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Abstract
Vesta is the second largest celestial object of the main asteroid belt and it was visited and investigated by the

DAWN mission in 2011. The spacecraft used solar-electric propulsion that generates continuous low-thrust. As
the spacecraft slowly descends from high altitude mission orbit (HAMO) to low altitude mission orbit (LAMO),
it crosses the 1:1 resonance, putting the spacecraft at risk of being permanently trapped at this altitude. The
objective of this paper is to develop a hamiltonian model that represents the phenomenon, which is used as
a bases for estimating the probability of capture using the adiabatic invariant theory. Firstly, we define the
hamiltonian considering the irregular gravitational field up to the second order and degree and the thrust
constant in magnitude and opposite to the velocity direction of the spacecraft. Then, we expand the model
around the resonance which results the hamiltonian to be reduced in a pendulum-like expression. The re-
duced model is validated against numerical simulations and is proven to be a good approximation of the dynamics
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1 Introduction

The DAWN mission [1] was one of the first missions to
use electric propulsion during the cruise phase and the ap-
proach to the asteroid. It demonstrates the possibility of
relying on electric propulsion for the majority of the mis-
sion duration. As the spacecraft slowly approaches the
asteroid, there is a possibility that it is captured by the
1:1 resonance and being permanently trapped at this al-
titude. Since the application of the electric propulsion is
the future tendency, the study of the probability of cap-
ture into resonance of a spacecraft around a celestial body
needs to be investigated. Resonance orbit is defined as the
trajectory for which the ratio of the revolution period of
the spacecraft around the asteroid and the rotation period
of the asteroid around itself is equal to an integer number,
e.g., 1:1 resonance orbit for which the spacecraft does one
orbit revolution with the same period with that the aster-
oid rotates around itself. The spacecraft at each revolution
encounters the same gravitational configuration, the effect
of which sum up over the revolutions and change notice-
ably the orbit eccentricity and inclination. Delsante [2]
defined the autonomous hamiltonian which describes the
1:1 resonance around Vesta for both circular polar orbits
and circular equatorial orbits and, through numerical sim-

ulations, analyzed the spacecraft’s separatrix crossing.

The adiabatic invariant theory is a useful approach to
estimate the probability of capture into resonance of a dy-
namical system if the time-dependent hamiltonian which
describes the problem is dependent on slowly changing
parameters, for example a pendulum which length slowly
changes with time. The only information required a priori
is the initial state of the system and an assumption on the
amount of variation of the parameter. Firstly Henrard [3]
[4] and later on Artemyev [5] did a review of the adiabatic
invariant theory presenting application of it in different
fields: the former in celestial mechanics to the problem of
capture into resonance of Titan and Hyperion, the latter in
space plasma systems. Boccaletti and Pucacco [6] dedi-
cate a chapter of their book to this methodology, applying
it to the case of one degree of freedom systems and many
degree of freedom system.

With this work, we extend the above research and ad-
vance the knowledge about this phenomenon by develop-
ing a new hamiltonian model without restrictions on the
inclination and eccentricity of the orbit and process it in
order to be used in the context of the adiabatic invariant
theory. This paper is structured as follows. In Section
2, we define the equations of motion describing the dy-
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namics of the spacecraft’s motion around Vesta. Section
3 outlines the estimation process of the adiabatic invariant
theory and develops the full hamiltonian model and its
expansion around the resonance, for the application of the
adiabatic invariant theory. Lastly in Section 4 and Section
5, we use the developed hamiltonian to analyse the cases
in which the spacecraft is trapped inside the resonance and
the case in which the spacecraft is able to immediately es-
cape the resonance location, continuing its slow descent.
Section 6 concludes this study.

2 Numerical model

In this section we define the equations of motion of a
spacecraft moving around a uniformly rotating asteroid.
The model considered is the two-body problem with per-
turbations from the irregular gravitational field of the as-
teroid and the low-thrust to which the spacecraft is subject
to. The gravitational field is represented by the spherical
harmonics model and is truncated to the fourth order and
degree, the low-thrust is constant in magnitude and it al-
ways directs to the opposite direction of the spacecraft’s
velocity.

Figure 1: DAWN descent from HAMO to LAMO

Following Kaula [7] , the potential of the gravitational
field of an asteroid V in spherical coordinates can be
expressed as the sum of the keplerian component and a
spherical harmonic expansion up to the degree n and or-
der m

Vrλφ =
µ

r
+

∞∑
n=2

n∑
m=0

µ

r

(
Re
r

)n
Pn,m(sinφ)

(Cn,m cosmλ+ Sn,m sinmλ) (1)

where µ is the gravitational constant of Vesta, Re is the
reference radius of the asteroid, Pn,m(sinφ) are the asso-
ciated legendre polynomials, r is the radial distance, φ is
the geocentric latitude, λ is the longitude, Cn,m and Sn,m
are the spherical harmonics coefficients and n,m are in-
tegers.

