

ROLEST The Robertson Trust Laboratory for Electronic Sterilisation echnoloaies

### **Comparison of the Antimicrobial Efficacy and Germicidal** Efficiency of 405-nm Light for Surface Decontamination

Lucy G Sinclair<sup>1</sup>, Scott J MacGregor<sup>1</sup> and Michelle Maclean<sup>1,2</sup> <sup>1</sup>The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), University of Strathclyde, Glasgow, UK. <sup>2</sup>Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK.

### INTRODUCTION

The persistence of nosocomial bacteria on hospital surfaces provides a significant source of infection transmission within the clinical environment<sup>1</sup>.

Although traditional cleaning procedures are essential to minimise pathogen spread, an estimated 50% of 'high-touch' surfaces are commonly missed using these techniques<sup>2</sup>.

Violet-blue 405-nm light demonstrates broad antimicrobial properties<sup>3</sup> at exposure levels safe for mammalian cells<sup>4</sup>.

Low-irradiance 405-nm light has recently been developed as a method of 'wholeroom' decontamination within occupied environments, with studies demonstrating successful reductions of environmental bacteria in wards and operating theatres<sup>5,6</sup>.

#### This study aims to investigate the antimicrobial efficacy of 405-nm light for the decontamination of surfaces and how the dose-response kinetics are affected by use of differing light irradiances.

