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 12 

Abstract: One of the key challenges of uncertainty analysis in model updating is the lack of 13 

experimental data. The definition of an appropriate uncertainty quantification metric, which is 14 

capable of measuring as sufficient as possible information from the limited and sparse experimental 15 

data, is significant for the outcome of model updating. This work is dedicated to the definition and 16 

investigation of a general-purpose uncertainty quantification metric based on the sub-interval 17 

similarity. The discrepancy between the model prediction and the experimental observation is 18 

measured in the form of intervals, instead of the common probabilistic distributions which require 19 

elaborate experimental data. An exhaustive definition of the similarity between intervals under 20 

different overlapping cases is proposed in this work. A sub-interval strategy is developed to compare 21 

the similarity considering not only the range of the intervals, but more importantly, the distributed 22 

positions of the available observation samples within the intervals. This sub-interval similarity 23 

metric is developed to be capable of different model updating frameworks, e.g. the stochastic 24 

Bayesian updating and the interval model updating. A simulated example employing the widely 25 
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known 3-dof mass-spring system is presented to perform both stochastic Bayesian updating and 1 

interval updating, to demonstrate the universality of the proposed sub-interval similarity metric. A 2 

practical experimental example is followed to demonstrate the feasibility of the proposed metric in 3 

practical application cases.  4 

1 Introduction 5 

Model updating has been developed as a classical but crucial technique to guarantee the 6 

trustfulness of numerical simulation by calibrating the numerical models and their parameters taking 7 

the experimental data as a reference. The increasing attention paid to uncertainty analysis during 8 

numerical modelling raises a tendency to extend updating strategies from the deterministic domain 9 

to the non-deterministic domain, e.g. the stochastic model updating and the interval model updating. 10 

This tendency, however, leads to a critical problem about how to quantify the uncertainty 11 

information based on massive numerical simulations but always limited experimental observations. 12 

This paper is hence dedicated to the development of a general-purpose Uncertainty Quantification 13 

(UQ) metric, which is applicable to a wide range of current updating procedures. This metric is 14 

based on the idea to divide the investigating intervals into a series of sub-intervals and assess the 15 

similarity among these sub-intervals. It will be elaborated as the Sub-interval Similarity (SIS) in the 16 

following context.   17 

The deterministic model updating strategy [1,2] aims at estimating the explicit ‘true’ value of 18 

the updating parameters based on minimizing the discrepancy between the computed and measured 19 

modal properties. Considering that both the modelling and testing processes are exposed to 20 

inevitable uncertainties, it is natural to characterize the simulated and tested features by a multi-21 

simulation-multi-test scenario, implying that the model updating also should be carried out in the 22 

non-deterministic sense. Recently, the non-deterministic model updating has gained substantial 23 

interest, and elaborate literature is available in this field. Those methods can be generally classified 24 

into two categories, namely the probabilistic and non-probabilistic approaches [3,4]. In this work, 25 

we focus on the stochastic model updating, which belongs to the probabilistic approach, and the 26 
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interval model updating, which is one of the most representative non-probabilistic approaches.  1 

In the probabilistic approach, the output features and the input parameters of the numerical 2 

model are both assumed to follow probabilistic distributions. The objective of stochastic model 3 

updating is no longer to obtain a single value of the parameter minimizing the difference between 4 

the deterministic experiment and the model prediction, but rather to estimate distributions properties 5 

of the input parameters, which propagate through the numerical model and represent the outputs 6 

with similar distribution properties of the observations. Pioneering work on stochastic model 7 

updating is presented in the companion papers by Mottershead et al. [5,6], where the mean and 8 

variance of the input parameters are calibrated using an inverse Monte Carlo approach. Govers and 9 

Link [7] develop a stochastic updating approach taking the covariance matrix of the parameters as 10 

the objective. The perturbation approach is proposed by Khodaparast et al. [8] to calibrate the first 11 

and second statistical moments of the parameters taking the natural frequencies and mode shapes as 12 

output features.  13 

Besides those statistical moment-based methods, Bayesian updating is another representative 14 

approach for stochastic model updating. The Bayesian approach formulates the updating problem 15 

as a process to transform the prior distribution of the parameters to the posterior distribution by 16 

using the experimental data and the probabilistic prediction error of the model. The fundamental 17 

work of Bayesian updating is proposed by Beck and Katafygiotis [9] and Kennedy and O’Hagan 18 

[10]. The Markov Chain Monte Carlo (MCMC) algorithm has a natural connection with the 19 

Bayesian updating because of its capacity to general random samples from the posterior distribution 20 

of the calibrating parameters [11,12]. As a result, the MCMC Bayesian updating approach plays an 21 

important role in the current development and application of stochastic model updating [13–16].  22 

A representative stochastic model updating task has been presented in the recently launched 23 

NASA Optimization Challenge under Uncertainty [17]. This challenge problem requires to calibrate 24 

both the epistemic parameters (presented in intervals) and the aleatory parameters (under a 25 

distribution-free hypothesis) based on a set of limited and chaotic data sequences. To solve this 26 

challenge, a comprehensive UQ approach is required to capture the uncertainty information from 27 
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the existing data sequence, and an efficient updating algorithm is significant to calibrate the 1 

uncertainty model of both the aleatory and epistemic parameters, given an appropriate hypothesis 2 

of the preliminary distributions. There is a dedicated special issue published in the journal 3 

Mechanical Systems and Signal Processing, collecting contributions to solve this challenge. Among 4 

the proposed approaches, the approximated Bayesian updating [18] has been proved to be an 5 

element approach to define an efficient likelihood function to capture both aleatory and epistemic 6 

uncertainties. A staircase density function [19] is proposed to construct a distribution-free 7 

uncertainty model of the aleatory parameters. To deal with the very limited and chaotic data 8 

sequence, the empirical mode decomposition and Bhattacharyya distance [20] are employed to 9 

extract sufficient uncertainty information, which is the precondition of the updating process.  10 

The above discussed stochastic updating approaches, no matter frequentist or Bayesian method, 11 

have a universal feature that they take the distribution properties as the updating objective, and 12 

hence it is important to define a statistical UQ metric to quantify the difference between the 13 

simulations and observations from the probabilistic point of view. Besides the deterministic 14 

geometry distance, i.e. the Euclidian distance, the statistical distances such as the Mahalanobis 15 

distance [21], the Bhattacharyya distance [22,23], and the Kullback-Leibler divergence [24] are 16 

drawing increasing attention in the current development of stochastic model updating. A potential 17 

weakness of the probabilistic approaches, however, is that they typically require elaborate data to 18 

precisely estimate the distribution or the statistical moments of the output features, leading to a high 19 

economic or computational cost. Alternatively, the non-probabilistic interval approaches have been 20 

introduced to release this challenge [25,26].  21 

The interval model updating characterizes the uncertainties only by the bounds and the position 22 

of the intervals, which needs no distribution or moment information as what is required by the 23 

stochastic updating. The interval updating is performed as inverse identification for the bounds of 24 

model parameters, based on the interval quantification of the model outputs. This process relies on 25 

the accurate propagation of uncertainties in the form of intervals. However, for practical applications, 26 

the interval arithmetic operations are difficult to directly implement in uncertainties propagation. 27 
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The difficulty results from the decoupling of interval numbers taking place in interval element 1 

matrix assembly as well as in the final solution phase [27,28]. To overcome such inconvenience, 2 

Faes et al. propose a multivariate interval quantification approach [29,30] based on the concept of 3 

convex hull, which is capable of building an indirect map from the convex hull of the experimental 4 

samples to the parameter space. In the presence of high dimensional applications where high 5 

calculation cost is encountered, the perturbation method [8], or some surrogate models [31,32] are 6 

introduced to release the calculation burden. Also, recently, a dedicated Multilevel quasi Monte 7 

