u) < 5% Then for any n > 0O there

exist positive constants Cy, Cp, C3, C4 > 0 dependent on 6\, 6>, 2,0, n such
that
CoT CyT
Cyexp (— 32 ) <P (sup %’}(g) () < e) < Czexp (—343> . (1.10)
5§+ xeT e§|loge|§

Our next result sharpens the lower bound of the above theorem by imposing a further
restriction on the Lipschitz coefficient of o.

Theorem 1.4 Suppose that o (¢, x, u) satisfies both Assumptions 1.1 and 1.2. Let 0 <
0<%and0<6<1.

(a) Assume that the initial profile satisfies H(()a) (n) < % Then there is a 9oy > 0 such
that for all 9 < Dy, there exist positive constants C1, Ca, C3, C4 > 0 dependent
only on 61, 6>, 0 such that

T T
Cq exp(—cz3 >§P( sup H;e)(u)§6>§C33xp<—3C43>. (1.11)

€0 0<t<T €0|loge|2
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(b) Assume that the initial profile satisfies Hée) (u) < 55. Thenthere is a 2 > 0 such

that for all 9 < 9, there exist positive constants Cy, C2, C3, C4 > 0 dependent
only on 61, 6>, 0 such that

CT C4T
Ciexp| — 23 <P supjf}w) (u) <€ | < Czexp —% . (1.12)
€d xeT €0 |logel|2

We now say a few words about the proofs of our theorems. As mentioned above,
Theorem 1.2 relies heavily on the fact that when o is independent of u, the solution
u(t, x) is a Gaussian random field. The proof of the upper bound is essentially con-
tained in the Proof of Lemma 3.2 which among other things, relies on the Gaussianity
of u. Another crucial element is the sharp bound given by Lemma 2.5 whose proof
uses some well known ideas presented in [1]. It is also interesting to note that when
o is a constant, one can further simplify the proof of the upper bound by resorting
to Slepian’s lemma; see Remark 3.4 for more details. The lower bounds rely even
more heavily on Gaussianity of the solution in that we use the Gaussian correlation
inequality in an essential way. This is done in Lemma 4.2. Another key ingredient is
the use of a change of measure argument similar to [1]. Intuitively, this allows us to
keep the solution small which gives us a better handle on the estimates required.

Under the conditions of Theorems 1.3 and 1.4, the solutions are no longer Gaussian,
so the corresponding proofs require different strategies. For the lower bounds, we use
a perturbation argument together with the proof of the lower bound in Theorem 1.2.
We note that the sharper lower bound in Theorem 1.4 is also a consequence of the
very same perturbation argument.

The proofs of the upper bounds in Theorems 1.3 and 1.4 are entirely different and
make use of certain auxiliary random variables which have nice independence prop-
erties. These random variables are indexed by the spatial variables. Their construction
is inspired by [5].

In the final section of this paper, we present some extensions and prove a support
theorem in the Holder semi-norm. It will be clear later that our paper raises several
questions. One such open question is whether the bounds (1.7) and (1.8) continue to
hold in the general case, that is for any o satisfying Assumptions 1.1 and 1.2. We have
assumed that o is bounded below and above by positive constants. Another avenue of
investigation is to replace these assumptions by less stringent ones. Let us point that
here, when 6 = % the above theorems match the results recently obtained in [1] for
the small ball probabilities of the sup norm of u.

We have studied the small ball probability estimates of sup,cg 7 H,(g)(u) and

SUPy T %(9) (u). We next consider the small ball probability estimates of Hgfg) (u)

for a fixed time 7', and jf;g) (u) for a fixed spatial point X. We start with the Gaussian
case.

Theorem 1.5 Assume that the function o (t, x, u) is independent of u and satisfies
Assumption 1.1, and fix a time T > 0. Let 0 < 0 < % and (0 < e < 1.
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(a) Assume that the initial profile satisfies H(()Q) (u) < 5. Then there exist positive
constants C1, Cp, C3, C4 > 0 dependent only on 61, 6,0, T such that

C C

C1 exp (--f) < P(H,f) (u)fe) < Cyexp (——f‘). (1.13)
€l €0

(b) Assume that the initial profile satisfies 'H(()e)(u) < 5% Then there exist positive

constants C1, Cp, C3, C4 > 0 dependent only on €\, 6>, 0 such that

22T> <p (%§9> ) < e) < Csexp <— C4T> L (1.14)

2
€0

< C
Crexp| —
€0

The upper bounds are in fact an immediate consequence of the Proof of Theorem 1.2,
and we will see that the constants C3 and C4 can be chosen independently of 7.
The lower bounds follow from the arguments in the proof of Theorem 2.2. of [9].
The proof of the lower bound above is specific to Gaussian processes and cannot be
directly extended to the general case.

Theorem 1.6 Suppose that o (t, x, u) satisfies both Assumptions 1.1 and 1.2, and fix
atimeT > 0.Let0 <6 < %and0<e< L.

(a) Assume that the initial profile satisfies H(()e)(u) < 5. Then there exist positive
constants C1, Cy > 0 dependent on 61, 6>, 0, T such that

P (H(TQ) W) < e) < Crexp (—#) . (1.15)

3
€v|loge|2

(b) Assume that the initial profile satisfies H(()e)(u) < 5% Then there exist positive

constants C1, Co > 0 dependent on 61, 6>, 6 such that

p (L%@g") W) < e) < Cyexp (— CZZT) . (1.16)
g

€

A trivial lower bound is obtained from either Theorem 1.3 or Theorem 1.4 depending
on whether o satisfies the assumptions of Theorem 1.3 or Theorem 1.4. However this
is very far from the lower bound obtained in Theorem 1.5.

Remark 1.1 As the reader observes the bounds in Theorems 1.1, 1.3, 1.4 and 1.6 are
close to optimal but not sharp. While optimal results can be obtained in the Gaussian
case (i.e. when o does not depend on u) using Gaussian-specific techniques, a per-
turbation argument is the main tool for the lower bounds in the non-Gaussian case.
When the perturbation (as measured by the Lipschitz constant &) is small, one can
get similar lower bounds as in the Gaussian case (see Theorem 1.4). However, the
perturbation argument works only when the time interval under consideration is small
and therefore does not work for Theorem 1.6. Moreover, a similar perturbation argu-
ment cannot be implemented for the upper bounds as we don’t have good control of
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the tail probabilities {|u(f, x) — u(s, x)| > €} when |t — 5| = 0(6%) (see Sect. 4.3
for the perturbation argument for lower bounds). We thus have to resort to a general
non-Gaussian argument which only gives us close to optimal upper bounds.

Remark 1.2 The dependence of the constants in the theorems on the parameters
6\, 62, 2,0 etc. is in general quite complicated. See for example Remark 3.3. We
have tried to indicate the dependence on the parameters wherever we could.

Remark 1.3 Note that v(¢, x) = u(pt, x) satisfies

d(t, x) = gaﬁv(t, X)+ 6, x, v, X)W, x)

for some other white noise W, and 6 (7, x, v) := p%a(pt,x, v). The function &
satisfies p%(fl <o(t,x,v) < p%‘@”z and |6 (t,x,u) —o(t,x,v)| < p%.@w — .
Thus one can obtain similar results with the inclusion of a diffusion parameter p by
converting it to the form (1.1).

Remark 1.4 Note that it is sufficient to prove the above theorems for all sufficiently
small € < €g, where €¢ is dependent on %, 62, 0 (and maybe additionally on 7 in the
case of Theorem 1.3 and T in the case of Theorems 1.5 (a) and 1.6 (a)). The conclusion

forany 0 < € < 1 follows from the fact that the probabilities P (Hg?> ) < e),

P (%”X(Q) ) < e), P (SUPOSth er) ) < e) and P (supxeT f%’jc(e) ) < e) are
nondecreasing in €.

Remark 1.5 In this paper, we have studied bounds on various small ball probabilities.
A related question would be to study the small ball constant, that is to find the constant
C in the following

lim €7 In P sup H,(G) ) <e|=-CT,
e~>0+ 0<t<T

under appropriate conditions on o. These types of questions are challenging and are
beyond the scope of this current paper. Using the techniques in [12], we are confident
that one can successfully tackle the small ball constant problem in some cases, but we
leave this for future work.

Plan: Sect. 2 contains some preliminary estimates. The proofs of the upper bounds
in Theorems 1.2 and 1.3 are given in Sect. 3, while the correponding lower bounds are
given in Sect. 4. The Proof of Theorem 1.4 is given in Sect. 5. After this, we give the
Proof of Theorem 1.1 in Sect. 6. The proofs of Theorems 1.5 and 1.6 are presented in
Sect. 7. Finally in Sect. 8, we give some extensions and prove a support theorem as a
corollary of our results.

The following table highlights the main differences between the main theorems and
their extensions (Table 1).
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Table 1 Summary of results

Main Theorems:

Conditions on o':

Types of small ball probabilities
(SBP):

Theorem 1.1

Theorem 1.2

Theorem 1.3

Theorem 1.4

Theorem 1.5

Theorem 1.6

Extensions:

Theorem 8.1

Theorem 8.2

Theorem 8.3

Dependent on u

Independent of «

Dependent on u

Dependent on u with small 7

Independent of u

Dependent on u
Extra conditions on the equation:
Presence of nice drifts

Presence of Holder continuous drift

Presence of Holder continuous drift

Upper and lower bounds on
space-time Holder seminorms

Matching upper and lower
bounds on SBP of
supg<;<7 H; ~ and

(2
supyer ;"
Upper and lower bounds on SBP
of SUpg<;<T H,(g) and
200
SUPyeT fo( )
Improved lower bounds on SBP

of supg<, <1 H,(H) as compared
to Theorem 1.3. Same upper
bound as Theorem 1.3

Matching upper and lower
bounds on SBP of 'H(TQ) and
A

Upper bound on SBP of H(Te)
and if’;e)

Results:

Theorems 1.1-1.4 hold

Bounds on SBP of
supg<,<7 H;

Bounds on SBP of sup, .t 32@(9)

Notation: Throughout this paper, C with or without subscripts will denote positive
constants whose value might change from line to line. Unless mentioned otherwise they
will be independent of the parameters €, 67, 62, Z etc. We will sometimes empha-
size that the dependence of the constants on specific parameters will be denoted by
specifying the parameters in brackets, e.g. C(8). For a random variable X we denote
X1, := E[X[P1/P.

2 Preliminaries

We define the heat kernel G (¢, x) as the fundamental solution of the heat equation on

the torus T

1
3G(t,x) = Eafc;(t,x),

G0, x) = 8p(x).
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Let

x2
pt,x) = Qrt)y Y2 exp <_E) 2.1

be the fundamental solution of the heat equation on R. It is known that the heat kernel
on T is given explicitly by

G(t.x) =) p(t.x +k). (2.2)

keZ

We interpret the solution to (1.1) in the sense of Walsh ([18]) as a random field which
satisfies

u(t, x) = (G, % ug)(x) + N(t, %), as. (2.3)

for each ¢ and x, where the first term on the right is the space convolution of the heat
kernel with the initial profile ug(x), i.e.,

(G % up)(x) = /TG(t,x —y) -uo(y)dy,

and the second term which we call the noise ferm is the space-time convolution of the
heat kernel with the product of o (s, y, u(s, y)) and white noise:

t
N(t,x) = f / Git—s,x—Y)- o(s, v, u(s, y))W(dsdy). (2.4)
0 Jr

We are working on the torus T := R/Z, so in the above two expressions x — y should

be interpreted as the unique point z in [0, 1) such that x — y = z + k for some k € Z.
We now show that it is enough to prove our main results under the assumption that

uog = 0. For a function g : T — R dependent only on the spatial variable x, define

H(e)(g) = sup lg(x) — g ()]

A2l 2.5)
x#yeT |x — y|§_0

(Note the absence of subscript 7 in H@). The first lemma is a simple observation
about the spatial Holder regularity of G; * uy.