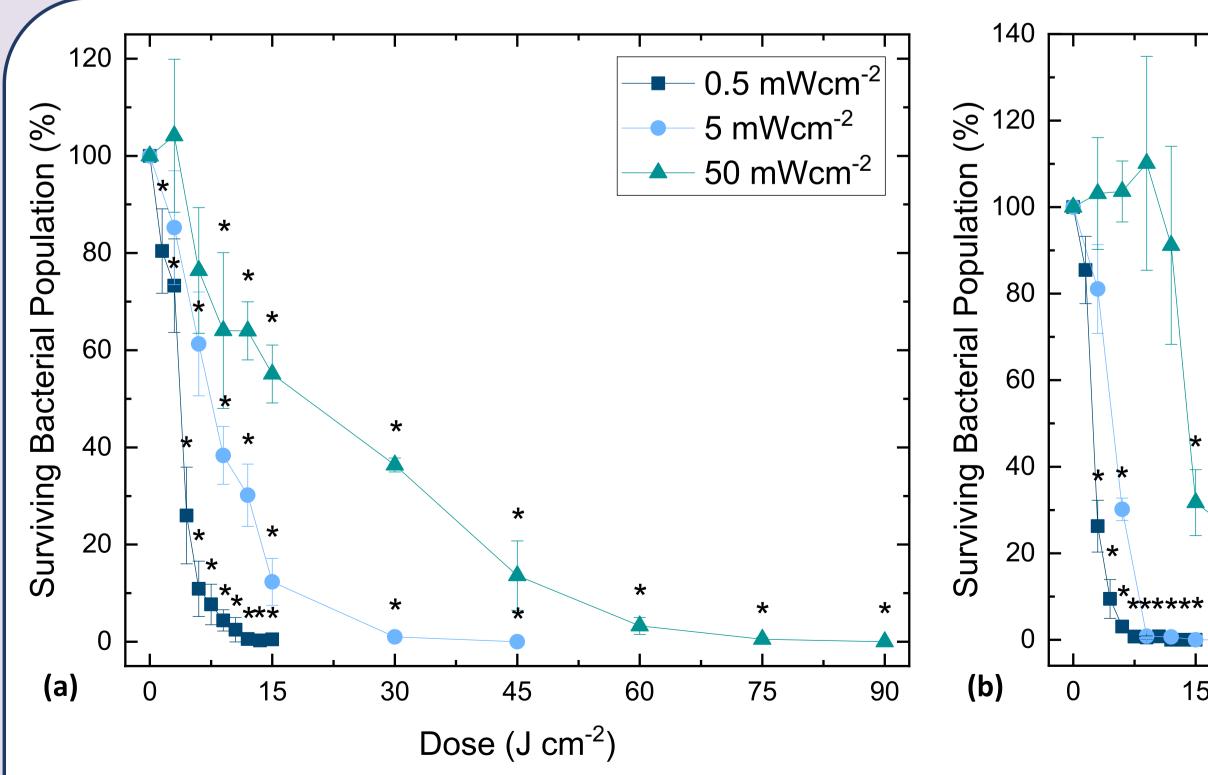
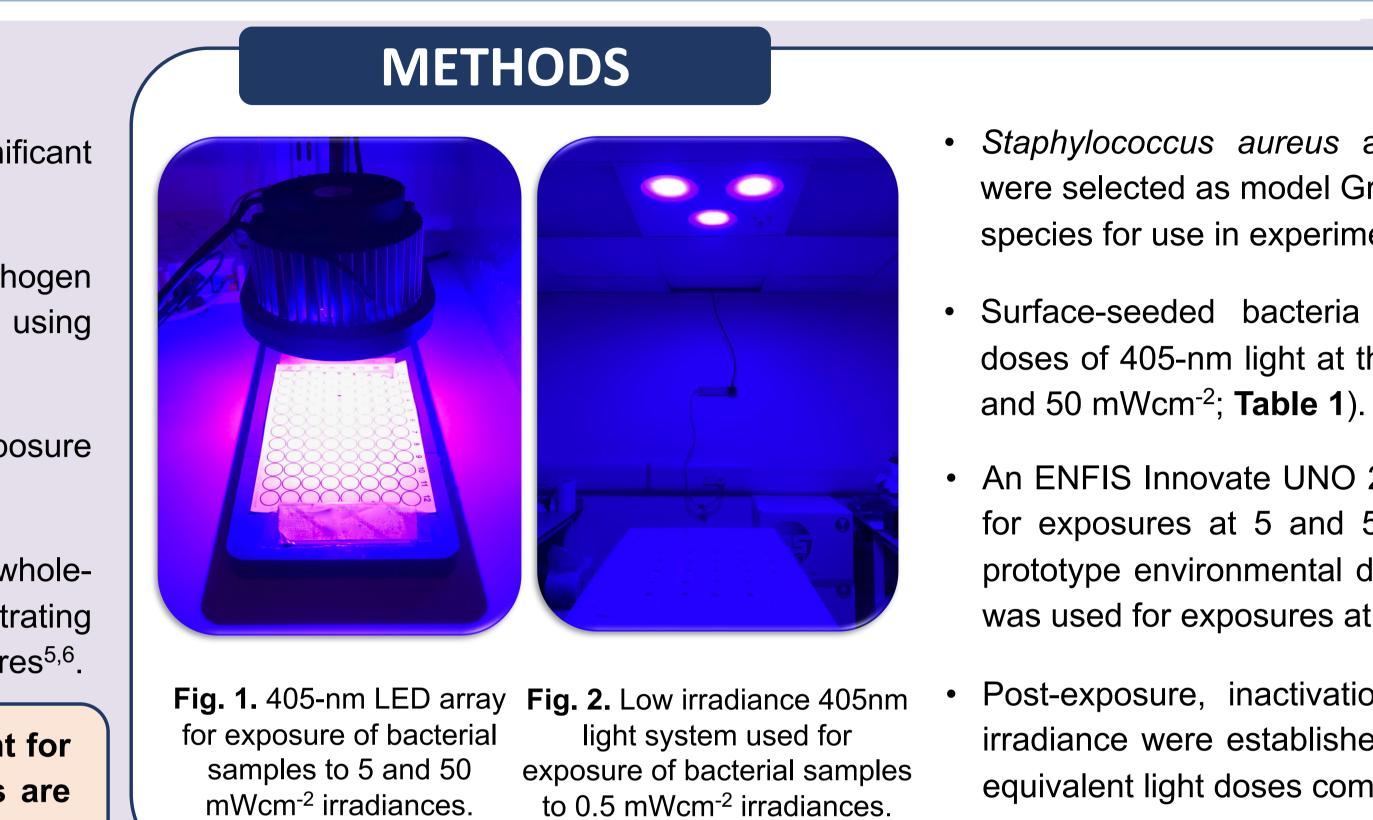




Fig. 3. Comparison of the inactivation kinetics of surface-seeded (a) Staphylococcus aureus and (b) Pseudomonas aeruginosa upon exposure to 405-nm light at irradiances of 0.5, 5 and 50 mWcm<sup>-2</sup> (n  $\ge$  3 ± SD). Asterisks (\*) represent a significant reduction in bacterial populations in comparison to non-exposed controls ( $P \le 0.05$ ).