Carlo sampling method based on Cauchy random variables for interval propagation was introduced 8 

[33]. 9 

In this context, no matter stochastic or interval updating, they always rely on an efficient UQ 10 

metric, which is expected to be capable of quantifying both modelling and experimental 11 

uncertainties with acceptable calculation cost. The above discussed probabilistic moments and 12 

statistical distance metrics encounter obstacles that the experimental data is limited in practical 13 

applications. Alternatively, the interval-based UQ metrics, such as the above mentioned convex hull 14 

[29], the interval overlap ratio [34], the satisfaction degree of the interval [35], and the sum of the 15 

relative errors of interval bounds [32], have been developed in recent year.  16 

The objective of this paper is to propose an interval-based UQ metric named as the Sub-interval 17 

Similarity (SIS). The SIS metric, on the one hand, makes full use of the superiority of the interval-18 

based metric as to be applicable in the presence of limited and sparse experimental data; On the 19 

other hand, the SIS metric is capable of handling location dispersion features of the experimental 20 

samples, especially when the number of these samples is limited, by an adaptive algorithm to assign 21 

the sub-intervals within both intervals of the simulation and observation data. Another advantage of 22 

the proposed SIS metric is that it is developed to be a universal metric in not only the interval model 23 

updating but also the stochastic model updating strategies. The feasibility and efficiency of the SIS 24 

metric in both stochastic and interval updating are demonstrated in the 3-dof mass-spring example, 25 

where the stochastic updating and interval updating results are compared with two published 26 

references, respectively. An additional example employing practically measured data from a series 27 
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of nominally identical steel plates is provided to demonstrate the feasibility of the proposed SIS 1 

metric in practical updating applications.   2 

2 UQ in model updating 3 

2.1 Uncertainty characterization in modelling process  4 

The numerical modelling process consists of three key components, including the input 5 

parameters 𝐗 ∈ ℝ𝐧𝐱, the output features 𝐘 ∈ ℝ𝐧𝐲, and the model 𝑓: 𝑥 → 𝑦, ℝ𝑛𝑥 ↦ ℝ𝑛𝑦, which 6 

can be expressed as 7 

𝐘 = 𝑓(𝐗),                                   (1) 8 

where the model 𝑓(∙)  is developed in different forms such as functional relationships, finite 9 

element models, or implicit black-box models, according to the complexity of the physical system 10 

to be modelled.  11 

The uncertainties can be involved in all the three components whereby the modelling 12 

uncertainty presents the approximations of the numerical model 𝑓(∙), the parameter uncertainty 13 

presents the lack of knowledge or randomness of the input parameters 𝐗. The uncertainties of the 14 

inputs propagate through the model to the output features, which is typically known as Uncertainty 15 

Propagation. As a result, the output features, on the one hand, present the uncertainties from the 16 

modelling and parameterization processes; on the other hand, the observations of the output features 17 

are inevitably influenced by the experimental uncertainty.  18 

Assume that the experiment is repeated on a series of structure prototypes, and totally 𝑁𝑒 sets 19 

of measurements are available. The experimental outputs 𝐘𝑒 ∈ ℝ
𝑁𝑒×𝑛𝑦 are presented as a matrix 20 

with the following structure 21 

𝐘𝑒 = {𝐲1, 𝐲2, … , 𝐲𝑛𝑦}                               (2) 22 

where 𝐲𝑖 = [𝑦1,𝑖 , 𝑦2,𝑖 , … , 𝑦𝑁𝑒,𝑖]
𝑇
, 𝑖 = 1,2,… , 𝑛𝑦 ; 𝑛𝑦  is the number of features predicted by the 23 

model, e.g. different orders of natural frequencies or responses on different positions of the structure 24 
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system.  1 

Similarly, considering there are 𝑁𝑠 number of simulations repeated employing the numerical 2 

model 𝑓(⋅), and we can get the predicted outputs 𝐘𝑠 ∈ ℝ
𝑁𝑠×𝑛𝑦 with the similar structure as the 3 

experimental outputs as shown in Eq. (2). The only difference is that the number of rows of 𝐘𝑠 has 4 

been changed from 𝑁𝑒 to 𝑁𝑠.  5 

The task of uncertainty quantification in model updating is to measure the difference between 6 

𝐘𝑠  and 𝐘𝑒  with the consideration of the uncertainty properties, such that to provide metrics to 7 

calibrate the input parameters 𝐗 , with the objective to tune the 𝐘𝑠  towards the 𝐘𝑒 . It is hence 8 

important to select a suitable conception for UQ, i.e. the interval quantification or the probabilistic 9 

quantification, as it will be elaborated in the following subsection.  10 

2.2 Interval quantification Vs. Probabilistic quantification 11 

One of the classical UQ concepts is the probabilistic quantification which assumes or estimates 12 

a certain distribution to the output feature. The UQ process becomes the comparison of the 13 

distribution properties of the experimental and simulation output features. For example, the classical 14 

Euclidian distance 𝐸𝐷(𝐘𝑒 , 𝐘𝑠) provides a comparison of the means of two sets of data: 15 

𝐸𝐷(𝐘𝑒, 𝐘𝑠) = {∑ [𝜇𝑒
(𝑖) − 𝜇𝑠

(𝑖)]
2𝑛𝑦

𝑖=1 }
1/2

,                      (3) 16 

where 𝜇(𝑖) is the mean of the i-th output feature estimated based on the experimental or simulated 17 

samples. Another statistical distance known as the Mahalanobis distance 𝑀𝐷(𝐘𝑒, 𝐘𝑠) employs not 18 

only the mean but also the covariance to evaluate the difference 19 

𝑀𝐷(𝐘𝑒 , 𝐘𝑠) = [(𝐲̅𝑒 − 𝐲̅𝑠)𝚺
−1(𝐲̅𝑒 − 𝐲̅𝑠)

𝑇]1/2,                   (4) 20 

where 𝐲̅𝑒  and 𝐲̅𝑠  are the mean vectors of 𝐘𝑒  and 𝐘𝑠 , respectively; 𝚺−1  is the inverse of the 21 

covariance matrix.  22 

There are other probabilistic UQ metrics employing directly the probabilistic distributions, e.g. 23 

the Kullback-Leibler divergence 𝐾𝐿(𝐘𝑒 , 𝐘𝑠) and the Bhattacharyya distance 𝐵𝐷(𝐘𝑒 , 𝐘𝑠): 24 
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𝐾𝐿(𝐘𝑒 , 𝐘𝑠) = ∫ 𝑃𝑒(𝑦) log
𝑃𝑠(𝑦)

𝑃𝑒(𝑦)
d𝑦

𝕐
                      (5) 1 

𝐵𝐷(𝐘𝑒 , 𝐘𝑠) = − log {∫ √𝑃𝑒(𝑦)𝑃𝑠(𝑦)d𝑦𝕐
}                   (6) 2 

where 𝑃𝑒(𝑦) and 𝑃𝑠(𝑦) are the Probabilistic Density Functions (PDF) of the experimental and 3 

simulated features. The above UQ metrics quantify the difference between two data sets considering 4 

the distribution properties. However, no matter the different orders of moments or the PDFs require 5 

a large number of data samples to provide a precise estimation of the distribution properties.  6 

Alternatively, the interval quantification framework focuses on the range of the quantity of 7 

interest, and hence requires not as many data samples as the probabilistic quantification. 8 

Considering the intervals defined by the available experimental and simulated samples 𝐼𝑒 =9 

[𝑦𝑒 , 𝑦𝑒], 𝐼𝑠 = [𝑦𝑠 , 𝑦𝑠]. The interval UQ metric is defined based on the two key components of the 10 

interval, namely the length of the interval, 𝐿(𝐲) = 𝑦 − 𝑦, and the position of the midpoint, 𝐸(𝐲) =11 