Lemma 2.1 If for some a > 0 one has HD (ug) < a then ’H(@)(G, * uo) < a for all
t > 0.
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Proof Let iip : R — R be the periodization of ug, that is itg(x + k) = ug(x) for all
k € Z and x € T. We have

|(Gi # uo)(x) = (Gy * ug) ()|

= Z/T[P(t,x—z—l—k)—P(l,y—z—Fk)]'uo(z)dz

keZ

= Z/T[p(t,x—z+k)—p(t,y—z+k)]-ﬁo(z)dz

keZ

—k+1
= Z/ [p(t,x—w)—p(t,y—w)]-ﬂo(w+k)dw
keZ ¥~

= | [ ptecw) [0t = w) i - w)]dw‘
R

Wehave |ug(x — w) — itg(y — w)| < alx—yl%’e by assumptionand p(¢, -) integrates
to 1, therefore the result follows. O

We now prove a similar result for the temporal Holder regularity of (G. * up)(x).
Recall the constant A introduced in (1.4).

Lemma 2.2 If H (ug) < a then

(G * ug) (x) — (Gy * ug) (x)| -

1

[t —s|472

Aa

Proof Without loss of generality assume that s < 7. Let g(x) = (G * up) (x) and g
be the periodization of g. Then by arguments similar to Lemma 2.1 we have

Gy % 10) (x) — (G #10) (V)] = |(Gr_s % 8) () — g(¥)|
- /Rpa — 5w - 15— w) — F0)]

1
§a/ p(t — s, W)l dw
R

0

1
< Aalt —s|+72,

by a simple change of variables. O

Now consider the random field
v(t, x) = u(t, x) — (Gt * up)(x), (2.6)

where u(t, x) solves (1.1) with the initial profile . One can easily check that
1 - .
du(t, x) = Ea)%u(z,x) +5(t, x,v(t, ) - W(t, x),
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564 M. Foondun et al.

with initial profile vp = 0, where
5(t,x,v) = o(t, X, v+ (G, * uo)(x)).

Furthermore |5 (7, x, v) — 6 (f, x, w)| < Z|v — w| and & is bounded below and above
by 61, 6.

Assume HP (ug) < % Then from Lemma 2.1 and (2.6), we have the following
implications:

€
sup H,(Q)(v) < —  implies sup H;e)(u) <e,
0<t<T 2 0<t<T
€
sup H,(Q)(u) < —  implies sup H,(e)(v) <e.
0<t<T 2 0<t<T

Similar implications hold when we just consider Hg-g)(u) and Hg?)(v) (without the
supremum in 7).
Similary if HD (1) < &, then from Lemma 2.2,

2N’
€
sup Jf;(g)(v) < —  implies sup j‘f;(g)(u) <e,
xeT 2 xeT
€
sup %(9)(u) < -  implies sup j‘ljc(g)(v) <e.
xeT 2 xeT

Similar implications hold when we just consider L%”;e) (u) and %((0)(11) (without the
supremum in x).

Remark 2.1 (Important) From the above discussion we observe that it is sufficient to
prove the main theorems stated in the introduction with uy = 0. This is of course
not surprising since the Laplacian is known to have smoothing effects. The above
argument is merely a weak manifestation of this. We will assume that the initial
profile uo = 0 for the rest of the article.

We will need the following lemmas which were proved in [1].

Lemma 2.3 (Lemma 3.3 in [1]) There exist constants C1, Cy such that for all time
points 0 < s <t < 1, spatial points x,y € T, and . > 0,

P(|N(t,x) = N(t.y)| > 1) < Crexp —Cz—kz
’ ’ - Clx — |

P (|N(t,x) — N(s,x)| > A) < Cexp __Gr :
- G3lt —s|1/2

@ Springer



Small ball probability estimates for the Holder... 565

Lemma 2.4 (Lemma 3.4 in [1]) There exist universal constants Ky, Ko > 0 such that
foralloa, A, e > 0,0 > 0, and for all a € [0, 1) witha + €% < 1 we have

1 K, A2
P su N, x)| > e | < exp| - Kob—— . 2.7
P% [N (2, x)] AV P( 2%2\/&) 2.7
0<t<ae
x€la,a+e? )

Remark 2.2 Note that Lemma 3.4 in [1] provides (2.7) when a = 0, however, one can
follow exactly the same proof to get (2.7) for any a € (0, 1) witha 4+ €'/ < 1.1t was

also pointed out in [1, Remark 3.1] that if |a(s, v, u(s, y))| < Clei then one can

bound the right hand side of (2.7) by 11{\1/& exp (—K2

A
czeéﬁ '
1

The analysis of the following function will play a crucial role in this paper.

¢ — _ _ _ _
N(t, x,y) = / / G@—-rx—-2 ?f; ry—2) o (r,z, u(r, 2)) W(drdz)
0JT lx — yl2

_ N(t, x) — IIV(t,y)_ (2.8)
x — y|2 7"

Although we have not made it explicit, the function N, x, y) clearly depends also
on 0. The following lemma is used several times in the paper.

Lemma2.5 Let 6 € (0, %). There exist constants K3z, K4 dependent only on 6 such
that for all a, A, € > 0 and for all a € [0, 1) witha + el/? < 1, we have

3

K —K4A—2 (2.9)
Aﬁexp ‘522019 . .

P sup |ﬁ(t,x,y)| >Ae | < 1
O<t<ael

1
x,y€la,a+€0], x#£y

Proof We will show (2.9) when @ = 0 and the same proof works for the general
a € (0, 1), which is similar to Lemma 2.4 and Remark 2.2. Let us first consider the

. . . 2 1
case when o > 1. Consider the following grid on [0, ®e€?] x [0, €¥ ], where the first
coordinate is time and the second is space:

Gy = {(L 5) 0<j<aei2® 0<k geéz"}.
22n’ on
The grid G,, will consist of only the point (0, 0) if n < ng where

1o 1= [log, (@~ 2e7)] (2.10)
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Any p € G, will be of the form (Zj—n %) , so for notational convenience, we set
: ok
N(p) =N ﬁ’ 2_” .

We will choose two parameters 0 < yp(0) < y1(0) < % which depend only on 6
which satisfy the following constraint

1

—— 0=y — . 2.11
> YI— Y0 (2.11)
We will fix the constant
-2
= SThom (2.12)

and consider the events
A, ) = {|N(p) — N(q)| < AKe271"21™ forall p, g € G, spatial neighbors} .

By p, ¢ being spatial neighbors in the grid G,,, we mean that p, ¢ have the same time
coordinate but their spatial coordinates are adjacent in G,,. For instance (ijn» "z;nl)

and (ZJW, k;;l) are spatial neighbors of (ZJW, 2%) .

The number of such pairs of points p, ¢ is bounded by 2 - Qe 22 . €7 2n <2*.
23(1=n0) \where we have used (2.10). Therefore a union bound along with the first tail
bound in Lemma 2.3 gives

C AZKZ 22—2y1n22y0n0
P(A(n, ) < €230 exp (- 2 =<

Gy

212,.,—60~—2n900~—2 2
< €257 exp (‘ CA K 2 2 V"no)

Cy27"
Cy22K22(=2y1)(n—n0)
Clal ’

< C123(nfno) exp <_

where the second inequality follows since o’ €22%"0¢ > 1 by our choice of n¢ and the
final inequality is obtained using the choice yy, y1 in (2.11).
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We now let A(A) := Ny>,,A(n, A) and use a union bound once again to obtain

P(AQ)°) < > P(A(m. 1))

n=ngo
CrA2 K 22(=2y1)(n—no)
3(n—ng) _
< (C; Z 2 exp ( ol
nzng 2
—c Ci2*K?
=03eXpl\——H
P Cral

Now on the event A(A), one has for p, g spatial neighbors in G,

IN(p) = N(@)| _ AKe2™rmamm
p—ql T 2760

< Ae,

by our choice of yy, 1 and K in (2.11) and (2.12).

We now show that the above bound continues to hold when p, g € G, are no longer
spatial neighbors but have the same time coordinate. Let the spatial coordinate of p
be k27" and let the spatial coordinate of ¢ be /27", and without loss of generality
assume k < /. Find the smallest positive integer n| with ng < n; < n such that

ki +1
2

k ki )
b =< S < = o (2.13)
for some nonnegative integer k. First note that we must have

1

2m =

k l

4
< —. (2.14)
on on ony

The lower bound is clear by (2.13) and the upper bound follows from the minimality
of ny, for if the difference between k2" and /27" was larger than 2>~ then there
would be two spatial neighbors in G,, —1 between them.

One next observes that we can find a sequence of points p;, n1 < i < n and
gi, n1 < i < n with the same time coordinates as p, g, such that p;, p;+1 (resp.
qi, qi+1) are either equal or adjacent spatial points in G;. In addition at most one such
adjacent spatial pair (p;, pi+1) (resp. (¢, gi+1)) is in each G;, ny < j < n, and
Pn = P, qn = q. Therefore

IN(p) = N@| < Y [N(pi) = N(pix)| + D [N(gi) — N(git1)]

i=ny i=ny
n
<2 § LK €27 V1irono

i=n
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on the event A(A). As a consequence, on this event

IN(p) = N(@)| _ 2rKe 27070277

1 = - 1 = he
70 1 =277 y—ni(z-0)

lp —ql

by (2.14) and our choice of yy, y; and K in (2.11) and (2.12). This completes the proof
in the case @ > 1.
Inthe case 0 < o < 1, we divide the spatial interval into smaller intervals of length

1
Jaei to get that

P sup |1V(t,x,y)| > A€
Oflfae%

1
x,y€l0,e8], x#y

Ve - Aale)
< Z P sup |N(t,x,y)‘ > 5
i=1 2 a?

0<t<ael

1 1
x,ye[i aeg,(z#l)\/&e?],x;éy

Then, as explained in the beginning of the proof of this lemma (see also Remark 2.2),
the probabilities inside the sum on the right hand side above have the same upper
bound as for

- Aade)
P sup }N(t,x,y)| > 7
2 a?
0515&5?
x,y€l0,Jael ], x#y
We now apply the previous argument to finish the proof. O

Remark 2.3 From Remark 2.2, it also follows from the proof that if |a (s, v, u(s, y)) \ <

Ci €% then one can bound the right hand side of (2.9) by ; Ks exp | —K4 AT .
e Clze [

Define

N(t,x) — N(s, x)

N*(s,1,x) = —
lt —s|772

(2.15)

The proof of the following lemma is similar to that of Lemma 2.5 and is therefore
omitted.
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Lemma 2.6 Let 6 € (0, %). There exist constants K7, Kg dependent only on 6 such
that for all a, A, € > 0 and for all a € [0, 1) witha + el < 1, we have

K 22
Pl sup [N*G.t,x0)|>re| < — —exp|-Ks——|. (216)
1A Vo ¢ral

2
0<s,1<ael st
1

x€la,a+eb]

Remark 2.4 Note also here that a similar statem}ent to that of Remark 2.3 also holds
in this case. That s, if o (s, y, u(s, y))| < C1€%, then one can bound the right hand

side of (2.7) by X2z exp (—Ks CZA; ;
]G o

We will also need some estimates concerning G (¢, x), which come from Lemmas
3.1 and 3.2 of [1]. For the lemma below let

X,
Xy =
x—1,

Lemma 2.7 There exist positive constants Cq, C1, C~’1, Cy, C3 such that

(e
IA
A IA
— | —

l—

We have

G(t, x) < Cop(t, x4) forallx €0, 1], t €T, (2.17)

t
//|G(s,x—z)—G(s,y—z)|2dzds§C0|x—y| forallx € [0, 1]andt > 0, (2.18)
0JT
1
élx/t—sff sz(r,x)dxdrSCI«/t—s forO0<s <t <s+1, (2.19)
s JT

C2«/1—55/S/[G(t—r,z)—G(s—r,Z)]zdzdr§C3«/t—s forall0 <s <t < oo.
0 JT
(2.20)

With the preliminaries in place we can now move on to proving the theorems stated
in the introduction.