## ■— 0.5 mW cm<sup>-2</sup> - 5 mW cm<sup>-2</sup> – 50 mW cm<sup>-2</sup> 15 Dose (J cm<sup>-2</sup>)

### RESULTS

- ► Exposure at 0.5 mWcm<sup>-2</sup>: 3 Jcm<sup>-2</sup> was required to achieve significant reductions in both species compared to non-exposed controls ( $P \le 0.05$ ).
- ► Exposure at 5 mWcm<sup>-2</sup>: double the energy (6 Jcm<sup>-2</sup>) was required for both species to achieve similar significant reductions
- ► Exposure at 50 mWcm<sup>-2</sup>: greater doses of 9 and 15 Jcm<sup>-2</sup> were required for equivalent reductions of S. aureus and *P. aeruginosa*, respectively.
- For both species, **3-5 times less dose** was required to achieve significant reductions when exposed at the **lowest irradiance** (0.5 mWcm<sup>-2</sup>) in comparison to the highest irradiance  $(50 \text{ mW cm}^{-2}).$



• Staphylococcus aureus and Pseudomonas aeruginosa were selected as model Gram-positive and Gram-negative species for use in experiments.

• Surface-seeded bacteria were exposed to increasing doses of 405-nm light at three discrete irradiances (0.5, 5

An ENFIS Innovate UNO 24 LED array (Fig. 1) was used for exposures at 5 and 50 mWcm<sup>-2</sup> and a 405nm light prototype environmental decontamination system (Fig. 2) was used for exposures at  $0.5 \text{ mWcm}^{-2}$ .

Post-exposure, inactivation kinetics at each respective irradiance were established and bacterial susceptibility at equivalent light doses compared.

| Table 1. 405-nm light treatment regimes for S. aureus and<br>P. aeruginosa;[Dose (Jcm <sup>-2</sup> ) = Irradiance (mWcm <sup>-2</sup> ) x Exposure Time (s)]. |      |     |    |                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|----|-------------------------------------------|
| Irradiance<br>(mWcm <sup>-2</sup> )                                                                                                                            | 0.5  | 5   | 50 | Dose<br>Delivered<br>(Jcm <sup>-2</sup> ) |
| Exposure<br>Time<br>(minutes)                                                                                                                                  | 100  | 10  | 1  | 3                                         |
|                                                                                                                                                                | 200  | 20  | 2  | 6                                         |
|                                                                                                                                                                | 300  | 30  | 3  | 9                                         |
|                                                                                                                                                                | 400  | 40  | 4  | 12                                        |
|                                                                                                                                                                | 500  | 50  | 5  | 15                                        |
|                                                                                                                                                                | 1000 | 100 | 10 | 30                                        |
|                                                                                                                                                                | 1500 | 150 | 15 | 45                                        |
|                                                                                                                                                                | 2000 | 200 | 20 | 60                                        |
|                                                                                                                                                                | 2500 | 250 | 25 | 75                                        |
|                                                                                                                                                                | 3000 | 300 | 30 | 90                                        |

### CONCLUSIONS

- ► Surface-seeded nosocomial bacteria, S. aureus and P. aeruginosa, were successfully inactivated by 405-nm light at the range of irradiances used.
- ► The germicidal efficiency of 405-nm light was significantly enhanced when a lower irradiance ( $\sim 0.5 \text{ mWcm}^{-2}$ ) was utilised.
- ► Coupled with the increased safety benefits of 405-nm light compared to UV light, these findings support the use of low-irradiance 405-nm light for continuous decontamination applications within occupied healthcare environments.
- ► Results highlight that the mode of application can have a significant impact on the efficacy of microbial inactivation, therefore further investigation is required into the associated photo-chemical inactivation mechanisms, as this will be crucial for optimisation of the technology for a range of infection control applications.

<sup>1</sup> Donskey, C., (2013). *Am. J. Infect. Control.* 41(5), 12-19. <sup>2</sup> Carling, P. C. et al., (2006). Clin. Infect. Dis. 42(3), 385–388. <sup>3</sup> Tomb et al., (2018). J. Photochem. Photobiol. 94(3), 445-458.

<sup>4</sup> Ramakrishnan et al., (2014). J. Biomed. Opt. 19(10), 105001 <sup>5</sup> Maclean, M. *et al.*, (2010) J. Hosp. Infect. 76(3), 247-251. <sup>6</sup> Murrell, L. et al., (2019) Am. J. Infect. Control. 47(7), 804-810.

LGS is supported by an EPSRC Doctoral Training Grant (Reference: EP/R513349/1)



Contact: lucy.g.sinclair@strath.ac.uk

# **University of**