𝑦+𝑦

2
. 12 

However, the interval UQ metric has an obvious drawback in that it neglects the randomness 13 

of the obtained experimental samples. Especially in the presence of irregular data, that is, an 14 

experimental sample is far from the majority of the existing samples. The length of the interval will 15 

be significantly governed by the irregular data, but the normal interval UQ metric will fail to 16 

quantify the weighting of the irregular experimental sample. The following section is consequently 17 

focusing on the UQ metric based on the sub-interval similarity which is capable of quantifying not 18 

only the range and position of the interval but also the sample location dispersion properties.  19 

3 UQ metrics based on interval similarity 20 

3.1 Interval similarity function 21 

This section proposes a mathematical description of the relative position of two intervals. 22 

Consider two continuous intervals 𝐴 = [𝑎, 𝑎] and 𝐵 = [𝑏, 𝑏], first it is necessary to investigate 23 

different cases of the overlap between them, as illustrated in Fig. 1. The Relative Position Operator 24 
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(RPO) is defined using the length of the intervals, i.e. 𝐿(𝐴)  and 𝐿(𝐵) , according to different 1 

overlap cases: 2 

RPO(𝐴, 𝐵) =

{
 
 
 

 
 
 

(𝑎−𝑏)

max{𝐿(𝐴),𝐿(𝐵)}
,Case1,2

(𝑎−𝑎)

max{𝐿(𝐴),𝐿(𝐵)}
,Case3

(𝑏−𝑏)

max{𝐿(𝐴),𝐿(𝐵)}
,Case4

(𝑏−𝑎)

max{𝐿(𝐴),𝐿(𝐵)}
,Case5,6

                            (7) 3 

 4 

Fig. 1: Six cases of the overlap features of two intervals 5 

As shown in Eq. (7), the denominators of the RPO of different cases are all the same as the 6 

maximum of the length of intervals A and B. For the numerator, when there is no overlap such as 7 

Cases 1 and 6, it is negative and its absolute value is determined as the shortest distance between 8 

these two intervals. When there is an overlap as shown in Cases 2-5, Eq. (7) defines the numerator 9 

as the length of the overlap block, and clearly this value is positive. As a summary, the value range 10 

of RPO(𝐴, 𝐵) is determined as 11 

 RPO(A,B) ∈ (−∞, 1].                            (8) 12 

When intervals A and B are the same, RPO(A,B)  reaches the maximum value one. A negative 13 

infinity of RPO(A, B) means the intervals A and B are infinitely far from each other with no overlap. 14 

An infinite value, however, would be insensitive to the calibrating parameters and hence leading the 15 
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model updating process prohibitive. Consequently, we construct the Interval Similarity Function 1 

(ISF) as 2 

ISF(𝐴, 𝐵) =
1

1+exp{−RPO(𝐴,𝐵)}
.                          (9) 3 

As illustrated in Fig. 2, since RPO(A, B)  falls within the range (−∞, 1] , the value of 4 

ISF(𝐴, 𝐵) is limited within (0, 0.7311]. The proposal of ISF(𝐴, 𝐵) as a calibrating metric in model 5 

updating is beneficial because, on the one hand, the metric value is finite, and on the other hand, the 6 

metric has a high gradient as the value moves close to one, as shown in Fig. 2. Such a high gradient 7 

leads to a high sensitivity of the calibrating parameters especially when the parameters are close to 8 

the target values, which is good for convergence of the updating process.  9 

 10 

Fig. 2 Value range of the interval similarity function  11 

3.2 Sub-interval similarity 12 

The interval similarity function based on RPO provides a mathematical description of the 13 

discrepancy of two intervals, which can be employed as the parameter calibration metric in model 14 

updating. However, the RPO metric has an obvious drawback that its values is non-unique to some 15 

overlapping cases. Recal the different cases in Fig. 1 and consider another special case when the 16 

intervals A and B have a common bound, i.e., Interval A [𝑎, 𝑋] and Interval B [𝑋, 𝑏]. Regardless 17 

the actual length of A and B, RPO(A,B) would always equal to 0. This means the RPO, for some 18 

cases, is insensitive to uncertainty, i.e. the length of the intervals.  19 

This phenomenon is essentially because that RPO neglects the interval distributional feature of 20 
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the samples within the interval. This drawback is especially critical when the experimental data 1 

samples are limited and some irregular experimental samples are presented, as illustrated in Fig. 3. 2 

As shown by the upper part of the figure, the light-red interval determined by the green 3 

(experimental) samples is the target of the interval updating. There are two irregular experimental 4 

samples highlighted in the blue box which are located far from the other green samples. If the 5 

general interval similarity is taken as the metric, one would get the updated samples and interval as 6 

shown by the lower part of Fig. 3. Although the range of the updated interval can be tuned towards 7 

the target interval, the inner location dispersions are clearly inconsistent, because the updated 8 

samples can only distribute uniformly along the interval.  9 

 10 

Fig. 3: Problem when only the interval range is considered in updating 11 

It is consequently necessary to propose the so-called Sub-interval Similarity (SIS) metric to 12 

quantify the discrepancy between two intervals with the consideration of the location dispersion of 13 

the available samples. The principle of SIS is illustrated in Fig. 4, where the original experimental 14 

interval is divided into a certain number of sub-intervals. In this specific example, there are 16 15 

experimental samples and 16 simulation samples. If the number of sub-intervals is determined as 16 

four, each sub-interval contains four samples. The bounds of each sub-interval are determined by 17 

the 1st and 4th samples of this sub-interval. The objective in model updating becomes to calibrate 18 
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each simulation sub-interval towards the experimental sub-interval.  1 

The SIS metric is defined as follows 2 

SIS(𝐴, 𝐵)|𝑛𝑠𝑢𝑏 =
1

𝑛𝑠𝑢𝑏
∑ {1 − ISF(𝐴(𝑗), 𝐵(𝑗))}
𝑛𝑠𝑢𝑏
𝑗=1                      (10) 3 

where 𝑛𝑠𝑢𝑏 is the number of the sub-intervals. The principle and method to determine 𝑛𝑠𝑢𝑏 are 4 

explained in the following Subsection 3.3. Because the updating process is executed on the sub-5 

interval level, it is observed that the distribution property of the simulation samples in the lower part 6 

of Fig. 4 is similar to the one of the experimental samples, especially for Sub-interval #4, where the 7 

irregular experimental samples are presented. 8 

The SIS metric and the Bhattacharyya distance [22] have the similar principle and objective to 9 

calibrate the distribution property. However, the Bhattacharyya distance requires elaborate data to 10 

estimate a precise PDF. In contrast, the SIS can make full use of the available experimental samples 11 

and hence achieve a balance between the benefit and cost.  12 

 13 

Fig. 4: Performance of the sub-interval similarity metric in updating  14 

3.3 How to determine the number of sub-intervals 15 

As shown in Eq. (10), the number of sub-intervals 𝑛𝑠𝑢𝑏 is the key parameter to calculate the 16 

SIS value. This subsection proposes an adaptive process to determine a suitable 𝑛𝑠𝑢𝑏 before the 17 
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execution of model updating. Some principles are prescribed as follows. 1 

1) 𝑛𝑠𝑢𝑏 should be the same for both the experimental interval (termed as A) and the simulated 2 

interval (termed as B). The reason is indicated by Eq. (10) where the SIS is essentially the mean 3 

of the quantities relative to the Interval Similarity Function (ISF) of each subintervals in both 4 

intervals A and B. This requires the number of subintervals in A and B should be the same.  5 

