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Abstract
We study the ground state phases of interacting bosons in the presence of a 2D Aubry–André
(AA) potential. By using a mean-field percolation analysis, we focus on several superlattice
and quasicrystalline regimes of the 2D AA model, including generalisations that account for a
tilting or skewing of the potential. We show that barriers to the onset of macroscopic phases
naturally arise from weakly modulated domains in the 2D AA model. This leads to the
formation of extended crossover domains, in which the macroscopic properties are dominated
by a minority of the system. The phase diagrams then exhibit substantially different features
when compared against crystalline systems, including a lobe-like or wave-like appearance of
the Bose glass, sharp extrusions and thin, percolating clusters. By studying the 2D AA model
across multiple regimes, we have shown that these extended crossover domains are not distinct
to a small set of parameters.
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1. Introduction

The Bose glass (BG) is a famous example of a quantum phase
that stabilises a coexistence of insulating and superfluid (SF)
ground states on local scales [1]. While the BG is viewed as
macroscopically insulating, local SF domains will mean that
the phase is compressible, unlike a Mott-insulator (MI). Fur-
thermore, these SF domains do not percolate, leading to the
absence of macroscopic phase coherence [2–6]. The BG is
perhaps most commonly associated to disordered, crystalline
systems. In this case, short-range random disorder is known to
introduce atomic localisation for both interacting [7–11] and
non-interacting systems [12, 13]. The disorder averaged phase
is of particular interest in these models, as no single disor-
der realisation should dominate the overall physics. In other
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words, the local fluctuations do not play an important role in
the underlying phase transitions. For this study, however, we
wish to study the properties of models that are not random.
In this scenario, local variations of any order parameters are
far more important than they would be for disordered sys-
tems. This can allow for the formation of extended crossover
domains between different phases, in which the macroscopic
properties of a phase are dominated by a minority of the
system.

The system we study is based on a 2D extension of the
quasiperiodic Aubry–André (AA) model with on-site inter-
actions. The AA model and its generalisations have been
widely studied in the single-particle picture [14], and are
known to host self-dualities [15–17], novel dynamical prop-
erties [18–20] and topological phases [21–23]. While many
studies have been conducted in 1D, various 2D extensions of
the AA model have also found similar properties [24–26]. For
quasiperiodic systems, we have a distinct scenario in which we
have both short-range disorder and long-range order present
in the system. Importantly, however, this short range disorder
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is not random, and the systems structure is normally charac-
terised by long-range self-similarity. Furthermore, this order
can naturally lead to the formation of barriers to macroscopic
phases.

Barriers to macroscopic phases manifest as weakly mod-
ulated domains in the 2D AA potential, which can form in
both quasiperiodic and periodic limits. These domains can
then stabilise extended crossover domains between phases on
the lattice. This includes regimes where a small SF domain
of a few sites can percolate through the system and support
macroscopic superfluidity, despite a majority of the phase
possessing insulating characteristics. We can also observe
the opposite scenario, where small, percolating domains with
insulating behaviour will block the onset of macroscopic
superfluidity.

Recently, the BG has been theoretically observed for some
2D quasicrystalline systems through a mean-field analysis of
tight-binding models [27] and quantum Monte Carlo studies
of continuous systems [28]. Part of the study in reference [27],
in particular, looked at the global formation of the BG for a
specific set of parameters in the many-body 2D AA model,
and did not focus on the local properties or extent of crossover
domains between the different quantum phases. Here, the cen-
tral aim of our work is to now extend these results and focus on
the generic appearance of extended crossover domains and the
local nature of ground state phases. We achieve this through a
Gutzwiller mean-field analysis, based on percolation methods
for inhomogeneous systems [3–6, 27, 29–32].

Here, we will present our results for the 2D AA model as
follows. First, in section 2, we will define the 2D AA model
that we work with in this study, including a discussion on the
mean-field percolation methods and order parameters used to
determine different phases. Using these definitions, we then
discuss the structure of phases in extended crossover domains
within section 4, and show several examples of these phases
on the lattice for different forms of the underlying potential.
Finally, in section 5, we present full ground state phase dia-
grams for the system in different parameter regimes, before
ending with our conclusions in section 6.

2. Mean-field 2D AA model

2.1. 2D AA Bose–Hubbard model

In the following, we will consider an inhomogeneous
Bose–Hubbard model on a 2D square lattice with unit spacing
and Hamiltonian

Ĥ =
U
2

N∑
i

n̂i(n̂i − 1)+
N∑
i

(εi − μ)n̂i − J
∑
〈i, j〉

b̂†i b̂ j, (1)

where N is the total number of lattice sites, U is the on-site
interaction strength, εi is an on-site energy, J is the tunnelling
coefficient, 〈i, j〉 denotes the sum over nearest-neighbours,μ is
the chemical potential, b̂i(b̂

†
i ) are the bosonic annihilation (cre-

ation) operators and n̂i is the number operator.Wewill consider
the εi to be distributed according to a 2D AA quasiperiodic
potential of

Figure 1. Plots of the 2D AA potential for the three different
regimes used in this study, including (a) and (d) equal wavenumbers
without a rotation θ of the potential, (b) and (e) equal wavenumbers
with rotation and (c) and (f) unequal wavenumbers without rotation.
The first row of figures (a)–(c) denote the continuum limits of
equation (2), whereas the bottom row (d)–(f) shows the 2D AA
potential on a discrete lattice.