By transforming in the potential in cartesian coordi-
nate and taking the gradient of the potential and adding
the low thrust component to the acceleration, we can de-
fine the equations of motion which describe the absolute
spacecraft’s motion in the asteroid centered inertial frame
as Eq.2 where Vxyz represents the potential expanded in
spherical harmonics as a function of the cartesian coordi-
nates (x, y, z), T is the thrust, m is the spacecraft’s mass
and v̂ is the spacecraft’s velocity unit vector. To that, we
add the differential equation describing the rate of change
of the spacecraft’s mass over time as Eq.3 where Isp and
g0 represent the specific impulse and Earth’s gravitational
acceleration respectively.

ẍ = ∇Vxyz −
T

m(t)
v̂ (2)

ṁ = − T

Ispg0
(3)

We consider the initial conditions in Table 1.

Table 1: DAWN spacecraft initial conditions at its arrival
at Vesta.

Mass (m0) 1000 kg
Thrust (T) 20 mN

Specific Impulse (Isp) 3000 s
SMA (a0) 1000 km

eccentricity (e0) 0
Inclination (i0) 90◦

Longitude of the ascending node (Ω0) 0◦
Argument of periapsis (ω0) 0◦

We focus on the 1:1 resonance and we numerically esti-
mate the probability of capture considering 1000 different
values of initial true anomalies (θ0). The outcome of the
simulations indicates that if the descent starts at 1000 km
and the low-thrust magnitude is 20 mN, the probability of
capture of the spacecraft into 1:1 resonance around Vesta
is estimated to be ∼ 8.6%. The value is coherent with
what was previously found by Delsante [2] and Tricarico
[8], thus validating our model.

The capture into resonance is a phenomenon that de-
pends on the initial phase angle of the descent. For the
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Figure 2: Spacecraft trajectory in the (σ, L) plane. The
red line represents the capture case and the blue line rep-
resents the escape case.

analysis, we consider two different values of initial true
anomalies to represent the case in which the spacecraft is
capture into resonance and the case in which it escapes:{

θ0 = 30◦, for the capture case

θ0 = 50◦, for the escape case
(4)

It is possible to represent the results of these two cases
in the phase-space plane, in which the x-axis represents
the resonance angle σ = λ − ϑ defined as the difference
between the mean longitude and the sidereal time, while
the y-axis represents the angular momentum L.

Notice the different behaviour of the phase space tra-
jectory between the two cases: for the first case in Figure
2, with θ0 = 30◦, the trajectory remains inside the re-
gion between the upper and lower separatrices (lines high-
lighted with the red color), which corresponds to the 1:1
resonance; for the second case, with θ0 = 50◦, the trajec-
tory crosses the upper separatrix and immediately crosses
the lower one, thus escaping from the resonance. The
results from the numerical simulations are characterized
with large oscillations, for this reason we use the MAT-
LAB function movmean with a window length of 200 to
smooth the results and have a better visualization of the
phase space trajectory.

Considering the capture case (θ0 = 30◦), Figure 3
shows the evolution of the eccentricity and inclination
of the trajectory as the spacecraft crosses the 1:1 reso-
nance location and the capture happens around the 25th

day: after the capture the average value of the eccentricity
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Figure 3: Eccentricity and inclination evolution during
DAWN’s descent.

stays constant as the spacecraft crosses the resonance with
Vesta, while the inclination starts oscillating with a larger
amplitude and linearly decreases over time. For more de-
tails, please refer to our previous paper [9]. These simula-
tions provide us insight on making proper assumptions of
applying the AIT.

3 Adiabatic invariant theory

The adiabatic invariant theory (AIT) was initially intro-
duced in the field of quantum mechanics, to give a more
solid bases to the quantification rules [6]. Later on, the
theory was found useful also in the field of celestial me-
chanics due to the possibility for many system’s hamilto-
nian to be transformed to a pendulum-like expression [4]
and [10] as

H =
1

2
p2 − b cos q (5)

The hamiltonian generally has one degree of freedom and
depends on slowly varying parameters. By providing real-
istic assumption on how the parameters change over time,
the AIT can provide precise information regarding the
system’s dynamical evolution.