2) The whole interval is divided by specific samples, i.e. the data sample itself serves as the bound 6 

of the sub-interval, and one sample can belong to only one sub-interval. Note that, the whole 7 

interval will not be equally divided into 𝑛𝑠𝑢𝑏 parts. Inversely, the length of each sub-interval 8 

is different. The length of the sub-interval is determined by the position of the specific samples, 9 

e.g., as shown in Fig. 4. 10 

3) Each sub-interval should contain a “nearly” average number of samples. For example, if an 11 

original interval with 16 samples is going to be divided into four sub-intervals, each of them 12 

should contain four samples, as shown in Fig. 4; if three sub-intervals are going to be divided 13 

from the 16 samples, the number of samples in Sub-interval #1-3 should be 5, 5, 6, respectively.  14 

Following the above principles, the complete method and process for determining 𝑛𝑠𝑢𝑏  is 15 

listed as follows. 16 

Step 1: Sort the experimental samples and the simulated simples following ascending order, 17 

respectively, and assign a series number to each sample from 1 to 𝑁𝑒  (the number of 18 

experimental samples) or 𝑁𝑠 (the number of simulated samples). In practical application, the 19 

number of experimental samples is generally less than the number of simulated samples, hence 20 

the following determination steps will take 𝑁𝑒 as the reference. 21 

Step 2: According to the principle prescribed above, determine the maximum number of sub-22 

intervals as 23 

𝑛𝑠𝑢𝑏
(𝑚𝑎𝑥)

= ⌊
𝑁𝑒

2
⌋                                (11)  24 

where ⌊ ⌋  is the round-down operator. When 𝑛𝑠𝑢𝑏 = 1 , it is the extreme case that the 25 
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observed and simulated intervals are investigated as the original whole interval; when 𝑛𝑠𝑢𝑏 =1 

𝑛𝑠𝑢𝑏
(𝑚𝑎𝑥)

 , the intervals are divided with the highest resolution, leading each sub-interval to 2 

contain only two experimental samples, i.e. one sample defines the lower bound and the other 3 

defines the upper bound.  4 

Step 3: The following key task is to find a suitable 𝑛𝑠𝑢𝑏 ∈ [1, 𝑛𝑠𝑢𝑏
(𝑚𝑎𝑥)

 ] , which can balance the 5 

calculation cost and the ability to quantify the distribution property within the interval. This is 6 

achieved through a progressive decision process. Starting from 𝑛𝑠𝑢𝑏 = 1 , progressively 7 

calculate the sub-interval similarity SIS(𝐴, 𝐵)|𝑛𝑠𝑢𝑏=𝑗. The progressive process is stopped, i.e. 8 

the suitable 𝑛𝑠𝑢𝑏 is found, when the following terminating criterion is satisfied: 9 

𝑛𝑠𝑢𝑏
(𝑓𝑖𝑛𝑎𝑙)

= 𝑗, ∀
abs(SIS(𝐴,𝐵)|𝑛𝑠𝑢𝑏=𝑗−SIS

(𝐴,𝐵)|𝑛𝑠𝑢𝑏=𝑗−1)

SIS(𝐴,𝐵)|𝑛𝑠𝑢𝑏=𝑗
< 1%，𝑗 = 2,… , 𝑛𝑠𝑢𝑏

(𝑚𝑎𝑥)
       (12) 10 

After the number of sub-intervals is determined, it is also important to determine the bounds 11 

of the sub-intervals for a given 𝑛𝑠𝑢𝑏 . For the example with 20 experimental samples and 100 12 

simulated samples, a detailed dividing configuration is shown in Table 1. The general treatment is 13 

to determine an average number of samples 𝑛𝑎𝑣 in each sub-interval based on the number of sub-14 

intervals 𝑛𝑠𝑢𝑏: 15 

𝑛𝑎𝑣 = 𝑟𝑜𝑢𝑛𝑑(
𝑁

𝑛𝑠𝑢𝑏
)                           (13) 16 

where 𝑁 is either 𝑁𝑒 or 𝑁𝑠, representing the number of samples of the experimental data or the 17 

simulated data. As shown in Table 1, the treatment in Eq. (13) makes sure the number of samples in 18 

each sub-interval is “nearly” average, except the last few sub-intervals with flexible sample numbers 19 

to adjust the total number of samples in the original whole interval. As long as the number of samples 20 

is determined in each sub-interval, the bounds of the sub-interval are automatically determined by 21 

the position of the first and last sample points, as illustrated in Fig. 4.   22 

Table 1: The sub-interval dividing configuration when 𝑁𝑒 = 20 and 𝑁𝑠 = 100 23 

Sub-interval number Experimental sub-intervals simulated sub-intervals 
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1 20 100 

2 10,10 50,50 

3 7,7,6 33,33,34 

4 5,5,5,5 25,25,25,25 

5 4,4,4,4,4 20,20,20,20,20 

6 3,3,3,3,4,4 17,17,17,17,17,15 

7 3,3,3,3,3,3,2 14,14,14,14,14,15,15 

8 2,2,2,2,3,3,3,3 13,13,13,13,13,13,13,9 

9 2,2,2,2,2,2,3,3 11,11,11,11,11,11,11,11,12 

10 2,2,2,2,2,2,2,2,2 10,10,10,10,10,10,10,10,10,10 

 1 

An example of the progressive decision process with 𝑁𝑒 = 20, 𝑁𝑠 = 100, is illustrated in Fig. 2 

5, where the intervals A and B have no overlap. It is observed that the curve of SIS(𝐴, 𝐵)|𝑛𝑠𝑢𝑏 is 3 

monotonically increasing with the increase of 𝑛𝑠𝑢𝑏. When 𝑛𝑠𝑢𝑏 = 6, the terminating criterion in 4 

Eq. (12) is satisfied, and the suitable number of sub-intervals is determined as 6. 5 
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 1 

Fig. 5 Progressive decision process of the number of sub-intervals for two apart intervals 2 

Besides the above complete determination process, an empirical equation is given as follows 3 

to make a fast estimation of 𝑛𝑠𝑢𝑏 in practical applications. 4 

𝑛𝑠𝑢𝑏 = ⌈1.87(𝑁𝑒 − 1)
2/5⌉                          (14) 5 

where ⌈ ⌉  is the round-up operator. This equation only employs the number of experimental 6 

samples 𝑁𝑒, because the number of experimental samples is generally smaller than the number of 7 

simulated samples in practical applications. More explanation of the empirical equation can be 8 

found in Refs. [21,36]. 9 

4 Model updating with sub-interval similarity 10 

This section focuses on how to integrate the above-defined SIS metric into the model updating 11 

framework. We will employ the SIS metric in both the stochastic model updating and the interval 12 

model updating, to demonstrate the generality of the SIS metric.  13 

4.1 Stochastic model updating with approximate likelihood function 14 

The stochastic updating in this paper specifically aims to calibrate the probabilistic distribution 15 
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of the input parameters, such that the distribution of the model outputs can represent the distribution 1 

features of the experimental samples. There is a wide range of methods for stochastic model 2 

updating, such as the sensitivity-based approach, optimization, and Bayesian approach. We select 3 

the Bayesian updating framework in this work and employ the MCMC algorithm for random 4 

sampling. For theoretic completeness, we simply recall the Bayesian approach as follows.  5 

The foundation of Bayesian updating is the Bayes’ theorem, expressed as 6 

P(𝜃|𝐘𝑒) =
P𝐿(𝐘𝑒|𝜃)P(𝜃)

P(𝐘𝑒)
,                          (14) 7 

with its four components as the prior distribution of the calibrating coefficients P(𝜃), the posterior 8 

distribution of the calibrating coefficients conditional to the existing experimental data P(𝜃|𝐘𝑒), 9 

the likelihood function P𝐿(𝐘𝑒|𝜃) , and the evidence of the experimental data P(𝐘𝑒) . Detailed 10 

information of the four components of Bayes’ theorem is omitted, while the fundamental work Ref. 11 