3 Upper bounds
3.1 Upper bound in Theorem 1.2 (a)
We are assuming that the function o (¢, x, u) = o (¢, x) does not depend on the third

variable so the random field u (¢, x) is Gaussian. Before proving the required estimates,
we describe the main strategy behind the proof.
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Fix parameters ¢y > 0, c; > 4 to be specified later, and let

(=%}

Il
m
S

We consider discrete time-space points (¢, x ), where the time points #; are uniformly
spaced in [0, 7] and space points x; are uniformly spaced in T:

T
ti =icod®, i=0,1,...,1:=|—
C052

1 3.1
i = jc16, i=0,1,...,J =|—].
Gmsen. 1]
We clearly have
u(ti,x; +6) —u(t, x;
Pl sup H,(G)(u)fe <P max ’(l / 1) (i ])’56
0si=T p e 817"
<P max |u(t,-,xj+8)—u(t,-,xj)|§ei
i=0,1,...,1
j=0,1-J
3.2)
Consider the events
1
A; ;:{. BnlaxJ|u(t,-,x/~+8)—u(t,~,xj)|5620}. 3.3)
j=0,1,...,
From the above
I
Pl sup HPw)<e| <P mAi
0<t<T i=0
I
=[]P(Aild0. A1+~ Aiy). (3.4)
i=0
We will show in Lemma 3.2 below that for some 0 < n < 1,
P (Ai ’ u(s,x), s <ti_1, x € T) < nJ 3.5)

uniformly in i. Since the above bound holds regardless of the profile up to time #;_
one can conclude that the right hand side of (3.4) is bounded by 1/ /+1_ which gives
us the required upper bound in Theorem 1.2.
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We have the following lemma which plays an important role along with the fact the
solution is Gaussian. For k € N* and § > 0, we define

Ak i= N(t1, X + 8) — N(t1, x). (3.6)

Lemma 3.1 Fix co > 0 and c1 > 4. Then there exist positive constants Cp, C1, Ca
such that for all § small enough,

Co%?J/cod < Var(Ay) < C1658 (3.7)

uniformly in k. If 0 < |xx — x;] < % then

_ 2
‘Cov(&k, 51)‘ < CZ\/C_()%225 exp <—%> : (3.8)
1

Proof Since Ay, is a mean zero random variable, we can use Itd’s isometry along with
the bound on o given by (1.2) to obtain

~ gl
Var(Ak) < ‘522/ / [G(s, y+48) — G, y)]zdyds
0 JT
< €5Cs,
where the last inequality comes from Lemma 2.7. This gives the required upper bound

in (3.7)
Next, we have

t
Var(&k) > Sa”lzf 1 / [G(s, y+38) —G(s, y)]zdyds
0 T
1
= 2%12/ [G(2s,0) — G(2s, 8)lds
0

n 1
ZC%%A ﬁds,

which gives the lower bound in (3.7). Let us explain how we obtain the last inequality
above. For k > 1 and 8 small enough one has (k — §)> > ll—o(k2 + 82). Thus for all
0<s <21,

G(s.0) — G(s,8) = — {Zekzﬂs _ Ze(k+5)2/2s}

2ms keZ keZ

1 2 ad 2
> 1 — =82 _ o~ (k=8)?/2s

2ms { kzz;
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oo
> 1 {1 _ o~ 1/4co _ ,—5%/20s Zek2/2()s}

2ms =1

. _C {1 e /A0 ,e—l/(4000)}
2ms 2
C

> —.

T s

The second last inequality is a consequence of bounding the sum from above by an
appropriate integral from a Riemann sum approximation.

We next turn to the bound on the covariance. Observe that if we assume that k > [,
we have a = x; — x; = (k — [)c1é and therefore a + § > a — § > a/4. Using this,
the semigroup property of the heat kernel and (2.17) we have

- . A
[Cov(an | < [ [[166.5+8) = G316,y +a+8) =Gy +al dyds

n
=< (622/ 2G(2s,a) +G(2s,a —8) + G(2s,a+9)) ds
0

|
< C%OZZ/ 2pQ2s,a)+ p(2s,a —38) + p(2s,a +9)) ds
0

< CER T exp (—'6) ,

For the next lemma recall the events A; defined in (3.3)

3
Lemma3.2 Let cp = 1 and ¢1 = K;—? We can find a K > 0 large enough and
0 < n < 1 such that for an arbitrary initial profile u,

P(A1lug) < n’.

Remark 3.1 The above lemma implies (3.5) because the initial profile is allowed to be
arbitrary, and by the Markov property, A; depends only on the profile u(#;_1, -).

Remark 3.2 (Important) Note that the arbitrariness of uq assumed in the lemma is so
that we can apply the Markov property in (3.5), since a priori there is no restriction
on u(tj_1, -). The Markov property is used several times in this paper and we shall
use the arbitrariness of the profile at time #;_| often. However the reader should not
be confused with Remark 2.1 where we assumed that the initial profile (i.e. at time 0)
for (1.1)is ug = 0.

Proof For an arbitrary initial profile ug

J—1
P(A) =[] P(Bj|Bi.Ba.....Bj 1), (3.9)
Jj=0
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where
By = {luttn, x; +8) — . xpl < e¥ |
We will show that each of the terms inside the product sign in (3.9) is uniformly (in j)

bounded away from 1, which will imply the lemma. We will in fact prove a stronger
statement that P (Bj 1Gj— 1) is uniformly (in j) bounded away from 1, where G;_ is

the o algebra generated by the random variables Ak =N, xx+8)—N(t1, xx), k <
Jj — 1. We thus need to show the existence of some 0 < n < 1 such that

1
(181 = €% [Gj) =, (3.10)
where Ay = u(ty, xx + 8) — u(t1, xr). We will obtain this by showing
Var(Aj ‘g,_l) > Cet 3.11)

for some constant C independent of j. We can use general properties of Gaussian
random vectors to write

Aj = (G o) () +8) = (Guy #uo) (5] + A,
=[ (G #u0) x + ) +8) = (G +mo) ep] + X +7,  (B12)

where

j—1

X =Y Bl

k=0
is the conditional expectation of Aj given G;_1. The variance of Y is the conditional
variance of A j given g i—1, which is also the conditional variance in (3.11). Moreover
Y is independent of G;_1 and thus

COV(Y, A,):o, 1=0,1,...,j—1

Therefore forall/ =0, 1, ..., j — 1 we have
j—1
COV(A,-, AZ) - ZﬁkCOV(Ak, AZ) (3.13)
k=0

Lety = (yo, Y1, -+, Y j_l)T where y; represents the entry on the left hand side above,
B be the vector of the ;’s, and let

s = ((Covias, An))

0<k,I<j—1
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be the covariance matrix of the increments A;. We can thus rewrite (3.13) in matrix
form

y =SB. (3.14)

Let us next show that S is invertible. Write S = D(I — A)D, where D € R/*/ is
the diagonal matrix with diagonal entries

Std(Ak), k=0,1,...,j—1,

and I — A is the correlation matrix of Al. Above Std denotes the standard deviation of
the random variable in parentheses. Denote by || - ||1,1 the norm on matrices in R/*J
induced by the £1 norm || - ||; on R/. Now IAll1,1 = max; ) ;_, |a; j| (see page 259
in [15]), we can use (3.7) and (3.8) to obtain

C63 clk?
A1 < exp| ——— | <1/3
Co6} ,; 64

3
by choosing ¢; = K % for a large K. In that case the inverse of I — A exists and
moreover :
3
<.
-2

1
A=Ay < ————
ST TA

Using this along with the lower bound in (3.7) we obtain that S is invertible and
moreover

ST <ID Y- 1A= D < . 3.15
IS™ 1,1 < | 1,1+ 1IC ) 1l i1 < o5 (3.15)
Note also from (3.8)
) 2.2 )
ctk Cr656
< 0,628 § : -1 )< 2 3.16
Iyl < C2%5 k=]exp< a ) == (3.16)

for another constant C ).
Let us now return to (3.14) which we write as 8 = S~'y. From this we obtain

~ 2

Cy, .
<IS7Y1 - <=2
1B < IS i1 Nyl < Coor?
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3

The above quantity can be made arbitrarily small by achoice of alarge K incy = K (5—?3

Thus

~ 62«/C1 %23
Std(X) < -sup Std(Ag) < NG
(X0 <181l - sup Sud(Ae) = =2 =25

can be made a small multiple of %} /8 by a large choice of K. We have used the upper
bound in (3.7) above. Using this along with the lower bound in (3.7) once again we
obtain

oW/ 3
Std(Y) > Std(A ;) — Std(X) > (@cglﬁ_ C2C G 22) Vs
0 C10]

uniformly in j, and this proves (3.11) if we choose K large enough. We then get the
bound in (3.10) with n = P (|N(0, D] < ﬁ) for some constant C3. m]

Remark 3.3 One can check that one obtains for small §

61

P(Arug) < P (INO, 1) = —— ) “?
u , Dl < .
1lug) < A

3
In particular if 7 is large one obtains a bound of exp (—C4 Gilog ) )

Kes

Remark 3.4 We note that if o (s, y) is a constant function, then Lemma 3.2 can be
easily proved by using Slepian’s inequality. For instance, if o (s, y) = 1, then it is
easy to see that there exist cp > 0 and ¢; > 0 such that G(#1, z) is convex for all
|z| > 168, and then the convexity implies that

Cov(Ax, Ay) < 0.

Using now Slepian’s inequality, we get
p (max |Ax] < e‘”") <P <max Ay < 61/29) <[P (Ak < 61/29> ,
k A )

which provides an upper bound on P (A1) as in (3.9) since Ak is mean-zero Gaussian
with variance estimated in (3.7).
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3.2 Upper bound in Theorem 1.2 (b)
We provide the outline of the proof of the upper bound. The details are quite similar

to that of the proof of the upper bound of Theorem 1.2 (a) and are left to the reader.
Using the same discrete time-space points as in (3.1) we obtain

P (sup ]fj((e)(u) < e) <P max |u(t,- +82,xj) —u(ti,xj)| < e% . (3.17)
xeT i !

Defining

1
A? IZ{ ma |u(t,-+82,xj)—u(t,-,xj)|5629},
G=0.1,...J

the upper bound will follow once we show the existence of a0 < 77 < 1 such that

P (af

u(s,x), s <t,xe T) < ﬁj.

Note here the slight change from (3.5); here we condition on the profile up to ;.
One could have conditioned up to time #;_; but conditioning up to time #; makes the
argument simpler. Define

Af = N(8%, xz).

Using (2.19), one obtains a similar result to Lemma 3.1 with the random variables Ay
replaced by AZ. We also need

82
Cov (Az, Af) < ‘522/ / G — s, xp — y)G((S2 —s,x; — y)dyds
0 T
82
5%22/ G(2s, xi, x1)ds
0

_ 2
< C‘KZZ(S exp <—%> .

By the Markov property again, we only need to show
P(AGluo) < i’
for some 0 < 7 < 1. For this we note

J—1
Py =T (Bj‘ | B*, BY, ...,Bj‘_l),
j=0
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where
B? = {|u(82,xj) —u(0,x;)| < g%} .
Define Aﬁ = u(82, xx) — u(0, x;) and then show
1 ~
P(1afl e [g) =7

for some 0 < 17 < 1, where G;_ is the o algebra generated by the random variables
Aﬁ, k < j — 1. Note that although

Ajt = I:(G(Sz * uo) (xj) — u()(xj'):l + A#j

is of a slightly different form than that of (3.12), the term in the square brackets does
not play any role in the argument of Lemma 3.2.

3.3 Upper bound in Theorem 1.3 (a)

The function o (¢, x, u) now depends on the third variable, so the resulting random
field is no longer Gaussian. Therefore, we will need an alternative argument based on
an approximation procedure. For B > 0, we define the following equation,

t
v, x) = (Gf*uo)(x)+/ / Gt —s,x—Y)
0 J[x—/Bt,x++/Bt]

o (5,3, VO (s.3)) Wdsdy). (3.18)

Of course, here, we treat x + /B8t € T.
Existence and uniqueness of a solution to the above equation is not an issue. In fact,
this can be easily proved by considering the following Picard iterates:

t
v, x):(G,*uo)(X)+/ / Gt —s,x—y)
0 Jx—/Bt.x+/Btl

o (5.3, VO s, 1) Widsdy), (3.19)

with VB-0(z, x) := (G; * up)(x). We will need the following result.

Proposition 3.1 Assume Bt < %. There exist positive constants C1 and C that are

independent of B and t such that

2\ P/2 Ip)2
sup £ [IV(ﬁ)’l(I, x)— VP, x)|/’] < €16 L7 ph (L

7% )
xeT
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Proof We use (3.18) and (3.19) to write

VL, x) — v P, x)

t
::/ / Gt —s,x—Y) [cr (s,y, V(ﬂ)’l_l(s,Y)>
0 Jx—/Bt.x+/B1]

—0 (s, v, V(ﬁ)(s, y))] W(dsdy).