Formally [11], a variable I(p, q, λ) is recognized as an
adiabatic invariant if, for every ε > 0 there exist a δε > 0

so that, for every δ < δε and t < 1/δ

|I(p(t), q(t), δt)− I(p0, q0, 0)| < ε (6)

which means that for a time variation of almost 1/ε, the
adiabatic invariant changes in the order of ε.
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To estimate the probability of capture into resonance
using the AIT the following steps are required:

• definition of the hamiltonian model related to the
problem which presents phase space trapping;

• expansion of the hamiltonian around the resonance,
resulting in a pendulum-like equation;

• determination of the area inside the separatrix and its
rate of change as a function of the slowly changing
parameter;

• estimation of the probability of capture into 1:1 res-
onance as a function of the rate of change of the area
inside the separatrix.

In this paper, we focus on the first two steps of the pro-
cess.

3.1 Hamiltonian model definition

The hamiltonian of our problem includes a gravitational
component represented in Eq.1 and a low-thrust compo-
nent. We can express the latter as a function of the orbital
parameters as

HLT = − T
m
aϑ (7)

where T is the magnitude of the thrust, m is the instanta-
neous spacecraft’s mass, a is the semi-major axis (SMA)
and ϑ is the sidereal time. So the complete hamiltonian re-
lated to the 1:1 resonance and containing the gravitational
term up to the second order is given as

H1:1 = − µ2

2L2
+R2

e

µ4

L6
F201G210C20+

3

4
R2
e

µ4

L6
F220G200C22 cos 2λ+ ϑ̇Λ− T

m

L2

µ
ϑ (8)

where L is the angular momentum, Λ is the is the momen-
tum conjugate to the sidereal time ϑ and the inclination
and eccentricity functions are

F201 =
(
3
4 sin2 i(t)− 1

2

)
G210 = 1

(1−e2)3/2

F220 = 3
4 (1 + cos i(t))

2

G200 =
(
1− 5

2e
2 + 13

16e
4
) (9)

Following [2], we define the resonance angle σ related to
the 1:1 resonance as

σ = λ− ϑ (10)

where λ is the mean longitude and ϑ is the sidereal
time. We consider a symplectic transformation which
leads to the new set of canonical variables

σ , L′ = L , ϑ′ = ϑ , Λ′ = Λ + L (11)

and by selecting only the resonant contributions, the new
Hamiltonian is defined as

H1:1 = − µ2

2L2
−R2

e

µ4

L6
F201G210C20−

− 3

4
R2
e

µ4

L6
F220G200C22 cos 2σ − ϑ̇L+

T

m

L2

µ
σ (12)

3.2 Hamiltonian model expansion

The second part of the estimation process involves the ex-
pansion of the hamiltonian around resonances and its re-
duction to a pendulum-like expression.

We search for the equilibria (σeq ,Leq) as solutions of

∂H
∂L

=
∂H
∂σ

= 0 (13)

around which the expansion is performed. The full hamil-
tonian model in Eq.12 related to the 1:1 resonance is di-
vided in two partsH20 andH22 defined as

H1:1 = H20 +H22 (14)

where

H20 = − µ2

2L2
−R2

e

µ4

L6
F201G210C20 − ϑ̇L (15)

H22 = −R2
e

µ4

L6
F220G200C22 cos (2σ) +

T

m

L2

µ
σ (16)

The expansion is implemented at two different orders: we
expand H20 up to the second order with respect to Leq ,
while H22 is expanded up to the zero order with respect
to Leq . This procedure leads to the following expressions

H20 =
1

2
α(L− Leq)2 + γ(L− Leq) + const (17)

H22 = β cos (2σ) + τσ (18)

where

α = 2
(

3µ2

2L4
eq

+ 21C20F201G210R
2
e
µ4

L8
eq

)
β = −R2

e
µ4

L6
eq
F220G200C22

γ =
(
µ2

L3
eq
− ϑ̇+ 6C20F201G210R

2
e
µ4

L7
eq

)
τ = T

m

L2
eq

µ

(19)

The reason for this division is to avoid the dependency of
the parameters α, β, γ and τ on the coordinate σ. As the
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simulation starts near the resonance the parameter γ re-
lated to the first order term drops to zero and the constant
term inH20 does not contribute to the dynamics.