[9] is suggested in case more background information is required. Please note, the calibrating 12 

coefficients 𝜃 is not the model input parameters X, but their distribution coefficients, e.g. means 13 

or variances. Because the objective of stochastic model updating is no longer to calibrate the input 14 

parameters themselves, but their distribution properties.  15 

A key development of the Bayes’ theorem focuses on the likelihood function P𝐿(𝐘𝑒|𝜃), which 16 

needs to be customized to adapt to different updating objectives. The likelihood function is 17 

originally defined as the distribution of the experiment observations conditional to the calibrating 18 

coefficients. It essentially acts as the connection between the existing observation data and the 19 

coefficient to be calibrated. Ref. [22] proposes an approximate version of the likelihood function, 20 

with high efficiency and direct connection with the discrepancy between experimental observation 21 

and the model simulation, expressed as 22 

𝑃𝐿(𝐘𝑒|𝐗) =
1

𝜎√2𝜋
exp {−

SIS(𝐘𝑒,𝐘𝑠(𝜃))
2

2𝜎2
}.                         (15) 23 

It is observed that the approximate likelihood function directly integrates the SIS metric, such that 24 

the calibrating coefficient 𝜃  can be updated ensuring SIS takes the minimum value while the 25 
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likelihood takes the maximum probability. The MCMC algorithm is employed to execute the 1 

iterative process to generate samples from the posterior distribution of 𝜃. The MCMC algorithm is 2 

based on the adaptive Metropolis-Hastings method to accept instances of 𝜃 resulting higher value 3 

of the likelihood function. Detailed information of the widely-applied method is omitted, while more 4 

information can be found from the original paper Ref. [11] and the tutorial paper Ref. [14].  5 

4.2 Interval updating with customized objective function  6 

Different from the stochastic model updating, the interval updating is performed with no 7 

hypothesis of probabilistic distributions. Both the parameters and model outputs are described as 8 

intervals, and hence the objective is to calibrate the parameter midpoint 𝐸(x) and interval length 9 

𝐿(x)  of the interval [x, x] , such that the interval of the model outputs is coincident with the 10 

experimental data. The interval updating can be therefore formulated as an optimization problem, 11 

where the SIS metric is served directly as the objective function and the midpoint and length of the 12 

parameter interval are the design parameters. The optimization is expressed as: 13 

Find 𝐸̂(x) and 𝐿̂(x), 14 

Minimizing 𝑓𝑜𝑏𝑗(𝐸(x), 𝐿(x)) = SIS(𝐘𝑒, 𝐘𝑠(𝐸, 𝐿)), 15 

Subject to {
𝐸(x) ∈ [x, x]

𝐿(x) ∈ [0,
x−x

2
]
,                          (16) 16 

where [x, x] is the pre-determined largest range of the model parameters. This range is determined 17 

based on the prior knowledge of the investigated problem, such as the allowed range of the 18 

geometric parameters or the possible material parameters with physical meaning.  19 

Although the constraint in Eq. (16) is simply linear, the optimization problem is intractable 20 

because of the complex and nonlinear relationship between the objective function and the parameter 21 

interval midpoint 𝐸(x) and length 𝐿(x). The overall optimization problem essentially consists of 22 

a double-loop framework, where the inner loop is dedicated to calculating the objective function 23 

from the parameter interval properties, based on random sampling and SIS calculation; while the 24 

outer loop focuses on searching the 𝐸̂(x)  and 𝐿̂(x)  to get the minimal objective function. A 25 
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complete flowchart of interval model updating including the double-loop optimization and the 1 

detailed steps of SIS metric calculation is illustrated in Fig. 6. 2 

Starting from a pre-determined range of parameters [𝐱0, 𝐱0] , which represents the gross 3 

knowledge from engineering judgment, the initial midpoint 𝐸0(𝐱)  and length 𝐿0(𝐱)  of the 4 

interval are available. The inner loop of SIS calculation is performed first based on 𝐸0(𝐱) and 5 

𝐿0(𝐱) to generate 𝑁𝑠 simulated parameter samples 𝐗𝑠, which uniformly distribute along the pre-6 

determined interval. The system model 𝑓(𝐗𝑠) is then executed 𝑁𝑠 times to generate the simulated 7 

model output 𝐘𝑠. Please note the treatment of generating the samples uniformly does not necessarily 8 

admits that the parameters follow uniform distribution within the interval. It is simply a practical 9 

and efficient tool to estimate the possible output space based on random sampling process. It is 10 

possible to assess different auxiliary distributions, e.g. uniform, Gaussian, and Beta distributions, in 11 

the inner loop. When the number of samples is large enough, the influence of different distributions 12 

is limited, as it can be demonstrated in the example section. Another work resorting the Monte Carlo 13 

sampling for interval propagation is the multilevel quasi-Monte Carlo approach [33] based on the 14 

Cauchy random variables.  15 

Jump out from the inner loop with 𝐘𝑠, and together with the experimental data 𝐘𝑒, the next 16 

step is to calculate the Subset Interval Similarity (SIS) metric. This task is divided into several sub-17 

steps, in which the first is the determination of the number of sub-intervals 𝑛𝑠𝑢𝑏 following the 18 

procedure in Sec. 3.3 and Eq. (12). For each sub-interval, the Relative Position Operator (RPO) 19 

between the simulated one and the experimental one is determined following Eq. (7). Afterwards 20 

the Interval Similarity Function (ISF) of each sub-interval is calculated following Eq. (9). Finally, 21 

the integrated SIS metric considering all sub-intervals is determined following Eq. (10).  22 

Till now the objective function, i.e. the SIS metric, is calculated for the instance of 𝐸(x) and 23 

𝐿(x). And now it comes to the outer loop of optimization. Various optimization tools can be selected 24 

in this step, such as the classical gradient-based algorithm, the biomimetic algorithm, and the 25 

intelligent deep learning algorithms, depending on the complexity of the problem. Being outside of 26 
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the scope of this work, the comparison of different optimization algorithms is omitted in this paper. 1 

We select the Particle Swarm Optimization (PSO) in this work, because of its advantages as to be 2 

applicable for large searching space, and to be robust for strong nonlinearity of objective functions. 3 

The convergence condition of PSO is that the change of the fitness value is less than a threshold 4 

value or the number of iterations reaches the pre-determined limit. After the convergence of PSO, 5 

the minimized SIS metric, as well as the optimized interval properties of the parameters 𝐸(𝐱) and 6 

𝐿(𝐱) is obtained.  7 

 8 

Fig. 6 Flowchart of the double-loop interval updating and SIS calculation 9 

5 Case studies  10 

5.1 The 3-dof mass-spring example 11 

The performance of the SIS metric in both stochastic and interval model updating is 12 
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demonstrated in the classical three-dof mass-spring example, first proposed by Mottershead et al. 1 

[5], as illustrated in Fig. 7. In the following stochastic updating and interval updating, different 2 

parameter configurations originated from Refs. [22] and [34] are adopted, such that the updating 3 

results in this work will be compared with different published works in the following two 4 

subsections, respectively. It is necessary to mention that, although in this example we select a low 5 

number of parameters, in a practical updating problem, it is common to encounter a much larger 6 

number of parameters than the output features [37]. This will lead to an ill-posed optimization 7 

problem with non-unique solutions of the updating process. A common treatment for this issue is 8 

the sensitivity analysis prior to the updating process to identify the significant parameters which are 9 

really necessary to be updated in the following process. 10 

 11 

Fig. 7 The simulated three-dof mass-spring system 12 

5.1.1 Stochastic updating using Bayesian MCMC 13 

The parameter configuration in this subsection includes deterministic parameters of the mass 14 

m1=0.7kg, m2=0.5kg, m3=0.3kg and spring stiffness k4=k5=k6=5.0N/m. The remaining spring 15 

stiffness coefficients k1, k2, k3 are assumed to be random variables following Gaussian distribution 16 

with the undetermined means μ1, μ, μ3 and standard deviations σ1, σ2, σ3, which will be updated in 17 

this example. The three natural frequencies f1, f2, f3 are taken as the model outputs. The 18 