For notational convenience, we set f(/, 1) := sup,cy |VEL, x)y — v B, x)||f,.
We now use Burkholder’s inequality and the fact that o is globally Lipschitz to obtain

'
fl, 1) < C@zp/ F—1,5) [sup
0

/ Gz(t—s,x—y)dy] ds
xeT Jx— /Bt x+/Bi)

t
< cgzp/ £ - 1,s>/ G2t — 5. y) dy
0 T

Pfd—1,s)
——ds,
0 At —S
where we have used the heat kernel estimate (2.17) to get the last bound in the above

(here the value of the constant C changes from line to line, and is independent of g
and 7). Upon setting F([) := sup,. e % £(l, 5), the above immediately yields

<CPp

P%p

Vi

Upon choosing k = C2*p? with some large constant C and iterating, we obtain
F() < € (4)". This along with

Foy< &

Fd-1).

2 —kt ! 2 C<522
F(0) < %5 supe G(t —s,x —y)dyds < —=
>0 0 Jx—/Bt,x+/PBil g

gives the result. O

We also have the following error estimate on the difference between u and V#.

Proposition 3.2 Assume Bt < }‘ Then there exist positive constants C1 and C; that
are independent of B and t such that

2
a2\’ :
sup E [|u(t, x) — V(ﬂ)(l‘, x)|1’] < (%) eCz@“p‘te—ﬂP/zt

xeT

Proof We use (3.18) and the mild formulation of the u(z, x) to write
ut,x) —v»PB@, x)
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t
= / f G({t—s,x—Y) [a (s,y,u(s,y) —o (s, v, V(ﬂ)(s, y))] W (dsdy)
0 JIx—+/Bt,x+/pt]

t
+/ / Gt —s,x—y)-0(s,y,u(s,y) Wdsdy).
0 J[x—+/Bt,x+/Bt]¢

We now use Burkholder’s inequality together with the Lipschitz continuity of o to
write

lutt, x) = VE @, 07
t
< cgzpf / G (t —s.x — y)uls, y) = VP (s, y) | 5dsdy
0 Jx—/Bt.x+ /Bl
t
+Cp/ / G*(t —s.x — o (s, y, u(s. y) [5dsdy
0 Jx—v/Br,x+/Brl°
=1L+ .

We bound I, first. We now use the heat kernel estimate (2.17) and the fact that o is
bounded above to get that

ds

t
1
L <C%} e*ﬂﬂ/
PETnbe ) =

< C‘Kzzpe_ﬂ/z«/;.

We now set F(k) := sup,_q yer e‘ktllu(t, x)— VB, x)||%, and bound /; as in the
Proposition above to obtain

C7? Cty}
Fk) < 2P Py + =22P 612,
Vi vk
This finishes the proof upon choosing the k = C 2* p? for a large constant C. O

We will use the following straightforward consequence of the above:

sup E [Jut, x) = VOt 017 ]

xeT

/2
D2\’ . 1\
< ( ;22 ) 60294173: |:e—ﬁp/4 + (E) (3.20)

where D1 and D, are some positive constants. The following lemma along with (3.20)
suggests that we can construct independent random variables that are close to u(z, x).
The Proof of Lemma 3.3 is essentially the same as that of Lemma 4.4 of [5].

Lemma3.3 Let B,t > 0 andl > 0. Fix a collection of points x1, x2,--- € T such
that the distance between x; and x; is greater than 21/ Bt whenever i # j. Then
(VB x )} forms a collection of independent random variables.
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580 M. Foondun et al.

We can now prove the upper bound. Recall § = €7 and the time points #; 1= i8>
as in (3.1); we have chosen ¢y = 1. We shall consider now the spatial points x;; :=
J@+p)andxzj_1:=j@é+p)—pforj=1,...,J where J :=[1/2(§ + p)] and

p=2|a loge|%8. Here o > 4(D>2* + 1) + 160 is a constant which is independent
of € and i, j where D; is in (3.20). From this definition, we have |x2j41 — x2;| = 6
and [x2j42 — x2j41| = pfor j =0, ..., J. Asin the proof of the upper bound for the
Gaussian case, we have

u(t,x) —u(t, u(t;, xo; —u(tij, xn;
Pl sup lu(t, x) — u( y)|_ _p mx |u(t; 2’“1) : (t 2,)!Se
" i=0,1,. 75—
0z k= 3137 Jtoit 82

1
=P | max fulti,xj +8) —ult, x| < €7
i=0,1,.
_01 J

We will show below that uniformly over initial profiles u¢ (see Remark 3.2)

P ( (r)nlax |u(t1,x2j +38) — u(tl,xzj){ < eZ]TJ> < exp (_C}l) (3.21)
=

|loge|2ed

for some positive constant C. One then uses (3.4) and the Markov property, and notes

512] = [52%] to get the required upper bound.

Let us therefore turn to the proof of (3.21). Using the triangle inequality, the left
hand side of (3.21) is bounded above by

that the number of time intervals [ =

A 1/20
2P (j:(;l}z,i.).(. 2 ‘u(tl,xj) —v® (tl,xj)‘ > el/ )

+P<. max ’V(ﬁ) (11, x2]+1)—V(ﬁ) (11, xz])’ <361/20>
]_
=L+ L.

Before we consider L and L;, we define

B =1:=|alloge|]] and p:= {,/|loge|/82J. (3.22)

Letus now consider L first. By Chebyshev’s inequality and (3.20) there exist constants
C1 > 0 and C, > 0 which are independent of € such that

supP(

xeT

2\ P/2 Ip/2
- P12 (Dl@(fZ ) gD2@4p3; |:e—ﬂp/4 + (%) i| (3.23)

u(tr, x) — v<ﬁ”(n,x)] > €!/2)

@ Springer



Small ball probability estimates for the Holder... 581

Sincq 2J <1/(6+p)<1/5= €~ 1/% we have for some other positive constants C‘l
and C», independent of €

Ly =27 sup P (futty, ) = Va1, 0| = €1

xeT

5 é 94 1 3/2
< €y exp (-26|+€| . (3.24)

Let us now consider L;. First observe that W; := (V! (t), x2;), VB (11, x241))
are independent for j = 0,1,...,J — 1 by Lemma 3.3 since the distance between
X2j41 and x5 is greater than 213/2\/E. Thus, we have

Ly=P ( max ‘V(ﬁ)’l(tl,xzjﬂ) - V(ﬂ)’l(tl,xzj)‘ < 361/29)
j=0,1,...,

J
= l_[ p (‘V(ﬂ)’l(ﬁ,xzﬂrl) - V(ﬁ)’l(tl,xzj)‘ =< 361/20)-
j=1

Using the triangle inequality, we have

p ()V(’S)’l(h,mjurl) - V(ﬁ)’l(tl,xzj)‘ < 361/29>

<2 max P (‘u(tl,xj) - V(ﬂ)’l(tl,xj)‘ > 61/29)
0=j=2J

+P (’u(h, x2j41) — ulty, x2))| < 561/29)
=: Ly + Lo. (3.25)

Let us first consider Ly,. Consider the following martingale M for 0 < s < #1:

My = [(Gyy % ug) (x241) — (G *ug) (x2))]

+/O /T[G(tl —rxj41 =) = Gt =1, x5 = V] -0 (r, y, ulr, y)) W(dydr).

Note that My, is u(t1, x2j+1) — u(t1, x2;). The quadratic variation of the martingale
is given by

A
(M)s = /0 [F[G(t] —r, xj41 =) =Gty —r, x5 — y)]20 (r,y,u(r, y))2 dydr.
We use (3.7) to obtain
Co6Es < (M), < C1658.
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Since M, is a continuous martingale, it is a time change of a Brownian motion B, i.e.,
M; = My + By, Hence, recalling § = €'/, we have

P (\M(ll, x2j41) — ulty, x2))| < 561/28)

<P ((Mo + B, ( < 561/29)

CoCR8<t<C1633

sP( inf IMo+B,|§5J§)

<P ( inf |B;| < 5J§> =y, (3.26)

CoCR8<t<C1633

for some y < 1 independent of § (but dependent on %, %>). The last inequality
can be obtained by a coupling argument as follows: Let B¥0 be a Brownian motion
starting at M independent of a standard Brownian motion B starting at 0. Now let X
be the process which follows the trajectory of BMo till it hits either B or —B, after
which it follows the trajectory of B or —B (depending on which one it hits). Clearly
X has the same distribution as BMo. If inf cog2s<i<ci625 1 Xl < 54/8 then both
the events {infco%ﬁ&gtgcl%fa |By| > 5«/5} and {infcofg,zagzgcl%zza | — By| > 5\/3}

cannot occur simulataneously since then BM° would have hit B or — B before entering
the strip [—5+/8, 5+/8]. Thus

i inf |Xt|§5«/§} c{ inf |B,|55«/3}

CoCR8<t<C 638 CoCR8<t<C1%3s

U{ inf |—B,|55J§}

CoCR8<t<C\ 638

zi inf | By | ssﬁ}

Cocé/lz(sftfcfgfts

Let us now consider Ly;. Here, (3.24) implies L1 can be made arbitrarily small
by choosing € small enough. Therefore, there exists a constant < 1 independent of
€ such that

Loy+Ly»n<n<l,

which implies from (3.25)

Ly<n’/ <exp|— ¢
251 = ©xp el/flogel3/2 )"
Combining our bounds on L and L,, we finish the proof. O
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3.4 Upper bound in Theorem 1.3 (b)

The proof follows a similar strategy to that of the upper bound proved above and we
will sketch the proof focusing on the main differences. Note that we use the same
choice of B and [ as in part (a) (see (3.22)). Then, we have

P (sup%(e)(u) < e) < P | max |u(t,~ +82,xj) — u(ti,xj)| < e% ,
1

i=0,1,...
xeT =010

where the points #; = 82Whilexj =4jlalogel’?s, j=0,1,...,J = [m].

Here we choose o as in part (a) such that |x; — x;| > 2¢/B(n + 82). In other
words, by our choices of x;, {V#D () + 8%, x;) — VP (1, xj)}jj,zo is a collection
of independent random variables. Now we have

P <|u(t1 +52’xj) —u(ty, xj)| < Ei)
=P (!u(n + 62 x)) — VL@ + 62 x| > 6%)
+r (|”(f1’xj) - V(ﬁ)’l(tl,xj)| > 62%)
+P (|V(ﬂ)”(t1 1 8%a) — VO x| < 36%).

For the first two terms, we have similar upper bounds as the one given by (3.23);

P (]u(zl +6%,x) = VPl 462 x| = e%) +P (‘u(tl,xj) — VL, x| > e%)

Cy|loge|?/?
< Ciexp (—61/9 s

for some positive constants C and C». For the final term, we have
PV @+ 0% x) = VO, x| < 3¢7)
<p (|V<B>J(t1 + 6%, %)) —ult + 8% x))| = e%)
+P (|u(r1,xj) R E e%)

+ P (‘M(fl +82,xj) — u(l‘],xj)} < 56%>.

The bound for the last term is similar to the bound given by (3.26). The martingale
term is slightly different. For 0 < s <1 + 52

M; = [(Gyy 42 % uo) (x) = (G *uo) (x))]
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S
+/ / [G(tl 8% —rxj—y)— Gty —r.xj — y)1,§,l]
0 T
co(r,y,u(r,y)) W(dydr).

We now use (2.19) and (2.20) to show that there exist constants C3 and Cy4 such that
C36E8 < (M), 152 < C4%38.

A similar argument to that of (3.26) shows that
P (|u(t1 +82’x.,~) — u(tl,xj)| < Sei) <y,

where y < 1. The proof now follows from part (a).

4 Lower bounds

4.1 Lower bound in Theorem 1.2 (a)

Recall our time discretizations from (3.1): #; = icp8% = icped, i =0, 1,...,1, and

consider now the events
B; =U; N H;j, “4.1)

where the event U; puts restriction on the supremum norm of (¢, -) in the time interval
[, tir1]:

629 25%
U; = { sup |u(tl+1 x)‘ < —, and sup |u(t,x)| < forallt € [t;, tiy11¢, (4.2)
xeT 6 xeT 3

and the event H; puts restriction on the Holder norm of « in the time interval [#;, #;41]:
—1HO ) < S, and HO ) < =5 forall 1 € [1, 1i41] 4.3)
tit] =% 3 isti41 .