In this scenario the slowly varying parameter is related
to the inclination and follows the linear relation

i(t) = i0 − s∆t (20)

where s is the slope of the linear relation. More details
about this assumption in Section 3.2.1. The expression
can be manipulated as

i(t) = i0(1− λ) (21)

where
λ =

s

i0
∆t (22)

By defining p = (L−Leq), the 1:1 resonance hamiltonian
can be written as

H1:1 =
1

2
α(λ)p2 + β(λ) cos 2σ + τσ (23)

This expression is the one related to a forced pendulum.
This problem was previously studied in [12]. We adopt
the following change of variables{

x =
√

2|p| cos(2σ)

y =
√

2|p| sin(2σ)
(24)

leading to the final expression of the fully expanded
hamiltonian related to the 1:1 resonance to be used in the
probability of capture estimation process

H1:1 =
1

2
α(λ)

(x2 + y2)2

4
+ β(λ)

x√
x2 + y2

+

+
1

2
τ arccos

(
x√

x2 + y2

)
(25)

3.2.1 Hybrid approach

The dynamics of the system can be also simulated us-
ing Hamilton’s equations. Taking into consideration the
differential equation describing the rate of change of the
spacecraft’s mass over time, for a hamiltonian H =

H(σ, L) the Hamilton’s equations can be defined as

σ̇ =
∂H
∂L

(26)

L̇ = −∂H
∂σ

(27)

ṁ = − T

Ispg0
(28)
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Figure 4: Eccentricity and inclination assumptions for the
hybrid approach against the numerical results obtained in
the previous sections during DAWN’s descent.

For the hamiltonian model defined in Eq.12, the eccen-
tricity is assumed to be constant, while the inclination is
assumed to be decreasing linearly over time as in Figure
4. In particular

e = 0.06 (29)

i(t) = i0 − s∆t (30)

where s is the slope that better approximates the incli-
nation behaviour after the capture as in Figure 4. The
simulation using Hamilton’s equations is more precise if
it starts near the resonance region. The reason is that
the value of eccentricity and inclination change consis-
tently over time and the hamiltonian we defined is inca-
pable of producing very accurate results for long time be-
fore the resonance crossing. To address this problem, we
adopt a hybrid approach to simulate the phenomenon: far
from the resonance location, at 1000 km, the numerical
approach described in Section 2 is used to simulate the
first part of the descent; as the spacecraft is closer to the
1:1 resonance location the simulation switches using the
Hamilton’s equations.

4 Capture Case

We simulate the slow descent of Dawn from a high alti-
tude orbit to a low altitude one, using a thrust of 20 mN.
An initial polar circular orbit and a continuous thrusting
are assumed, with the direction of the thrust opposite to
that of the relative velocity of Vesta. Considering the case
in which the capture happens (θ0 = 30◦), in Figure 5 we
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Figure 5: Capture case: semi-major axis (SMA) evolution
during descent using the hybrid approach.
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Figure 6: Capture case: Spacecraft trajectory in the (σ, L)
plane.

demonstrate the evolution of the semi-major axis (SMA)
over time using the hybrid approach.

The capture happens after 25 days. In Figure 6, we
demonstrate the result of the last part of the descent simu-
lation that is obtained from Hamilton’s equations, in phase
space.

The simulation starts in the upper circulation region
and, as it crosses the separatrix highlighted in red, the
spacecraft is restricted within the rotation region between
the separatrix lines. The simulation shows phase space
trapping, thus satisfying the first requirement for the esti-
mation of the probability of capture.

The expansion of the hamiltonian leads the phase space
to preserve its configuration and it translates the rotation

region to the origin. As we change variables from (σ, p)
to (x, y), the new phase space is given in 7.
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Figure 7: Phase space configuration in the coordinate set
(x, y)

The separatrix encloses a single region of space and
the area inside the separatrix is the resonance domain that
depends on λ as defined in Eq.22. As λ increases, the
area enclosed by the separatrix increases as well. Figure
8 shows the dependency of the resonance domain with re-
spect to λ.
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Figure 8: Separatrix evolution as a function of

We project the simulations in Figure 6 in the new phase
space (x, y) and obtain the new trajectory represented by
the black dashed line in Figure 9. It is noticed that as the
area inside the resonance region increases the trajectory
remains restricted inside of it.

By assuming that both inclination and eccentricity re-

IAC-21-C1.7.13 Page 6 of 8



72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021. 

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

 = 0

 = 0.028532

 = 0.057065

Figure 9: Capture case: Spacecraft trajectory in the (x, y)
plane.

main constant,

e = 0.06 (31)

i(t) = i0 (32)

we perform the same simulation again with the same ini-
tial conditions and demonstrate the result in Figure 10.
The simulations show that the capture does not happen
neither θ = 30◦ nor for any initial value of true anomaly.
The capture is proven to be caused by the decrease of the
inclination.
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Figure 10: Capture case: Spacecraft trajectory in the
(x, y) plane assuming inclination stays constant.
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Figure 11: Escape case: SMA evolution during descent
using the hybrid approach.
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Figure 12: Escape case: Spacecraft trajectory in the (σ, L)
plane.

