
Subwavelength neuromorphic nanophotonic integrated circuits for 
spike-based computing: challenges and prospects 

B. Romeira*a, J. B. Niedera, B. Jacoba, R. M. R. Adãoa, F. Camarneiroa, J. Arturo Alanisb,M. Hejdab,
A. Hurtadob, J. Lourençoa,c, D. Castro Alvesc, J. M. L. Figueiredoc, I. Ortega-Piwonkad, J. Javaloyesd

aUltrafast Bio- and Nanophotonics Group, INL – International Iberian Nanotechnology Laboratory,
Av. Mestre José Veiga n/a, 4715-330 Braga, Portugal; bInstitute of Photonics, University of 

Strathclyde, Technology and Innovation Centre, 99 George St., G1 1 RD, Glasgow, UK; cCentra-
Ciências, Departamento de Física da Faculdade de Ciências da Universidade de Lisboa, Campo 

Grande, 1740-016 Lisboa, Portugal; dInstitute of Applied Computing and Community Code (IAC-3), 
Departament de Física, Universitat de les Illes Balears, Cra. de Valldemossa, km 7.5, E-07122 Palma 

de Mallorca, Spain 

ABSTRACT 

Event-activated biological-inspired subwavelength (sub-λ) optical neural networks are of paramount importance for 
energy-efficient and high-bandwidth artificial intelligence (AI) systems. Despite the significant advances to build active 
optical artificial neurons using for example phase-change materials, lasers, photodetectors, and modulators, miniaturized 
integrated sources and detectors suited for few-photon spike-based operation and of interest for neuromorphic optical 
computing are still lacking. In this invited paper we outline the main challenges, opportunities, and recent results towards 
the development of interconnected neuromorphic nanoscale light-emitting diodes (nanoLEDs) as key-enabling artificial 
spiking neuron circuits in photonic neural networks. This method of spike generation in neuromorphic nanoLEDs paves 
the way for sub-λ incoherent neural circuits for fast and efficient asynchronous brain-inspired computation. 

Keywords: Nanophotonics, nanoLEDs, neuromorphic computing, optical interconnects, resonant tunneling diodes, 
spiking neural networks 

1. INTRODUCTION
Artificial intelligence (AI) systems using computing algorithms of deep learning neural networks are emerging rapidly.1 
Despite the recent advancements within the field, the power budget involved in running deep learning neural networks in 
conventional computers is growing exponentially.2 A type of bioinspired neural network is spiking neural networks 
(SNNs),3 that uses artificial neuron units that exchange information via spikes. A SNN uses the timing of the spikes to 
process information and each artificial neuron is typically only active when it receives or emits spikes. Such behavior 
reduces the required energy for operating the neural network. Neuromorphic hardware exhibiting a spiking behavior can 
be implemented using electronics,4 but then typically operates a low (kHz) speeds and requires several picojoule/spike. 

A different type of upcoming neural networks includes photonic neural networks,5 and in order for such networks to 
function as a SNN, spiking photonic neurons have been implemented using graphene excitable lasers, distributed 
feedback lasers, or vertical-cavity surface-emitting lasers, to name a few. However, the footprint of such lasers is still too 
large for compact and efficient SNNs. An alternative is to use a compact light-emitting diode (LED), e.g. a nanoscale 
LED.6,7 Noteworthy, the development of a single, miniaturized light-emitting source for spike-based operation remains 
an ongoing, significant challenge. In this invited paper, we discuss the challenges and opportunities of a new architecture 
based on neuromorphic resonant tunneling-assisted nanoscale LEDs (nanoLEDs) to achieve a small footprint, fast speed 
(multi-gigahertz), and low energy consumption (<100 fJ/bit), as needed for future highly-dense interconnected optical 
neural networks. We propose their integration with 3D flexible interconnections for scalable systems. Lastly, we analyze 
their performance for information processing using optically interconnected spiking neural network models. 
Architectures as the one proposed here will significantly boost the transmission and processing capabilities of spike-
based optoelectronic chips, offering exciting complementary solutions to electronics hardware in neuromorphic 
computing for AI systems. 
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2. EXCITABILITY IN NEUROMORPHIC RESONANT TUNNELING DIODES
Neurons exhibit excitability,8 the dynamical property that is key to biologically inspired artificial intelligence. Seeking a 
better architecture that supports spikes as information carriers, in this work we look at resonant tunneling diodes as 
excitable neuromorphic spike generators.9 These nonlinear quantum nanoelectronic elements can reach terahertz 
frequencies and may be integrated with photonics10–12  (e.g. LEDs, lasers and photodetectors) for all-optical data 
transmission. Their speed stems from the nanometric size (~10 nm) of the semiconductor layer of the RTD in the 
epitaxial growth direction. This active layer consists of a double barrier quantum well (DBQW) nanostructure (typically 
using GaAs/AlAs or InGaAs/AlAs compound semiconductors). This provides a current-voltage with pronounced 
negative differential conductance (NDC), which is exploited for the firing of spiking and bursting signals. Figure 1 
shows a numerically simulated example of spikes randomly fired when perturbing with additive white noise the circuit 
biased at the peak and valley regions (see more details in9 for a comprehensive analysis on the spiking generation in 
RTDs). 