It is clear that

P( sup H( )(u) < e > P ( sup H( )(u) <e€, sup |u(t, x)| < e%

0<t<T 0<t<T 0<t<T
xel0, 1]
P(n’ 1B
I—1
=||P(Bi|Bo.Bi---Bi-1). (4.4)
=0
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Similar to the method of the upper bound, our main task will be to obtain a uniform
lower bound on P (B,- |Bo, By--- B,~_1). It turns out that with an appropriate choice
of cg one can in fact obtain such a uniform lower bound. We do this in Lemma 4.3
below (see also Remark 4.1), and then the lower bound in Theorem 1.2 (a) follows
immediately. We first need a couple of lemmas which we turn to next.

Lemma 4.1 There exists a constant Ks dependent only on 6 and oy = % > 0 such
2

that for ¢ < ag we have

P NG, x, )| <e| = 2 _ K (4.5)
sup ,X,y)| < €| =exp — exp P . .

2 2
t<aet, x#yeT

Proof We first split T2 into squares S of side length & led. By the Gaussian correlation
inequality ([10, 16]) we have

P sup  [N@tx,y)|<e|=]]P sup [N(t,x,y)| <e
tSO{G%, x#yeT N t<ael,
(x,y)ES, x#y
1 1 1 1 1
Fork =0,1,...,a72¢" & — 1, let S be a square in T2 whose center is k2" Za2€?

from the diagonal x = y. There are at most 20~ 2¢~7 of such squares. Therefore the
above probability is bounded below by

€

=
Tl

20

1_[ P sup |N@t,x, )| <e . (4.6)
2

1<oe 2 N

(x,y)€Sk, x#Y

Let us now give a lower bound of the expression inside the square brackets. We
first consider the case when £k > 1. For any (x,y) € S; one has a lower bound

[x —y| > 4—1‘ (kaéoﬁ) and therefore

P sup |1V(t,x,y)| <e€

2
t<aef, (x,y)eSi

€/ 1 1\170
> P sup NG = Ny <5 (kozzee)

2
t<aeb, (x,y)eSk

o R TN L | e e

t<aef, (x,y)eSk
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K120
>1-2Kjexp| - Ko——— ], 4.7
> 1 exp 25 e 4.7
the last inequality follows from (2.7). Therefore there exists an o = ;(2% > ( small
enough such that for all positive @ < o one has ’
- K2k1—29
P su N(t, x, <el|>l—-exp|l—+—].
sup NG, x, )| v
t<aeb, (x,y)eSk

Returning to (4.6) we can obtain a lower bound on the product of terms for which

k # 0 by choosing an oy = % > 0 small enough such that for @ < oy we have
2

207 2¢ 0

l_[ P sup |ﬁ(t,x,y)|§e
2

tfaeg,

(x,y)€Sk, xF£y

a 2e 71 1-26
11 Kk
> exp 2007 2¢ @ E log{l—exp(—m>,
k=1

a 2e 01
K k1—2(9
> exp —205_%6_é Z exp (_1228W
2

k=1
> 2072 1 o 4.8)
exp| 2a Zexp| —— ] - ¢ . .
=P P\ " 2564200
Finally we consider the £ = 0 term in (4.6). For a small a3 = % > 0 one has for
Cgl
o< o3
11
20" 2¢7 0
~ (a%e%)e
P sup |N(t,x,y)| < —F
; at

(x,y)€S0, X#y

r 2 2e¢
>|1—exp|— K4
- P 2¢3a?
> exp (—405_é exp (—2;(24 9) : €_é> , (4.9)
S
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where the first inequality follows by Lemma 2.5. We now use the bounds (4.9) and
(4.8) in (4.6). The statement (4.5) follows immediately from this by choosing g <
o1 A ax A a3 small enough. O

Lemma 4.2 There exists a constant Kg dependent only on 6, and a positive ag =

C() ~
———> — such that for ¢ < agy small enough one has
max(ff,%zz/g) J 0 g

Pl sup ING.x)I<em,  sup  IN(.x.y)<e

2 2
t<aeb xeT t<ael, x#yeT

1 Ks
> exp _a%eé exp _W (4.10)

Proof An application of the Gaussian correlation inequality ([10, 16]) gives

Pl sup ING.vI<em,  sup  |N@.x.y)|<e

2 2
t<aeb xeT t<ael,x#yeT

€

> P sup |[N(t,x)|<ew |- -P sup |ﬁ(t,x,y)| <e€

2 2
t<aeb xeT t<aet, x#yeT

.. . e e LoL1 .
We now partition T into disjoint intervals [a;, a;4+1) where a; := ix2€? fori =
L1 . . . . .
1,...,a” 2¢ 7. Applying the Gaussian correlation inequality once again and (2.7),
one obtains

\
~

P sup INGx)|<ew sup IN(t.x)| < e

2 X 2 1
t<aeb xeT i=1 t<aed xe[0,\/ae? ]

\
r——
|
[¢]
>4
o
|
[\
S|
Q S}
=
S~—
[ —
S}
|
ol—
N
=

11 K>
>exp| —2a 2 Fexp|— :
2‘522017
ifoa <ay = (D,% is small enough. The result now follows from this and (4.5). O
72

For the next lemma recall the events B; defined in (4.1).

s
Lemma 4.3 For all initial profiles uo with |ug(x)| < % and H® (ug) < %, one has

P(By) > 2 Ko 2
0) >exp | — exp | — —
\/Eoeé 36(52208 9c0‘51265
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2 - .
when cp6¢ < &g, where & is defined in Lemma 4.2.

Remark 4.1 Note (see Remark 3.2) that the arbitrariness of ug assumed above is so
that we have the same lower bound for P (B;| By, Bi, ..., Bi—1). This is because given
1

B;_ the profile u(t;_1, -) has sup norm at most ﬁ and Holder norm at most % One

can then use the Markov property and the above result.

Proof We will use a change of measure argument inspired by a technique in large
deviation theory. A similar method was employed in [1]. Consider the measure Q

defined by
dQ o)
— =exp (Z,(]) - _Zt(|) ,

dP 2
where
n 1 G
Zt(ll) _ _/ f (G % MO)(Z)W(dZd}’),
o Jro(r,z) 1
4 1 (G g
zy) = / f (G2 10)@ 1 ey,
o Jrlo(r,2) 1
Define

I (G xup)@)
(r,z) H '

W(r.2) = W(r.2)+
o

It follows from Lemma 2.1 in [1] that VT/ is a white noise under the measure Q.
By change of measure

d
0(By) = Ep (d—% ~ I{Bo}>,

and so Cauchy-Schwarz inequality gives

By < | E dQZ%PB%
Q(Bp) < P(d_P) - P(Bo)2,

from which we obtain

d0\*] "'
P(BO)EQ(BO)Z{EP (—Q)} . @1

dP
Now
2
dyds)

1 (G *up)(y)
o (s, ) f

e (5) = ([
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1
9ot et

We next provide a lower bound on Q(By). First observe that

! .
u(t,x) = (1 - %) (Gt * ug)(x) —I—/ / Gt —r,x —2)o(r, )W(drdz), (4.13)
1 0 JT

and

u(t,x) —ult,y) _ (1 B L) ‘ [(Gt *u0)(x) = (Gr Mo)(Y)}

: 1
PN T "
' Gt—r,x—Z—Gt_r’ —Z "
+/0 [I‘ ( | ) |1(9 ! )U(V» 2)W(drdz).
X —Yy|2
(4.14)

1
The deterministic term in (4.13) is bounded uniformly (in x) by % in the interval

[0, #1] and is equal to O at the terminal time #;. Similarly, due to Lemma 2.1, the first
term in (4.14) is bounded uniformly (in x, y) by % in the same interval and is also
equal to O at the terminal time #;. We define N (¢, x) and N (¢, x, ¥) as N(t, x) and
N (t,x,y) as in (2.4) and (2.8) respectively but by replacing W by W. It therefore
follows

E% ~ €
0By = Q| sup IN,X)<—, sup |NiGt,x.p)| ==
t<ty,xeT 6 t<ty, x#yeT 6
€ % ~ €
=0 swp M@l = (5)7 sup Nty < ¢
2 2 2 2
1<c060 (¢/6) 0, xeT t1<co68 (€/6) 0, x#yeT
1 K
>exp| — T exp (%29> , (4.15)
Jeoe? 36%5¢y

as long as c06% < & from Lemma 4.2. If we use (4.15) and (4.12) into (4.11) we
obtain

P(By) > 2 Ko 2
0) >exp| ——exp|— -
NG 3675 g 9(:0‘5]265

2.
as long as cp6? < ag. O
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4.2 Lower bound in Theorem 1.2 (b)

The argument in Sect. 4.1 has to be modified at quite a few places. We first note the
following lemma which follows immediately from the Gaussian correlation inequality.

Lemma 4.4 There is ag = ;(% > 0 such that for a < oﬂg we have
“2

# 1 Ko
P sup ‘N (s,t,x)‘ s€e|lzexp|{——TFTeXp|—5 5
2 a2e€b (520[0

0<s,1<ael ,s#t
xeT

We shall consider time discretizations t; = icz82 = icze%, i =0,1,...,1.
The constant ¢ will be appropriately chosen so as to get a uniform lower bound
on P (BﬂB#, Bf e Bffl) in (4.20) below. It will only depend on 6 and %>. In this
section let

Bf :=UfnHInTY,

where, similar to Sect. 4.1,

L L

and sup |u(t, x)| < forallz € [t;, tix1]¢

Ul-#z sup }u(t,-+1,x)|§ T T

xeT 8c22 g xeT 4c22 g
(4.16)

€ €
Hi# = {Ht(i)l (u) < A and ’)—(,(9)(14) < o forall 7 € [1;, ti+1]}, 4.17)
# lu(t,x) —u(s,x)| e
Ti = sup —l_ﬁ 5 5 (418)
xeT |t —s]372

1i <8, t<tiy1, s#t
Here, we recall the constant A in (1.4). Let us first consider the following lemma.

Lemma 4.5 We have the following inclusion.

n_, B c {sup A ) < e} . (4.19)

xeT

Proof We take a realization u(-, -) of the left hand side. We need to show for any
s <tel0,T],

ut,x) — uts. 0 __

1_6
[t —s|372
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Suppose s < ¢ are both in [#;, #;4-1]. Then, since the profile is in Ti#,

lu(t, x) —u(s, )|
u(t,x idsxE

€
9 .
It —s|i72 2

Next we consider the case when s € [0, #;_1] and ¢ € [#;, t;+1]. In this case we have

|u(t, x) —u(s, )| _ Jult, x) — ulti, )| n |u(ti, x) —u(s, )|

1_0 - 1_0 1_0
-9 — b i—S
|t |#72 [t — ;|37 2 |t |#72

€ 26% 1
=3 A Ry
4e; + \C2€7

<€

FNE
[

since u € ﬁi];ol Ui#. Finally consider s € [t;_1, t;] and t € [t;, t;11]. In this case

|u(t, x) —uls, )| _ |ut, x) —u(t, )| +|u(ti,X)—M(S,X)| -

1_0 - 1_0 1_0 -
-9 — b i—S
|t |#72 [t — ;|37 2 |t |#72

This shows that the realization is in {supx €T ff}(g) (u) <e } O

Remark 4.2 Observe that the events Hi# play no role in the argument above, and we
can in fact take the larger set ﬁ{:o(U,'# N Tl.#) in the left hand side of (4.19). However,

as we will see in Proposition 4.1 below, to get a lower bound on P(Tl.#) we will need
a control on the spatial Holder norms of u as given by the events Hl.#.