5 Escape case

Considering the case in which the capture does not happen
(θ = 50◦), in Figure 11 we demonstrate the evolution of
the semi-major axis over time using the hybrid approach.

In Figure 12, we demonstrate in phase space the result
of the last part of the descent simulation, obtained from
Hamilton’s equations. It can be noticed that this simula-
tion and the one in Figure 6 are identical to the numerical
results shown previously in Figure 2.

We project the simulations in Figure 12 in the new
phase space (x, y) and obtain the new trajectory repre-
sented by the black dashed line in Figure 13. In this last
case, the trajectory crosses and escapes the resonance im-
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mediately.
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Figure 13: Escape case: Spacecraft trajectory in the (x, y)
plane.

6 Conclusion

In this paper the hamiltonian model of a low-thrust space-
craft around an asteroid with irregular gravitational field
has been developed. The estimation process of a low-
thrust spacecraft’s probability of capture into 1:1 reso-
nance has been investigated and the first two steps of
the AIT have been performed. The hamiltonian model
is proved to be capable of approximating the phase space
trapping. Then, we proceeded expanding the hamiltonian
model around the resonance and obtain a pendulum-like
expression. We represented the trajectory evolution in the
phase space of the pendulum-like hamiltonian and found
that the capture into 1:1 resonance is due to the slowly
varying parameter related to the inclination. Lastly, we
analyzed the simulation results for the case of capture into
1:1 resonance and the case in which the spacecraft escapes
the resonance.

For future work, we will focus on the last two steps of
the estimation process: analytically determine the rate of
change of the area inside the separatrix and use this last
quantity to estimate the probability of capture.

Acknowledgements

We thank Anton V. Artemyev for his expertise and helpful
discussions for certain aspects of our study. This work is
funded by ESA OSIP with project title ”Resonance Cap-
ture of Low-Thrust Spacecraft Around a Small Body” and

by the John Anderson Research Award Studentship.

References

[1] C. Russell, “Dawn mission to vesta and ceres,” Earth
Moon Planet, p. 65–91, 2007.

[2] N. Delsante, “Analytical and numerical study of the
ground-track resonances of dawn orbiting vesta,”
Planetary and Space Science, vol. 59, pp. 1372–
1383, 2011.

[3] J. Henrard, “The adiabatic invariant: its use in ce-
lestial mechanics,” Applications of Modem Dynam-
ics to Celestial Mechanics and Astrodynamics, pp.
153–171, 1982.

[4] Henrard, “Capture into resonance: an extension of
the use of adiabatic invariants,” Celestial Mechanics,
pp. 3–22, 1982.

[5] A. Artemyev, “Trapping (capture) into resonance
and scattering on resonance: summary of results for
space plasma systems,” Communications in Nonlin-
ear Science and Numerical Simulation, vol. 65, pp.
111–160, 2018.

[6] D. Boccaletti and G. Pucacco, Theory of Orbits:
Perturbative and Geometrical Methods. Springer
Nature, 2010.

[7] W. M. Kaula, Theory of Satellite Geodesy: Applica-
tions of Satellites to Geodesy, 1966.

[8] P. Tricarico and M. Sykes, “The dynamical environ-
ment of dawn at vesta,” Planetary and Space Sci-
ence, vol. 58, pp. 1516–1525, 2010.

[9] W. Boumchita and J. Feng, “1:1 resonance capture
of a low-thrust spacecraft around vesta,” 2021.

[10] C. Quillen, “Reducing the probability of capture into
resonance,” Monthly Notices of the Royal Astronom-
ical Society, pp. 1367–1382, 2006.

[11] F. Capoani, “Adiabatic theory for slowly varying
hamiltonian systems with applications to beam dy-
namics,” Bologna, Italy, 2017.

[12] A. Neishtadt, “Capture into resonance and escape
from it in a forced nonlinear pendulum,” Regular
and Chaotic Dynamics, p. 686–696, 2013.

IAC-21-C1.7.13 Page 8 of 8


	Abstract
	Keywords:
	1 Introduction
	2 Numerical model
	3 Adiabatic invariant theory
	4 Capture Case
	5 Escape case
	6 Conclusion
	Acknowledgements
	References