“experimental” output data (i.e., the updating target) is simulated by assigning a set of target values 19 

to the parameter means and standard deviations, as shown in Table 2, and generating Ne=100 20 

samples of k1- k3 and subsequently obtaining 100 samples of f1- f3. The initial values of the mean 21 

and standard deviation are selected on purpose to be different from the target values, such that the 22 

updating effect can be assessed by comparing the frequencies before and after updating. 23 
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Table 2: The target and initial uncertainty properties of k1- k3 1 

Parameter Uncertainty characteristic Target value Initial value  

k1 Gaussian,  𝜇1 ∈ [3,7], 𝜎1 ∈ [0,0.5] 𝜇1 = 4, 𝜎1 = 0.3 𝜇1 = 3, 𝜎1 = 0.1 

k2 Gaussian,  𝜇2 ∈ [3,7], 𝜎2 ∈ [0,0.5] 𝜇2 = 5, 𝜎2 = 0.1 𝜇2 = 4, 𝜎2 = 0.2 

k3 Gaussian, 𝜇3 ∈ [3,7], 𝜎3 ∈ [0,0.5] 𝜇3 = 6, 𝜎3 = 0.2 𝜇3 = 5, 𝜎3 = 0.3 

A) Comparison of the means and standard derivations of the input parameters  2 

The prior distributions of the means and standard deviations are adopted as uniform 3 

distributions along with the pre-determined ranges as shown in Table 2. The MCMC algorithm is 4 

employed to iteratively generate samples and such that to estimate the posterior distributions. The 5 

number of samples in each MCMC iteration is set to be 1000. Consequently, the simulated intervals 6 

of f1- f3 with 1000 samples and the experimental intervals with 100 samples are utilized to calculate 7 

the SIS metric, which is subsequently utilized to construct the likelihood function following Eq. 8 

(15). In this example, after 13 iterations the MCMC algorithm converges, and the posterior 1000 9 

samples of the means and standard deviations are obtained. Scatters and histograms of these 1000 10 

samples are illustrated in Fig. 8. The diagonal elements present the histograms which can be used 11 

to estimate the posterior distributions of the means 𝜇1−3 and standard deviations 𝜎1−3. It is shown 12 

the posterior distributions are significantly changed from the prior ones, which are no longer 13 

uniformly distributed along the interval, but sharply centralized to a middle value. This value is 14 

regarded as the “updated value” obtained by estimating the means of the 1000 samples and listed in 15 

Table 3.  16 

The relative errors of the initial and updated means and standard deviations are compared with 17 

the target one as illustrated in Fig. 9. It is shown the relative errors of the updated values are 18 

significantly reduced compared with the initial ones, implying the feasibility of the stochastic model 19 

updating algorithm and the SIS metrics. The updating results in Ref. [22], derived from the same 20 
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parameter configuration, is also presented in Table 3 and Fig. 9 for comparison. It can be seen that 1 

the updated values using the proposed approach are similar to the ones from Ref. [22], and the 2 

relative errors are also comparable.  3 

 4 

Fig. 8 The scatters and histograms of the posterior samples of the means 𝜇1−3 and standard 5 

deviations 𝜎1−3 6 

Table 3: Error comparison of updated means and standard deviations of k1-k3 7 

 Target value Initial value Updated value  Result in Ref. [22] 

μ1 4 3 3.9788 4.0386 

μ2 5 4 5.0108 5.0102 

μ3 6 5 6.0106 6.0253 

σ1 0.3 0.1 0.2950 0.3067 
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σ2 0.1 0.2 0.1098 0.0937 

σ3 0.2 0.3 0.1844 0.1843 

 1 

Fig. 9 The relative errors of the calibrating values 𝜇1−3 and 𝜎1−3 2 

A further investigation is focused on the actual distribution of the parameters k1- k3 based on the 3 

above-updated means 𝜇1−3 and standard derivations 𝜎1−3. The Gaussian PDFs of the target, initial, 4 

and updated parameters are illustrated in Fig. 10. It is obvious that the initial PDFs differ from the 5 

target PDFs in not only the positions (controlled by the means) but also the dispersion degree 6 

(controlled by the standard derivations). After the updating procedure, the updated PDFs are well 7 

consistent with the target ones. 8 

 9 

Fig. 10 Target, initial, and updated PDFs of k1，k2，k3 10 

B) Comparison of the model outputs with SIS metrics 11 

In this example, the number of experimental samples 𝑁𝑒  is 100, the number of simulated 12 
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samples 𝑁𝑠 in each iteration is 1000. Following Eq. (12), the number of sub-intervals is determined 1 

as 𝑛𝑠𝑢𝑏 = 20. Consequently, the sample number in each sub-interval for experimental data and 2 

simulated data is 5 and 50, respectively. Since the samples are sorted in ascending order, as long as 3 

the sample numbers are determined in sub-intervals, the bounds of the sub-intervals are determined, 4 

as illustrated in Fig. 11. When considering all samples together as a whole interval, the upper and 5 

lower boundaries of outputs f1- f3 become close to the target bounds after model updating. More 6 

than that, the bounds of each updated sub-interval are also close to that of the target sub-interval, 7 

even though each updated sub-interval contains 50 samples while the target one contains 5 8 

experimental samples. This result shows that the proposed non-probabilistic uncertainty metric, SIS, 9 

is able to measure the distribution similarity between two datasets, with the superiority of avoiding 10 

the complicated calculation to find the approximation of the probability distribution.     11 

 12 

Fig. 11 Target, initial and updated sub-interval bounds of outputs f1- f3 13 

For the comparison of calculation cost between the proposed SIS metric and the Bhattacharyya 14 

distance in Ref. [22], we focus on the dimensions of the model output feature. The SIS approximates 15 

the similarity between two datasets based on the simple interval arithmetic operations, leading it to 16 

be not highly sensitive to the dimension of the quantity of interest. While the evaluation of the 17 

Bhattacharyya distance is based on the overlap between two joint-PDFs, which is clearly influenced 18 
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by the quantity dimensions.  1 

Herein an example consisting of two datasets is given to explain the advantages of SIS in 2 

calculation efficiency. Randomly generate two datasets with 1000 samples, namely Data #1 and 3 

Data #2. Consider different cases when the datasets are presented in different numbers of dimensions, 4 

the time to calculate the corresponding Bhattacharyya distance and the SIS metric are shown in 5 

Table 4 and illustrated in Fig. 12.  6 

Table 4 Calculation time* of the Bhattacharyya distance (BD) and the SIS metric 7 

Dimensions 1 3  6  7  8  9  

Calculation  

Time / s 

BD 0.00163 0.00259 0.0134 0.208 4.365 1280.80 

SIS  0.00068 0.00091 0.00112 0.00146 0.00155 0.002032 

  * executed on a consumer-laptop with the Intel(R) Core (TM) i7 CPU 8 

 9 

Fig. 12 Comparison of calculation time between the Bhattacharyya distance and SIS with 10 

increasing data dimensions 11 

As shown in Fig. 12, when the dimension of the datasets is low, the calculations of the 12 
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Bhattacharyya distance and the SIS are both fast and the time consumption is comparable. However, 1 

with the increase of the dimension, the calculation time of the Bhattacharyya distance increases 2 

dramatically while the calculation of the SIS remains very fast. For example, when the dimension 3 

is 9, the calculation time of the Bhattacharyya distance is 1280.80s, which is about 492 times higher 4 

than that of the SIS. Note that, in the process of stochastic model updating, the calibrating metric 5 

will be called hundreds of thousands of times, leading the Bhattacharyya distance to be prohibitive 6 

for high dimensional applications. While the SIS metric is less sensitive to the dimension of the 7 

investigating problem.  8 

However, it is necessary to mention that, although the calculation of the Bhattacharyya distance 9 

is sensitive to the data dimension, it possesses the superiority that it can capture the correlation 10 

among multi-dimensions. The SIS deals with the multidimensional data in a much simplifized 11 

manner that to first marginalize the samples to each dimension, and then calculate the mean of the 12 