From the above lemma

P (sup A ) < e) > P (ﬂ{:oBf )

xeT

1
[T (Bf|B§, Bf...Bf_l). (4.20)
i=0

The lower bound follows from the Markov property and the following
Proposition 4.1 Suppose the initial profile ug satisfies

1
€¥c

O —
[T

sup [ug(x)| <

€
L HO W) < <.
s 8 (o) = g%
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Then there exists a constant Kjg > 0 dependent only on 0 and a positive &g =

C()
—max(%“ PN such that for all ¢, < ozo one has

# 1 Ko 1
P (Bo) >exp | — Texp | — a2l )~ Too |
NYT I+A9C ) eag2ci et

Proof We work with the measure Q constructed in the Proof of Lemma 4.3. From
(4.13) we have

u(t,x) —u(s, x)

{[1 - —} (G *ug)(x) + N1 (1, x)} {[1 - —] (Gs * uo)(x) + Ni (s, X)}

where we recall

t .
Nl(t,x)zf fG(t—r,x—z)a(r,z)vT/(drdz).
0 JT

Define

NEGs, 1, x) = Ni(t, x) — Nl(S x)

|t—s|4 3

Fors,t € [0, t1]

lu(t, x) — ?(se 2 [1 N i] (G * ug) (x) — l(Gs * u0) ()|
[t —s|372 f o
L= sl Gexup) @) + [N¥(s, 1, x)).
3} |t—S|4_7

The first term on the right is less than § thanks to Lemma 2.2. The second term is less
than § by the assumption on the initial profile. Now

1

€20
Q(Bé*)zQ( swp N0 = —— swp [Fixy| = o
t<t;,xeT 807_1 t<ty, x#£yeT A

2

# €

sup INT(s,t,x)| < =

x€T, s#t€[0,1] 8

1
€20
zQ( sup [Ny(t,0)| < —5—,  sup |Ni(t.x,y)| < 2 )
t<t;,xeT 8027_1 t<t1, x#£yeT A

xQ( sup |N#<s,r,x)|s§)

x€T, s#t€[0,11]
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by the Gaussian correlation inequality. By splitting the interval T into smaller inter-

1
vals of length cfeel and using Gaussian correlation inequality repeatedly (see also
Lemma 4.4 and Lemma 4.2) one obtains

# 1
Q(BO) = exp| — 1

1
51
;€0

K
exp |~ 4.21)
(14 A%)E5cS

as long as ¢ is small enough.
Following the arguments of Lemma 4.3 we obtain

p (Bg) >0 (33)2 {EP (fl—g)z}_

where Q is the measure constructed there. As in (4.12) we have

dQ\? n 1 G 2 1
Ep (d71Q3> = exp / / . (Gs *u)(y) ‘ dyds | <exp| —————— | -
0 Jriol.y) n 6a62c3 et

Using the above along with (4.21), the proof is complete. O

4.3 Lower bound in Theorem 1.3 (a)

We begin by describing the idea behind the proof first. The same idea will be used
for the Proof of Theorem 1.4. We will consider the following modifications of the
temporal discretisation given by (3.1),

T
N P -
t; =icod™, i=0,1,...,1:= |:c082+’7:|‘ (4.22)

Define

|
€20 1
R; = {|u(t,-+1,x)| < > forall x € T, and |u(t, x)| < €2 forallt € [#;,t;41], x € T} ,

and

fi+1(u) =

S; = [H“” and H (u) < e forall 1 € [1;, t,~+1]] .

€
3 9
We consider the event

Ai=R;NS;.
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Our goal is to provide a lower bound on P (A;). By the Markov property it is sufficient
to obtain a lower bound on P (A() under the assumption that the initial profile satisfies

Juo()| < €7 /3 and H® (o) < ¢/3.
Consider the evolution of u(t, -) in [0, #;] and write

u(t,x) =ug(t, x) + D(t, x),

where u (¢, x) solves

1 .
dug(t,x) = Eaﬁug(t,x) +o(t,x,up(x)) - W(t,x), teRy, xeT,

with initial profile u(x). Note that the third coordinate in o is now u¢(x) and therefore
ug is a Gaussian random field. Therefore if we define as in (4.1)

&) _ 578 (8)
By’ = Uy NHy”,

with U(gg> and Hég) defined similarly as in (4.2) and (4.3) but for the process ug in
place of u, and with the new value of 1; = 8211 = ¢+M/0,
Now B(gg) ») E(()g), where E(()g ) is similar to (4.1) but with u replaced by u(®), €

replaced by € = ¢, and #; = ¢ (€) 7 . Therefore

1 1
2.8% K 2.8%
P(BY®) > exp {— . exp( 6 ) ’ } (4.23)

T - 20| T
Co€ 36%; ¢ 9coC e

2 - . .
when c96¢ < &g. The difference between u and u is

t
D(t,x) = /0 /TG(t —5,X—Y)- [a(s, v, u(s, y)) — a(s, v, uo(y))] W(dsdy).
Consider the set
1
€20
V.= {|D(t,x)| < 3 forallt € [0,11], x € T}
{ ®) €
{1 D) = < forallr € 0. rl]}. (4.24)

Define now
7 :=inf {z >0 |u(t, x) — up(x)| > 2€% for some x € T} ,

and let
t
5(t, X) = / / G(it—s,x—Yy)- [a(s, y,u(s AT, y))
0o JT
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—~a (s, , uo())] W(dsdy). (4.25)
Let the event V be the same as V (see (4.24)) but with D replaced by D. Now

P(Ag) > P (B(()g) n v)

(8) S G% ©® 5 €
> P (B, )—P sup |D(t,x)|>? — P sup H, (D)>E .
0=<r=<i; 0<t<t
xeT

(4.26)

The equality holds because on the event Ag we have |lu(z, ) — ug|lco < 26% (recall

that our initial profile is everywhere less than e% /3), and so D(¢,-) = 5(t, -) up
to time #; on the event Ag. Now we use Remark 2.2 together with the fact that now

2.0 :
t1 = coed 1@ to obtain

~ €
P | sup |D(t, x)| > r

0<t<t

xeT

_L

0026 0 _ 1 L
=y r sup B, o) > —1<63626>

i=1 ost=n . 6¢c;
xe|:(i—1)ﬁ06§ ,i\/Eoe?]
K1 K2

<——F—ep|l-———F—). (4.27)

Jeper T 144,/cqP?ev 2

Next we focus on the last term in (4.26). We divide T? into squares S of side length
\/Eoeé . Let

_ D(,x)—D@.y)

ﬁ(D)(t,x,y) : :
1-6

|x — ¥l

Using Lemma 2.5 (more specifically, Remark 2.3) we obtain

~ 1 o~
P ( sup H,(e)(D) > Z) < 5 - sup P sup |N(D)(t,x,y)| > %
0 ) S 2
== co€? 0<t=<cqpe §+g
(x,y)€S, x#y
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1 ~b 1§
= 5 -sup P sup |N(D)(t,x,y)|> —6-0026
[N 2.1 2
co€e? 0=r=cge 7ta 6¢;
(x,y)€S, x7#y
K K
< —exp| - . . (4.28)
coed T 20 144c§ P2 17

We plug in the bounds (4.28), (4.27) and (4.23) into (4.26) to obtain

PA) = 2.87 ( K ) 2.87
0) >expi— exp| — - -
Jeoe? 3643 )  ocylen

Ky K> K3 K4
B l+i CXp\ — l+i - g+l CXp | — 0 l+ :
e 20 144,/co P2t " 20 coed 20 144¢0 92N

The last two terms are much smaller than the first term for small €. Therefore P(Ag) >

P(Bég)) /2 when € is small enough. We thus have a lower bound on P(A;) for all i.
As mentioned earlier, the proof of (1.11) then follows from the Markov property. 0O

4.4 Lower bound in Theorem 1.3 (b)

The argument follows that of Sect. 4.3 with some modifications. Now let #; =

5 .
icp82tY = €5 Similar to before, for ¢ € [1;, tir1], we write u(t, x) = ug)(t, x) +
D (z, x). Here

du® = L0240 Lo (1 x u(t, ) Wit x), €y fiai]
[Mg —2xug o, x,ullj,x » X)s € Ui, li+1l,
) (@, ) = ult;, ),

and

t
D<"><t,x)=f /TG(r—s,x—y) [o(s,y, u(s,y)) —o(s,y, ult;, )] W(dyds).
t

Now define

Bl_(g),# _ Ul_(g),# n Hi(g),# n Ti(g).#’

where Hi(g)’#, Ti(g)’# are as in (4.17) and (4.18) but with u, in place of u, and with
the t; = icy821T19 = i626%+n. On the other hand we define

1 1_90
g tn(z—3)
@# . _ i €
U; = Su};’“é)(li+1,)€)’§ T
xe 271
8c;
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wH1(G—%)
@) €20 Mg —73
and sup ‘ug (t,x)‘ < — forallt € [t;, t;41]

xeT 4¢

SICES
BN

Now let

where

. €
vii=1 sup [DD@,x) <

0
xeT 2
telti,tivl 4C2

D® t,x)— D® S, X €
v = sup RENGE) : G, <=
reT It —s|372 2
1 <8, t<tjy1, S#t

B

It follows from arguments similar to Lemma 4.5 that

1
REixs {sup A () < 2e} , (4.29)
i=0

xeT
where
B = Bl.(g)‘# nvE.

By the Markov property it is enough to give a lower bound on P(%g ) under the

: =9
assumption that |ug(x)| < % and ’H(()e)(u) < ﬁ. Let

2
8cy

1 | )
t:=inf {7 >0: |u(t, x) —up(x)| > €212 forsomex € T § ,

S

0
2
)

Let Vg* be defined as V(f but with D© in place of DO Here 50 is as in (4.25) but
with the above 7.

#
P(#Y) = PBE NV
= PBE N

> p (ng)’#) —P ((ng 1)“) —P ((Vg;)c)
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Using Remark 2.2 and the argument in (4.27) we obtain

1 1_¢6
- - s tn(z—3)
P(TE0) =P [ sup 1O 0] > ——
e !
K K>
S——exp|l—— |- (4.30)
N/ Lk 64./c,Z%ev 2
Similarly using Remark 2.4 we obtain
~ K; Ky
P ((V(fz)c) <S——exp|l—— - (4.31)
cyet T2 164/c,Z2ev 2

Lemma 4.6 We have when € is small enough

3 K
P (B(()g>’#) >exp| ————exp —%
C2§65+n(%—9) 128¢5,6;

. .. . . . 2
Proof As in the Proof of Proposition 4.1, with this new choice of 1| = cpe?1" and
with

t ~
N® (@, x) :=/O /TG(I—r,x—z)a(r,z,uo(z))W(drdz),

ﬁl(g), Nf’(g) defined in terms of N l(g), we have

w+n(G=5)
JH €20 372 - €
o™ = o s WPani Tt W) < )
t<t;,xeT 86771 tSh,x;ﬁyET
2
x Q( sup NP0 < 5) (4.32)
xeT, s#t€[0,1] 8

A lower bound on the last probability is obtained by taking the supremum of s # ¢
over [0, cze%] instead of [0, 71]. This gives (when c; is chosen small enough)

Q( sup |Nf‘<g)<s,r,x)|s§>

x€T, s#t€0,]

—_ =

>exp| —

1

( K ) (4.33)
exp —ﬁ . .
cg 8d¢ é 64%2 =)
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Next let

] = CQE%-H](I_ZQ).

Clearly 71 > t; and so a lower bound of the first term on the right of (4.32) is (note
the 1 in the sup has been replaced by 71)

®) RACE ) €
Q( sup NP, x0)| £ ——5—, sup |N1 (t,x,y)|sg>
1<fy, x€T 8027_1 1<fy, x#yeT
L9
Ln(i-9)
ewtn(z—3 - P
> Q( sup [N (0] < T) : Q( sup [Ny < 87\>
t<ty,xeT 8c22 1 tfqé%, ttyeT

_ 1 ( K> 2 Ks
Zexp | —— exp | — ia )| |-\l -5 57
622654.,,(%_9) 128¢5 %5 szeol 64A=C5cy

(4.34)

% is chosen small enough, using the arguments in Lemma 4.2.
max(¢,,6,"")

We have used the Gaussian correlation inequality in the second step. Note that the sup

when ¢; <

in ¢ in the second probability is over a larger time interval [0, €7 ].