Figure 1. Current-voltage characteristics (left) and numerical traces of output pulses (right) randomly fired by perturbing 
with additive white noise. The system is biased in the peak region in (a) and in the valley region in (c). The input bias 
voltage and input noise intensity are (a) V0 = 2.26 V, η = 0.009 V, (b) (c) V0 = 2.94 V, η = 0.014 V (Adapted from9). 

3. NANOPHOTONIC INTEGRATED NEURONS
Our nanophotonic integrated neurons exploit the unique physical properties of active semiconductor DBQW 
nanostructures – resonant tunneling diodes – embedded in metal-nanocavities for a new class of miniaturized optical 
artificial neurons. Figure 2(a) shows a schematic of the nanophotonic spiking neuron unit consisting of a DBQW 
monolithic integrated in a nanopillar LED. The DBQW enables control of the injection of electrons into the active region 
of the LED. This provides a nanoLED with a unique voltage-controlled NDC, red solid line in Fig 2(b), which is 
markedly different from the “linear” current-voltage characteristic of conventional LEDs. This enables extremely low-
energy activation of all-or-nothing spiking responses in both the optical and electrical domains. The metal-nanocavity 
offers strong light–matter interaction at the nanoscale, leading to faster and efficient light emission,13,14 a key feature for 
high-bandwidth optical spiking. Figure 2(c) shows the resonant tunneling-LED circuit used to simulate the static and 
dynamic properties of nanoLEDs and their potential as efficient spiking sources (see 15 for full details). 

Figure 2(d) compares the operation of neuromorphic LEDs with standard current driven (non-spiking) micro- and 
nanoLED sources in terms of electrical and optical energy per spike (see15 for a full discussion). Clearly, standard 
microLEDs (blue traces) are limited to modulation bandwidths <<1 GHz and require >100 fJ/bit. Remarkably, 
nanoLEDs (red traces) are suited for operation in the range 10–100 fJ/bit at multi-gigahertz speeds. However, there is a 
compromise between electrical energy and optical energy per bit produced. Noteworthy, for a neuromorphic nanoLED 
case (stars symbols), the electrical and optical energy per emitted spike is set by the intersection between the dashed-dot 
horizontal orange line (i.e. the refractory time, ~650 ps, of the analyzed spiking nanoLED) and the diagonal traces. In 
summary, neuromorphic nanoLEDs show prospects of spike generation at multi-gigahertz speeds which can be achieved 
upon receiving exceptionally low (sub-10 mV) synaptic-like activation signals (lower than biological voltages of 100 
mV), and with remarkably low energy consumption, i.e. 10–100 fJ per emitted spike. 
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Noteworthy, our approach can potentially provide optically activated neuromorphic nanoLEDs using the photosensitive 
properties of resonant tunneling structures. Indeed, RTD-based photodetectors have been demonstrated,16,17 by exploiting 
the properties of the tunneling current which is extremely sensitive to changes in the local electrostatic potential. This 
enables highly-sensitive detection (104 A/W) of photogenerated minority charge carriers and could pave the way to 
nanophotonic integrated photosensitive LEDs for fully optically interconnected artificial neurons. 