SIS on all the dimensions. This dramatically reduces the calculation time, but as a limitation, it 13 

ignores the correlation features of the multidimensional data.  14 

5.1.2 Interval updating using optimization with the SIS metric 15 

This sub-section employs the same 3-dof mass-spring system, however, with a different 16 

parameter configuration from Sec. 5.1.1. The current parameter configuration is proposed to be the 17 

same as the one used in Ref. [31], such that the updating result can be assessed by the comparison 18 

with the ones in the reference. Here k1, k2, and k5 are assumed as interval variables, while the 19 

remaining parameters are set to be constants, i.e. m1 = m2 = m3 = 1kg, k3 = k4 = 1N/m, and k6 = 20 

3N/m. The natural frequencies f1, f2, and f3, and the norm value of the eigenvectors |φ(1, 1)| are taken 21 

as output features.  22 

From Ref. [31], the midpoints of the interval variables k1, k2, and k5 are all set to be the same 23 

value 1, hence only the length are the quantity to be updated in this example. Following the 24 

same principle to set the target values of the updating process, the “target length” of the interval 25 

variables k1, k2, and k5 are assigned as 0.4, as shown in Table 5. In other words, k1, k2, and k5 26 
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have the same target intervals as [0.8, 1.2]. The initial value of the length is set to be 1.0. As 1 

shown in Table 5, there are two sets of updated results, one of which is obtained based on 10000 2 

experimental samples, while another is based on 100 samples. These “experimental target” 3 

samples are generated by first generating 10000 (or 100) samples of k1, k2, and k5 generated 4 

within their initial intervals and subsequently running the model 10000 (or 100) times to 5 

calculate the output feature samples. This treatment of employing different numbers of target 6 

samples in this example is aimed at assessing whether the SIS metric has a feasible performance 7 

with limited experimental data.  8 

A) Comparison of the intervals of the input parameters  9 

The PSO algorithm is employed to minimize the SIS between the simulated interval and the 10 

target interval of the output features. The target, initial, and updated interval lengths of k1, k2, and k5 11 

are listed in Table 5. It is observed that the updated results based on 100 and 10000 target samples 12 

are similar, and both of them are close to the target value. This, on the one hand, demonstrates the 13 

feasibility of the SIS metric in the interval updating framework, and on the other hand, demonstrates 14 

the proposed SIS metric is feasible for limited target (or experimental) data.  15 

Table 5 The target, initial, and updated lengths of k1, k2, and k5 16 

Interval parameters Target Initial Updated (Ne =100) Updated (Ne =10000) 

k1 0.4 1.0 0.4058 0.3970 

k2 0.4 1.0 0.4002 0.4024 

k5 0.4 1.0 0.4062 0.4024 

Table 6 presents the relative errors of the lower and upper bounds of the initial and updated 17 

intervals regarding the target intervals. It is observed that the updated errors are dramatically 18 

reduced from the initial errors. The bounds errors updated based on 10000 target samples and the 19 

ones based on 100 samples are similar. Taking the same parameter configuration, the updated results 20 

by Ref. [31] is presented in Table 6. It is interesting to compare that the updated errors in Ref [31] 21 

with 10000 target samples are similar to the error in the current work with only 100 target samples, 22 
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demonstrating the efficiency of the proposed SIS metric in interval updating.  1 

Table 6 Initial and updated relative errors of interval bounds of k1, k2, and k5 2 

Parameters Initial error % Updated error % 

(Ne=100) 

Updated error % 

(Ne=10000) 

Updated error % in Ref. [31] 

(Ne=10000) 

k1 [-37.5 25.0] [-0.36, 0.24] [0.19, -0.12] [0.1, -0.2] 

k2 [-37.5 25.0] [-0.01, 0.01] [-0.15, 0.10] [0.5, 0.0] 

k5 [-37.5 25.0] [-0.39, 0.26] [-0.26, 0.17] [0.3, -0.1] 

B) Comparison of the intervals of the model outputs  3 

The three natural frequencies and the norm of the eigenvector at the first degree of freedom are 4 

predicted based on the updated intervals of the input parameters. Ref. [31] employs the treatment to 5 

randomly generate 10000 samples of the input paramters and propagate through the model to 6 

estimate the space of the output intervals. We take the same treatment starting from the true interval 7 

of k1, k2, and k5, [0.8, 1.2], after 10000 model evalution, obtaining the target intervals of the output 8 

feature, as shown in Table 7. The updated intervals of the outputs are presented in the table using 9 

different sampling distributions in the inner loop (recall Fig. 6). It is demonstrated that, on the one 10 

hand, the updated output intervals have a high precision compared with the target intervals; on the 11 

other hand, the updated intervals based on different sampling distributions are similar, implying the 12 

selection of different auxiliary distribution, acting as interval propagation tools, have limited 13 

influence of the updating results.  14 

Table 7 Intervals of the updated outputs employing different auxiliary distribution with the 15 

parameter intervals 16 

Employed 

distributions 

f1 f2 f3 |φ(1, 1)|  Mean relative error 

Uniform  [0.8666, 1.1294] [3.5477, 4.4441] [7.8054, 8.2027] [0.5491, 0.6041] [0.42%, 0.08%] 

Gaussian  [0.8891, 1.106] [3.6005, 4.3487] [7.8358, 8.186] [0.5514,0.5984] [0.83%, 1.26%] 
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Beta  [0.8776.1.1154] [3.6395, 4.3532] [7.9627, 8.177] [0.5597, 0.5915] [1.56%, 1.34%] 

Target interval [0.8693, 1.1279] [3.5915, 4.4421] [7.8114, 8.1978] [0.5487, 0.6035]  

Fig. 13 illustrates the interval bound squares of the output features in the plane of f1 vs. f2, and 1 

the plane of f3 vs. |φ(1, 1)|. Since the midpoint of the intervals of input parameters k1, k2, and k5 are 2 

all assigned to be 1.0, the midpoints of the obtained output features are coinciding among the target, 3 

initial, and updated squares. However, the outlines of the squares have been clearly calibrated as the 4 

updated squares are nearly coincident with the target square. The updated samples and squares in 5 

Fig. 13 are obtained based on 100 target samples, once again demonstrating the interval updating 6 

with SIS metric is feasible for a limited number of the experimental samples.  7 

 8 

Fig. 13 Boundary square of the target, initial, and updated features 9 

5.2 The practical steel plates example 10 

This subsection employs the example with 55 identical steel plates, which were first tested by 11 

Fang et al. [32]. The 55 plates are designed in the same geometry property, 600 mm (length) ×120 12 

mm (width) × 3 mm (thickness), with the same material property, i.e. Young’s modulus 𝐸 =13 

210 GPa , shear modulus 𝐺 = 83 GPa , and density 𝜌 = 7860 Kg/m3 . However, because of the 14 
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uncertainties sourced from manufacturing tolerance, material heterogeneity, and test randomness, 1 

the tested natural frequencies on the 55 plates exhibit considerable dispersity. The intervals of the 2 

tested five order natural frequencies are listed in Table 8. A second-order response surface model of 3 

the finite element model of the plates was built by Deng et al. [34], expressed as 4 