(@).#
BO

. . 2
The event depends on the noise up to time c€ 7, and so

-1

2
) . (4.35)
[0.c2¢7]

P (5") = 0 () [ (42

We have the following upper bound (similar to (4.12):

aQ
(22

1

2) Sexpl - o+4 1 1
[0,c2€8 ] 64<g12¢2+765—'7<z—9>

(4.36)

Plugging in the bounds (4.33),(4.34) and (4.36) into (4.35) we obtain the lemma. O

From the above lemma as well as (4.30) and (4.31) we obtain

4 K>
PABY=exp| ——————exp | ——
‘ ched o) 128¢062

when € is small enough, and thus from (4.29) one gets

P (sup %(9)(14) < 2€> > exp (_M) ,

3 3
xeT e§+”(779)
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for some constant C (0, 62) > 0 dependent only on %> and 6. This completes the
proof of the lower bound since 7 is arbitrary. O

5 Proof of Theorem 1.4

The proofs of the upper bounds in both statements in Theorem 1.4 are the same as that
of Theorem 1.3. The proof of the lower bounds follows the same ideas as in the proofs
for the lower bounds of Theorem 1.3. We show this only for statement (a); the proof
of statement (b) is similar. The only difference as compared to the Proof in Theorem
1.2 (a) is that we revert back to the discretisation given by (3.1). We therefore have

P(Ao) > exp 2 exp|——nt 2
0) >expl— xp | — —
\/Eoeé 36¢5 ¢ 9c0<5126$

K, K> K; K4
-exp | — - - sexp|— . - -
Jepe? 144./c,P*e? co€d 144cf %€
For any fixed cg, ¥ and %3, we can choose & small enough so that as € decreases,
the final two term goes to zero much faster than the first term. Therefore for small € a

lower bound on P(Ag) (and hence P(A;)) is one half times the first term above. An
application of the Markov property then finishes the proof. O

6 Proof of Theorem 1.1

We first prove the upper bound. This follows immediately from

u(t,x) —u(s,
P sup | (1 ) ( y)|| F<e| =P supH,(Q)(u)fe ,
0<s,t<T |x—y|7_9+|t—s|1_7 t<T
0<x,y<l1
(#,x)#(s,y)

and Theorem 1.3. Let us turn our attention to the lower bound. In the proof of the
lower bound of Theorem 1.3 (b), we let

DD (¢, x) — DV,
V»#3 = sup | @) ( y)’ <i

i3 1_ -
x#yeT [x — y]|2 o 2A
I <I=li+]

’

and redefine
vi=vinvhnvl and 2 =" nvE
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We then have

I
m%’f C {sup %(9)(u) < 26} N4 sup H,(Q)(u) < £ .
0 xeT 1€[0,T] A

In addition, similar to (4.30) and (4.31), Remark 2.3 says that

UH# ¢ K4
P () =50 (- —).
Ve t2 164/c,A2P2e5 2

Now it is easy to see that

u(t,x) —u(s 1
Pl s utr, ) — (s )| 956[2+—]
0<s,i<T |t —s|372 +|x —y|272 A
0=<x,y<I
(t,x)#(s,y)
€
>P {sup %(9)(u) < 26} N4 sup H,(Q)(u) <—:].
xeT 1€[0,T] A

It then follows quite easily that under the same assumptions of Theorem 1.3, for any
n > 0, there exist positive constants C1, C, > 0 dependent on 47, 62, 6, n such that

u(t,x) —u(s, C>T
P sup | (1 9) ( y)|1 s <e|>=Crexp (— 32 )
Oss<T |t —s[372 +|x —y|272 et
0<x,y<l1
(t,x)#(s,y)
This finishes the Proof of Theorem 1.1. 0

Remark 6.1 1t is easy to see from the argument presented here that under the assump-
tions of Theorem 1.2 (resp. Theorem 1.4) we have the same bounds as in (1.7) (resp.
(1.11)) for the Holder semi-norm. We leave the verification to the reader.

7 Proofs of Theorems 1.5and 1.6

The proof of the lower bound of Theorem 1.5 relies heavily on Theorem 2.2 of [9].
We will use some notations from its proof and indicate only the main differences.
The proofs of Theorem 1.6 follow from Theorem 1.5 using the same arguments used
previously to deal with the non-gaussian case.

Proof of Theorem 1.5 (a) The upper bound is a result of Lemma 3.2 (recall the event
A; defined in (3.3)); note that the initial profile in Lemma 3.2 is arbitrary. Indeed, we
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might condition on the profile at time T — 82 and conclude from the above lemma
that

P [ max [u(T,xj +8) —u(T,x))| < ew
i

T —co8®, )| <,
Ei (T -’ <

where 0 < n < land J = [“ia], andcyg = 1,¢1,6 = eé are as in Sect. 3.1. From
this and (3.4) we obtain

P (H(Te)(u) <e€ ‘u(T — 0062, ')) < nJ.

Integrating over the profile u(T — cy82, -) we obtain the upper bound.

We next turn our attention to the lower bound. As mentioned above, the proof
follows along the lines of the proof of Theorem 2.2 of [9], and we just sketch the
necessary modifications in the proof. Recall that we assume that our initial profile
ug = 0, and therefore

E (T, x) —u(T. )] = E[(N(T.0) = N T, )P

Defining 02(y) := E [{N(T, x +y) — N(T, x)}*] it follows from the proof of (3.7)
that

C(T)yy <a’(y) </Ciy

for y > 0 small enough, where C(T') is a constant dependent on 7" and C is the
constant in (3.7). The above is the key ingredient in the proof of the lower bound.
We take f§ = 6 and f(x) = x27% in Theorem 2.2 in [9]. While it is not true that
o(x) /x/g f(x) is nondecreasing in x as in Theorem 2.2 of [9], a close examination
of the proof reveals that all we require is that o (ax)/ f(ax) < CaaPa(x)/ f(x) for
some positive constant Co, for all 0 < a < 1 and x small enough. This clearly holds
for us. The sequences x; and y;; encountered in the proof there should be modified
by multiplying by Ciz Similarly, while going through the arguments of the lower
bounds of the terms A, B, C defined in the paper, one just gets an additional constant
multiple inside the exponentials and this does not change the result. We leave this
routine checking to the interested reader. The lower bound in Theorem 1.5 follows
immediately from the lower bound of Theorem 2.2 in [9]. O

Proof of Theorem 1.5 (b) For the upper bound, let #; = ie%, i=0,1,---1= Te*%.

lu(tiv1, X) —u(ti, X)|

0

1
(tig1 — 1;)372

P(L%ﬁ)((e)(u)ff)fp( <k, foralli=0,1,'~',1>-

By considering the profile at time #; we obtain

w(tiv, X) = (Gppyy *ulti, ) (X) + N (@i, tiy1, X).
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Note that N'(#;, t; 11, X) is really the noise term from time ¢; to #; 11, that is thinking
of time #; as the new time zero . Similar to arguments used a few times in this paper
we have

tiv1, X)—u(t;, X N (i, 1, X
P(|u<,+1 ) »;(l >|§€‘M(S_)’s§ti)sp(l<u+llzlSe‘u(s,.),sfti),

1_6 1_6
(tip) —1;)% 2 (tiy1 — 1) 2

which is bounded uniformly (in i) by a number less than 1 (note that the variance of

N (t;, tiy1, X) is bounded above and below by constant multiples of % ). The Markov
property then gives the upper bound.

Consider the process Y; := u(tT, X), 0 <t < 1. As we are under the assumption
ug = 0 we have

E [(Y[ — Ys)2] —E [{N(tT, X) — N(sT, X)}2] .
Defining 62(y) := E [(Ytﬂ, - Yt)Q] and using (2.19) and (2.20) one obtains

Ci/Ty <o%(y) < Co/Ty

for constants C1, C» independent of 7'. One can then follow the argument of the lower
bound of Theorem 1.5 for the process Y;, now with f(x) = x%_% and 8 = %. O

Proof of Theorem 1.6 (a) The proof of the upper bound is similar to Theorem 1.3 but

instead we use (3.21) and note that this bound is uniform over the initial profiles u.
We can then conclude

P (’H(Te)(u) <e€ ‘u(T — coe%, -)) < exp (—L) .

31

|loge|zev
Now integrate over the profile at time 7" — coe%. O
Proof of Theorem 1.6 (b) The proof is very similar to that of the proof of the upper

bound of Theorem 1.5 (b). The only difference is that now N (#;, t;+1, X) is no longer
Gaussian. For ; < s < t;4+1, we note that

Ntry s, X) = / ‘ /T Guorr(X.y) -0 (e y ur, ) W(dydr)
t

is a martingale. Similar arguments to that of the proof of (3.26) and an application of
the Markov property complete the proof. O
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8 Some extensions

In this section, we provide support theorems in the Holder semi-norm, which are
similar to the support theorem in the sup norm in [1]. We provide probabilities that the
solution u stays close to a function in Holder spaces C”# (see Theorems 8.2 and 8.3
for the precise statements). These theorems are of a different flavour from the support
theorem proved in [3], where a description of the support set of the solution is given.

We first consider small ball probabilities of (1.1) with nice drifts. By means of a
change of measure argument, we can show that all of our results are still valid when
we add a bounded drift term to the equation. Consider

1 .
du(t, x) = Eafu(t,x)—l—g(t,x,u)—l—cr(t,x,u(t,x))-W(t,x), teRy, xeT, (8.1)

The proof of the following theorem follows exactly the argument given in Section 2.2
of [1] and is left to the reader to verify.

Theorem 8.1 Consider (8.1), where the assumptions (1.2) and (1.3) on o hold, and
g(t,x,u) : R" xTxR — Risboundedin absolute value by a constant G and globally
Lipschitz in the third variable (that is, there is a 9 such that |g(t, x, v) —g(t, x, w)| <
.@lv — w|). Then the statements of Theorems 1.1, 1.2, 1.3 and 1.4 still hold, with the
constants now depending additionally on G but not on 2.

Note that the Lipschitz condition on g is just to gaurantee uniqueness and existence
of solutions to (8.1). We also have the following result which is analogous to that of
Theorem 1.2 of [1].

Proposition 8.1 Consider the solution to (1.1). Let h : Rt x T — R be a smooth

function such that h, 9;:h and afh are uniformly bounded by a constant H. Let 0 <

0 < % and 0 < € < 1 and suppose that H(()e)(u —h) <5 (1 A ﬁ) where A is given

in (1.4).

(a) Suppose that the function o (t, x, u) is independent of u but satisfies Assump-
tion 1.1. Then there exist positive constants C1, Cy, C3, C4 > 0 depending on
€1, 6>, 0 and H such that

C.T CsT
Clexp(— 23 >§P( sup Ht(g)(u—h)fe> §Cgexp<— 43 )
€0 0<t<T €0

and

CT C4T
Cpexp (— 23 ) <P (sup%’j}ﬁ (u—nh)< e) < Czexp <— 4§ )
€0 xeT €0

(b) Suppose that o (t, x, u) is now dependent on u and satisfies both Assumptions 1.1
and 1.2. Then for any n > 0, there exist positive constants C1, Ca, C3,Cq > 0
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depending on 6, 6>, 0 and H such that

C,T CyT
Ciexp <— 32 ) <P| sup H,(G) (u—h)<e)] <Czexp —3;3 )
eotn 0<t<T €d|loge|2

and

CT C4T
Ciexp (— 32+ ) <P <sup<%‘}(0) (u—nh) < 6) < Csexp <_3;3> )

eo™N xeT €d|loge|2

(c) Supposethato (t, x, u) is again dependent on u and satisfies both Assumptions 1.1
and 1.2. Then there is a Dy > 0 such that for all D < Dy, there exists positive
constants Cy, Ca, C3, C4 > 0 depending on 61, 6>, 60 and H such that

C,T CyT
Clexp(— > )SP sup Ht(e)(u—h)fe <Ciexp| ——5—= u Bk

€i 0<t<T €7|loge|2
and

CoT C4T
clexp(— - )5P<sup%(9)(u—h)se>§Csexp - ).

€0 xeT €0 |logel?

We quickly discuss how the above follows from Theorem 8.1 and the previous resuls.
Consider w(t, x) = u(t, x) — h(t, x). The reader can check that w satisfies

1 1 :
dw = Ea,%w + [zafh - a,h] +6(t, x, w)W,

where wg = ug(x) — h(0, x), and o (¢, x,w) := o (¢t,x, w + h(t, x)). One also
observes that ¢ satisfies the same assumptions as that of o, and the function g (¢, x) :=
%th — 0;h satisfies the assumptions of Theorem 8.1. Proposition 8.1 follows from
Theorem 8.1 applied to w.

We next increase the collection of functions 4 for which we can prove support
theorems similar in spirit to Proposition 8.1.