 
Figure 2. Schematic of the nanophotonic artificial neuron in a nanopillar metal-dielectric architecture. Also shown is the 
schematic of a biological neuron. (b) Comparison of the I-V curves between a “standard” nanoLED (dashed black line) and 
a neuromorphic nanoLED (solid red line). (c) Schematic of the nanoLED circuit modeled by a nonlinear voltage-controlled 
current source, i(V), in parallel with the equivalent capacitance, C. (d) Electrical energy as a function of the optical energy 
per bit. The diagonal lines are the values for the micro- and nanoLEDs in a non-spiking regime. The dashed lines represent 
the case of a large surface recombination while the solid lines represent the best case of a low surface recombination. The 
dashed-dot horizontal line intersecting the diagonal traces indicates the refractory time and gives the electrical and optical 
energy per spike (indicated by the stars) of the neuromorphic nanoLED (adapted from15). 

4. SYNAPTIC 3D PHOTONIC INTERCONNECTS 
Achieving a versatile on-chip interconnection between nanophotonic devices is still a great challenge. The use of 3D 
waveguides was recently proposed,18 and direct laser writing via two-photon polymerization (TPP) provides an attractive 
3D microfabrication alternative to conventional optical assembly and packaging techniques. We propose the use of 3D 
waveguide designs for light coupling from and to the nanoLED neuromorphic sources analyzed in the previous section, 
Fig. 2(a), thus enabling flexible 3D photonic interconnections in spiking neural networks, Fig. 3(a). Our approach uses a 
custom-build TPP fabrication system consisting of a femtosecond laser centered at 795 nm wavelength, coupled to a 40 
objective (NA=0.75). In our initial 3D microfabrication tests, a laser power of 18 mW and writing speed of 75 m/s was 
used. The polymer is drop-casted on a glass coverslip, pre-baked at 80 °C for 10 min., post-baked at 130 °C for 20 min., 
and developed in OrmoDev for 12 min. In Fig. 3(b) waveguide structures with different supports and gaps are shown. 
The waveguide elevation varies between 40 and 60 m depending on the support with a square section of 1012 µm2, 
Fig. 3(c). A closer view of (d) a 33 m long support and of (e) a suspended waveguide is also shown. Further efforts of 
co-integration of such platform with nanophotonic integrated neurons is ongoing and will be of paramount importance to 
achieve fully scalable interconnected systems. 

 
Figure 3. (a) Schematic example of a 3D interconnected spiking neural network. Scanning electron microscope images of 
fabricated 3D TPP architectures. b) Tilt view of structures with different supports. c) Top view of selected 3D waveguide. 
(d) Detail view of a 33 µm long support and of (e) a suspended waveguide (adapted from19). 
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5. SPIKE INFORMATION PROCESSING 
In this last section, we investigate and analyze the proposed neuromorphic system and discuss a feasible network 
implementation of interconnected pre- and post-synaptic artificial neuron nodes. We analyze a representative network 
consisting of a 5-to-1 feedforward (two-layer) spiking neural network architecture, Fig. 4. Using physical models for 
each node (see sections 2 and 3), we numerically analyze the potential of the network to classify spatial 5-bit pulse 
patterns encoded in time. The training of such network, using a supervised learning scheme that employs a spike-timing 
dependent learning rule,20 reveals that during the inference phase, 94%+ accuracy for spatial pulse pattern recognition 
can be achieved. After the training phase, the network can perform inference for recognition of the selected 
spatiotemporal 5-bit pattern. These results are the first theoretical demonstration of RTD-based neuromorphic 
nanophotonic spike information processing, revealing the feasibility of delivering successful operation in pattern 
recognition tasks by using multiple interconnected devices in the form of a photonic feed-forward spiking neural 
network. 

 
 

Figure 4. Simulated network architecture diagram, illustrating how patterns of input electrical pulses (in blue) enter the 
nanoscale spike emitter nodes (PRE) and are propagated as optical signals to the downstream spike receiver node (POST) 
using weighted, W, connection. The output state of the downstream node is compared to the label, and if there is a mismatch 
between label and output state, the weights are updated. The desired pattern is highlighted with the target icon. 

6. CONCLUSIONS 
In this work an architecture that supports spikes as information carriers was discussed. It consists of resonant tunneling 
diodes as excitable neuromorphic spike generators integrated with nanoLEDs for all-optical data transmission. This 
architecture and method of spike generation in neuromorphic nanoLED devices combined with techniques for complex 
interconnectivity using 3D interconnects, paves the way for sub-λ incoherent spiking neural circuits for optically 
interconnected photonic spiking neural networks and event-based asynchronous brain-inspired computation. 
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