2 2

1

2 2

2

2 2

3

4

1.31 0.2152 0.01455 0.0002813 0.0004878 0.0006576

44.08 0.5145 0.1333 +0.0002943 0.004055 0.005588

52.85 0.1156 +1.455 0.0006092 0.0002019 0.005634

375.4 3.207 0.429

f E G E E G G

f E G E E G G

f E G E E G G

f E

= + − − −  +

= + − −  +

= − + +  −

= − − 2 2

2 2

5

1 0.02202 0.009699 0.01383

79.55 0.255 2.804 0.0005059 0.001249 0.009833

G E E G G

f E G E E G G

+ −  +

= + + − −  −

.       (17) 5 

Based on the surrogate model, the intervals of the natural frequencies are predicted and listed 6 

in Table 8. By the comparison of the two sets of intervals, the relative errors are quite low, implying 7 

the predicted intervals can represent the property of the tested data. The reason to introduce the 8 

predicted intervals in Ref. [34] is that Fang et al. [32] only presented the bounds of the frequency 9 

intervals but not the detailed 55 test samples. Only the bounds are not enough to evaluate the SIS 10 

metric. Consequently, we propose to utilize the surrogate model and the predicted intervals, which 11 

can still represent the features of the practical test data.  12 

This example employs Young’s modulus 𝐸 and shear modulus 𝐺 as the input parameters to 13 

be calibrated, and the first five order natural frequencies as output features. Ref. [34] has predicted 14 

the input intervals 𝐸 ∈ [196.2, 204.8] , 𝐺 ∈ [79.1, 83.7] , which can reproduce the frequency 15 

intervals in Table 8. The input intervals are hence adopted as the target intervals in the following 16 

updating process. 55 samples of E and G are randomly generated from the intervals and propagated 17 

through the model to the frequencies, generating 55 natural frequency samples, which are adopted 18 

as the target output features.  19 

The relative position of the real experiment interval and the target intervals and samples are 20 

illustrated as 3-dimensional interval cubes in the space of f1-3, and f3-5, as shown in Fig. 14. It is 21 

observed that the simulated cubes defined by the 55 simulated samples are coincident with the 22 

practically measured cubes, implying it is reasonable to take simulated intervals and samples as the 23 
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target in the following evaluation process of the SIS metric.   1 

Table 8 Intervals of the tested natural frequencies 2 

Frequency  f1 f2 f3 f4 f5 

Intervals in 

Ref. [32] 

[42.66,43.64] [118.29,121.03] [133.24,136.54] [234.07,239.20] [274.29,280.64] 

Intervals in 

Ref. [34] 

[42.81,43.81] [118.28,121.38] [133.25,137.05] [232.25,239.10] [272.77,280.36] 

Relative 

error  

[0.35%.0.39%] [-0.01%,0.29%] [0.01%,0.37%] [-0.78%,-0.04%] [-0.55%, -0.10%] 

 3 

 4 

Fig. 14 Cubes and samples of the simulated target data and the measured data  5 

The PSO algorithm is employed to minimize the SIS metric value in the optimization problem. 6 

The number of simulated samples is set to be 10000 in each iteration, implying the SIS metric is 7 

calculated between the simulated interval with 𝑁𝑠 = 10000, and the target interval with 𝑁𝑒 = 55. 8 

The updated bounds of the input intervals are presented in Table 9. The relative errors of the updated 9 

bound regarding the target values are quite small, demonstrating the effect of the SIS metric in the 10 
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interval updating problem.  1 

Table 9 The target and updated bounds of the parameter intervals 2 

Parameters Target intervals Updated intervals Relative errors 

E (GPa) [196.2, 204.8] [196.59,204.61] [0.20%, -0.09%] 

G (GPa) [79.1, 83.7] [79.21, 83.91] [0.14%, 0.25%] 

More attention to this example is placed on how the different numbers of sub-intervals will 3 

influence the evaluation of SIS metrics and subsequently influence the updating outcomes. 4 

According to Eq. (12), the optimal number of sub-intervals is 8. The updated parameter bounds and 5 

the mean of their relative errors with different numbers of sub-intervals are illustrated in Fig. 15 and 6 

Fig. 16. When the number of sub-intervals 𝑛𝑠𝑢𝑏 = 1, i.e. only the outer bounds of the interval are 7 

considered, the errors of the parameter interval are obviously higher than the other cases. However, 8 

with the increase of the subinterval numbers, the updated accuracies improved rapidly and convey 9 

finally. This demonstrates merely considering the outer bounds is not enough for interval updating 10 

in the presence of limited experimental data, i.e. 55 samples in this example. The subinterval can 11 

quantify more uncertain information of the distribution of experimental data. 12 

 13 

Fig. 15 The relative errors of updated bounds of E with increase numbers of sub-intervals 14 
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 1 

Fig. 16 The relative errors of updated bounds of G with increased numbers of sub-intervals 2 

The relative position of the target and updated output features are illustrated as the three-3 

dimensional cubes in the space of the natural frequencies, as shown in Fig. 17. This figure gives the 4 

comparison between the results with nsub=1 and nsub=8. Clearly, when nsub=1 the SIS metric degrades 5 

into the normal interval similarity. Because the internal samples location feature is not considered, 6 

the updated result is apart from the target. Once dividing the datasets into several sub-datasets, the 7 

SIS metric is more accurate to describe the uncertainties between the target outputs and the 8 

simulated outputs, which significantly improves the accuracy of the interval model updating 9 

outcome.10 
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 1 

Fig. 17 Target and updated natural frequencies with sub-interval numbers nsub=1 and nsub=16 2 

6 Conclusion and perspectives  3 

The Sub-interval Similarity (SIS) is proposed as a general-purpose UQ metric with the 4 

universality to be feasible in both stochastic model updating and interval model updating. In 5 

stochastic updating where the investigating parameters are assumed to follow probabilistic 6 

distributions, the SIS is proven to be capable of calibrating the distribution properties, e.g. mean and 7 

variance, of the parameters. In the interval updating, the SIS is demonstrated to be feasible in 8 

calibrating the midpoint and length of the parameter intervals.  9 

The SIS metric is motivated by the classical interval similarity function, but it possesses the 10 

superiority that it is capable of quantifying the randomness of the sample location dispersion, 11 

especially when the available experimental samples are limited. From this point of view, the SIS 12 

metric is similar to the Bhattacharyya distance to measure the agreement between two probabilistic 13 

distributions. However, the SIS does not require abundant measurement data to estimate a precise 14 

probability density function, which is a clear benefit of the SIS metric in the presence of limited 15 

experimental data in practical applications.  16 
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Further development of the SIS includes the integration in the updating of nonlinearity systems. 1 

Nonlinear updating has been developed as an important branch of model updating. This 2 

development is expected to meet the tendency of light-weight and large-deformable structures. Two 3 

challenges of nonlinear updating have been identified: 1) it is difficult to obtain a full-field 4 

experimental measurement to capture the nonlinearity, especially for large-deformable structures; 2) 5 

the nonlinear properties are hard to be updated together with the normal parameters in a uniform 6 

framework. For the connection between the nonlinear updating and the proposed SIS UQ metric, 7 

since nonlinear updating is still a special case of model updating, it hence still requires a UQ metric 8 

to capture the discrepancy between the measured and simulated outputs. The SIS metric focuses on 9 

the comparison of outputs, while the nonlinearity relates to the inherent property of structures, i.e. 10 

the input parameters. In this sense, the SIS can also be used for nonlinear model updating. To achieve 11 

this development, a two-phase updating framework would be developed to calibrate the linear and 12 

nonlinear properties separately while with the SIS metric to be integrated into both phases.  13 

A limitation of the SIS metric is that it ignores the correlations feature of multidimensional 14 

data. The current treatment is to first marginalize the samples to each dimension, and then calculate 15 

the mean of the SIS on all the dimensions. This limitation is similar to that of the Probability-box 16 

(P-box) when facing multidimensional data. Future work is expected to extend the SIS metric with 17 

dependence description tools, e.g. the Copula function, to enhance the capacity of correlation 18 

quantification.  19 
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