Definition 8.1 We say that f : [0, T] x T — R is in C?-# if we have

|f(t,x) = f(s,y)
I fllcre :==1f(0,0)+ sup )
< 0<s,t<T [t —s[¥ +|x — y|/3
x,yeT
(1,x)#(s,y)

In other words, C?# is the set of functions that are uniformly bounded, Holder con-
tinuous with the exponent y in time and the exponent g in space.
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Let ¥ : R — R be a non-negative, symmetric and smooth function such that
the support of v is in [—1, 1] and fR ¥ (x)dx = 1. For any positive integer n and
f e C7P we set ¥, (x) := ny (nx) and define

Jult, x) = //Rz Flsu ) (x = )t = s)dyds, (8.2)

where f is the periodization of f in the spatial variable x and we also define f(s,x) =
f(0,x)fors <Oandx € Rand f(s, x) = f(T,x)fors > T andx € R. We have the
following bounds on the derivatives of the above function. The proof is straightforward
and is therefore omitted.

Lemma 8.1 Suppose f € CV-P. Then there exists a constant C > 0 such that for all
xe€Tandt €0, T]

3% fu(t, x)

2
2 < Cn-.

< Cn, < Cn,

‘afn(ta x)
ax

‘ 0 fu(t, x)
at

The following lemma shows we can approximate f € C?-# by smooth mollifications

of f.

Lemma8.2 Let f:[0,T] x T — R bein CV’ﬁfor some y, B € (0, 1]. Consider the
sequence of smooth functions { f}7° | defined by (8.2). Let B1 € (0, ) andy, € (0, y).
Then, for any fixed € > 0, there exist constants C1(€) and C,(€) such that we have

(1)
sup H, (fa—f) <€ as n>Ci(e), (8.3)
0<t<T
and
(1-20)
sup Hy (fu—=Ff) <€ as n=Cye). (8.4)
neT

Proof We start by making the following observation. Since for each r > 0, f(¢, -) is
Holder(8) continuous, for 81 < B8 we have

|f (2, x) = f(z, y)]
x — yIPr

< Cilx — y|f=F1,

where C is a positive constant that is independent of 7. We also have

[t ) = falt, )| _ UG % —2) = £,y = DWYn @Vt — 5)dzds|
lx — y| lx — y|B
< Cilx —y|/~h.
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We therefore obtain

(fult. ) = f(. ) = (. 3) = YD | _

su
P x — y|Pi

0<t<T

1
whenever we choose |x — y| < (2%) PP1' We now consider [, x) — fult, x):

Jt,x) = fult,x) = //[f(l, x) = f (s, DI —s)Yn(x — y)dyds

_ // LF (o x) = f( = 50 — V)] Yn(s)¥n(3) dyds

://[f(t,x)—f(t—s,x)} S Y (5 () dyds

Is[”

+f/ [f(f—”) ‘|yf}§t‘s’x‘”} 191 ()W (y) dyds.

Since f € C"P, y,(x) = 0if |x| > 1/n and [ Yn(x)dx = 1, there exists some
constant Co > 0 such that

sup sup | f(t,x) — fu(t,x)| < Ca2 (n7 +n"P). (8.5)

0<t<T x€T

1

Hence, for all € [0, T] and x, y € T satisfying |x — y| > (2%1);3—/31 . there exists

some constant C3 > 0 which only depends on §, 81 such that

(fult.x) = f(1.2)) = (fult.y) = £(2. y))‘ -, (gyl/w—ﬁw

Ix — y|P c sup [ £, x) = fu(t, %)

xeT

< C; (n—)/ + n—ﬂ) P/ Bi=P)

We have therefore proved (8.3) for all large enough n > Cj(€) where
1y 1/B
Ci(e) = max {(2C36ﬁ/<ﬁl—ﬁ>) , (2c3eﬁ/<ﬁl—ﬁ>) } . (8.6)

For (8.4), we follow the same proof above but switch g by y to get (8.4). Here, we
need n > C,(€) where

1/y 1/B
C>(€) := max {<2C36V/(V1_V)> , <2C3ey/(yl_y)> } . 8.7)

This completes the proof of the lemma. O
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Remark 8.1 It is easy to see from (8.3), (8.4) and (8.5) that every f € C?-# can be
approximated by its smooth mollification f,, in || - ||y,.6 forall y; < y and B < B.
That is, for any € > 0 and for every f € C7-B_ there exists a constant C(¢) > 0 such
that

I fu — f”cn»ﬁl <€ forn > C(e). (8.8)

We can now drop the assumption that 4 is smooth in Proposition 8.1. We obtain
bounds on the small ball probabilities when & € C?+#. The upper bounds remain the
same as before, but the lower bounds now depend on 8 and y. We now have to treat
the spatial and temporal regularities of u — h differently. We first consider the spatial
difference of u — h, i.e., H" (u — h).

Theorem 8.2 Consider the solution to (1.1). Let 0 < 6 < % and 0 < € < 1. Suppose
h:[0,T]xT— Risin C7-B with % —0 < B <landy € (0,1]. We also assume
H(()e)(u — h) < §. Then we have the following:

(a) Suppose that the function o (t, x, u) is independent of u but satisfies Assump-
tion 1.1. Then there exist positive constants C1, Cp, C3, C4 > 0 depending on
6\, 62,0, B and y such that

1 1
C] exp _C2T Iy + TVV) < P sup Ht(e) (l/l _ h) <e
€0 ¢yB+-1/D) 0<t<T

C4T
<Czexp|——75)-
€b

(b) Suppose that o (t, x, u) is now dependent on u and satisfies both Assumptions 1.1
and 1.2. Then for any n > 0, there exist positive constants C1, Ca2, C3,Cq > 0
depending on 61, 6>, 0, B and y such that

1 1
Ciexp <—C2T |: — + G ]) <P ( sup H;e) (u—nh) < 6)
24 Vy)
€0 € Y(B+I-1/2) 0<r<T

C4T
=Gexp|l———= |-
€d|loge|2

(c) Supposethato (t, x, u) is again dependent on u and satisfies both Assumptions 1.1
and 1.2. Then there is a Dy > 0 such that for all D < Dy, there exists positive
constants C1, Ca, C3, C4 > 0 depending on 61, 6>, 0, B and y such that

1 1
C1exp (—CzT |:—3 + Tj|) <P ( sup H,(0> (u—nh) < e)
3 Vy)
€0 € Y(B+0-1/2) 0<t<T

C4T
=Gexp|l———7 ).
€d|loge|2

@ Springer



Small ball probability estimates for the Holder... 609

Proof The proof is similar to the proof of Theorem 1.2 of [1], but here we use the
approximation procedure presented above. That is, we set §1 := % — 6 in Lemma 8.2
and n = Ci(e) where Cj(¢) is given in (8.6), and define a smooth function %, by
(8.2). Then, we have

€
sup H (hy —h) < =. (8.9)
0=<t<T 2
Since H” (u — h) < H (u — hy) + H? (h — hy), (8.9) implies that
Pl sup H,(G)(u—h,,) < < < P| sup H?e)(u—h)fe .
0<t<T 2 0<t<T
By Lemma 8.1, there exists a constant C so that
sup sup (3t - af) ha(t, x)‘ <cn. (8.10)
tel0,T] xeT

Here, (8, — %8%) h, (¢, x) is the drift term when we consider the differential form of
u(t,x) — h, (¢, x). That is, if we let ut,, := u — h,,, then i satisfies

8[12” = atu — 8;]’1”

1 .
= 58)%14 +o(t,x,u)W — d,hy,

1,5, I, 5 .
= Eaxun — | 0hn — Eaxh” +ou(t, x, uy)W,

where 6, (¢, x, z) := o (¢, x, z+ h, (¢, x)). A close inspection of the proof of Theorem
1.2 of [1] shows that in the case of (a)

€0 0<t<T

1
Ciexp (—CzT [—3 +n4}) <P ( sup H,(e) (u—h) < e) .

Here, n* comes from (8.10). Recalling the choice of # finishes the proof of the lower

bound in part (a). The arguments for the lower bounds in (b) and (c) are similar.

Let us now consider the upper bounds. First, we prove the upper bound in part (a).
Here we also use the approximation procedure. That is, we choose and fix n large
enough to get (8.9). Then, by triangle inequality, we have

P( sup H,(G)(u—h)§§> §P( sup er)(u—hn)fe).

0<t<T 0<t<T
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Let v, (¢, x) := u(t, x) — h,(t, x). Then, v satisfies
1 .
o, (t, x) = 7 aivn(t,x) —gn(t,x) —I-U(t,x) -Wi(t,x), teRy, xeT, (811

where g,(t,x) = (0, — %8)%) h,(t, x). To get the upper bound in part (a), we just
follow the proof of the upper bound of Theorem 1.2 (a). Note that the upper bound
of Theorem 1.2 (a) is obtained once (3.11) is proved. The only difference from (8.11)
to (1.1) is that we have the additional drift term g, (¢, x) in (8.11). However, the drift
term does not have any effect in obtaining the upper bound. More precisely, similar to
(3.11), we need to show that there exists a constant C > 0 such that

Var (A;]Gj-1) = ce”, 8.12)

where

A=A+ [(G,1 x10) (x +8) — (Gyy %) (x)]

[ [1 [ (Gactr =5 =9 = Gy =5 =) sats v as .
and A ;j 1s given in (3.6). Here, since g, is deterministic, we have
Var (Aj ) gj_1> = Var (AJ- ’ gj_l) .

Thus, (3.11) implies (8.12), which leads to the upper bound in part (a), that is the same
upper bound in Theorem 1.2.

For the upper bound in part (b), we follow the proof of the upper bound in Theo-
rem 1.3 (a). That is, we add —A (¢, x) to the mild form of u(z, x) and also add —h(z, x)
to V® and V#D in (3.18) and (3.19), then follow the proof of the upper bound
in Theorem 1.3 (a). It is easy to see that Propositions 3.1 and 3.2, and Lemma 3.3
still hold. In addition, as in (3.26), we can regard (u(r1,x2j41) — u(f1, x25)) —
(h(t1, x2j41) — h(t1, x27)) as

Mo — (h(t1, x2j41) — h(t1, x2))) + By, -

Following the same proof of (3.26), we obtain

P (|(M(t1,x2j+1) —u(t1, x2;)) = (h(t1, x2j41) — h(t1, x27))| < 561/29) <.
(8.13)
where y is given in (3.26).
The proof of the upper bound in part (c) is exactly the same as the one for the upper

bound in part (b). O
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Similar to Theorem 8.2, we now provide small ball probabilities of the temporal
Holder semi-norms of u — h. We skip the proof since one can basically follow the
Proof of Theorem 8.2.

Theorem 8.3 Consider the solution to (1.1). Let 0 < 6 < % and 0 < € < 1. Suppose
h:[0,T]x T — Risin CVf with % — % <y <1landpB € (0, 1]. We also assume
%(9)(u — h) < 7% Then we have the following:

(a) Suppose that the function o (t,x,u) is independent of u but satisfies Assump-

tion 1.1. Then there exist positive constants C1, Cy, C3, C4 > 0 depending on
61, 62,0, B and y such that

1 1
Ciexp | —CoT =t <P <sup j‘f;(g) (u—nh) < 6)
)

B 4(Bvy) or
0_1 X
eﬂ(VJrj*Z
Cy
< Csexp| —— .
€d

(b) Suppose that o (t, x, u) is now dependent on u and satisfies both Assumptions 1.1
and 1.2. Then for any n > 0, there exist positive constants C1, Ca2, C3,C4 > 0
depending on 6, 6>, 0, B and y such that

1 1
Ciexp | —CoT — + T <P <sup %’}09) (u—nh) < e)
69+7’ s 71 xeT
ePlrta3

C4T
§C36Xp -3 |-
€b|loge|2

(c) Supposethato(t, x, u) is again dependent on u and satisfies both Assumptions 1.1
and 1.2. Then there is a Dy > 0 such that for all D < Dy, there exists positive
constants Cy, Cp, C3, C4 > 0 depending on 61, 63,0, B and v such that

1 1
Crexp | —=C>T =+t —G §P<sup<%’jc(0)(u—h)§e>
€0 67/3()&%7%) xeT

C4T
§C3exp —% .
€d|loge|2

Remark 8.2 Support theorems involving the Holder semi-norm used in Theorem 1.1
can be obtained by a combination of Theorems 8.2 and 8.3. We leave these to the
reader.

We end with a remark.
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