εi = −λ [cos (2πβ1(x + y))+ cos (2πβ2(x − y))] , (2)

with λ denoting the modulation strength, β1,2 are the
wavenumbers and x, y are the 2D spatial coordinates of the
lattice. Throughout this work, we will primarily consider a
N = 99× 99 lattice, with open boundary conditions. We note
that periodic boundary conditions can also be applied to this
problem, and similar kinds of results can be found to what be
observe here.

The Bose–Hubbard model can be efficiently realised with
cold gases trapped in optical lattices [2, 33]. The presence
of quasiperiodic order, such as the 2D AA potentials consid-
ered here, can then be introduced with separate optical poten-
tials [6, 34–37]. In 2D, it has been demonstrated that this will
reproduce known results with speckle potentials when random
phase fluctuations are introduced [28, 38, 39], including the
formation of glass states [36, 40] and many-body localisation
[41, 42]. It has also been shown that 1D quasiperiodic mod-
els can support many-body localisation [42, 43] and a variety
of intermediate phases before thermalisation [43–46]. Further-
more, other studies have found exotic ground states [47, 48]
and localisation transitions [37, 49–52].

If the wavenumbers in equation (2) are irrational, they will
be incommensuratewith the lattice spacing. The distribution of
εi will then be quasicrystalline, and contain long-range order.
On the other hand, if the wavenumbers are rational, we will
instead have a commensurate, crystalline distribution of εi on
the lattice. Throughout this study, we will refer to the poten-
tials with irrational wavenumbers as quasicrystalline distribu-
tions and rationalwavenumbers as superlattice distributions. In
figure 1, we plot visualisations of the 2D AA potential for the
three different regimes used in this study. Starting with equal
wavenumbers in figures 1(a) and (d), we can see the appear-
ance of weakly modulated lines with εi = 0, as observed in
previous studies [25, 27]. These lines are predictable from the
form of equation (2) as

d(Y) = Y − k
4β

≈ 0, (3)
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where k is an odd integer, β is a fixed wavenumber when
β1 = β2 and Y can be either the x or y coordinate. If d(Y) is
sufficiently close to zero, then the corresponding row/column
of sites will beweaklymodulated. In the single particle picture,
it is known that these weakly modulated lines can destabilise
the mobility edge that is typically seen in AA models, and can
even support ballistic transport [25].

In this work, we will also study other quasicrystalline dis-
tributions of the potential that, in general, no longer stabilise
precise lines of weak modulation that match the geometry of
the underlying lattice. Of particular relevance to experimental
protocols is the consideration of tilted quasicrystalline poten-
tials. For example, this would amount to the rotation of some
bichromatic quasiperiodic potential on top of an optical lat-
tice, which could describe alignment errors. We will consider
a rotation of the 2D AA potential, which transforms the spatial
coordinates of equation (2) according to(

x
y

)
→

(
x cos θ − y sin θ
x sin θ + y cos θ

)
, (4)

where θ denotes an anti-clockwise rotation angle from the
x-axis. We show an example of a tilted 2D AA potential in
figures 1(b) and (e).

Finally, we will also consider the case of unequalwavenum-
bers. There is of course many different choices one can make
for the wavenumbers, and we shall consider a particular set
in order to demonstrate the rich physics that is present in
the many-body 2D AA model. We will therefore consider the
following parametrisation for the wavenumbers

β1 = sin φ, β2 = cos φ, (5)

where φ is an effective skew ‘angle’ between β1 and β2. This
ensures at least one irrational wavenumber for φ > 0◦. Given
the reflectional symmetry about φ = 45◦, we therefore con-
sider a range of φ between 45◦ and 0◦. A skewed 2D AA
potential is depicted in figures 1(c) and (f), which shows a
similar structure to that of the tilted potentials.

2.2. Gutzwiller mean-field

In order to study the many-body properties of the 2D AA
model, we consider amean-field percolation analysis. First, we
decouple correlators according to a Gutzwiller ansatz [53–55]

b̂†i b̂ j = b̂†iϕ j + b̂ jϕi − ϕiϕ j, (6)

where ϕi = 〈b̂i〉 is the mean-field order parameter at site
i, which is taken to be real without loss of generality for
the considered model. By substituting the above relation
into equation (1), the Hamiltonian for the inhomogeneous
Bose–Hubbard model can be written in the local number basis
for each site as

Ĥi =
U
2
n̂i(n̂i − 1)+ (εi − μ)n̂i − J(b̂i + b̂†i )

∑
〈i, j〉

ϕ j. (7)

The ground state for the entire system can then be found by
diagonalising equation (7) for each site and converging. Dur-
ing this process, the order parameters are updated according to
the local number basis

ϕi = 〈b̂i〉 =
z∑

n=0

√
n f (i)n f

∗(i)
n−1, (8)

where z is the maximum number of particles per site and
f (i)n are elements of the lowest energy eigenvector for site i.
Given an initial set of order parameters ϕi, this process can be
repeated in a self-consistent manner, until convergence to the
true ground state. We can also calculate the local density for
each site

ρi = 〈n̂i〉 =
z∑

n=0

n| f (i)n |2. (9)

As a practical note, z should in principle be infinite for bosonic
systems, but it is set to a finite value for numerical purposes.
The ground state will converge with increasing z. We take z =
10 for the results presented here, which is well into the region
of convergence.

2.3. Percolation and crossover domains

The simplest case of the homogeneous Bose–Hubbard model
with on-site interactions normally permits the existence of two
unique ground state phases; the MI and SF. In the context of
mean-field theory, the presence of this macroscopic order can
be based on whether the average order parameter ϕ̄ is finite.
This can be captured with the correlation fractionF of a state,
which we define as

F =
Nϕ

N
, (10)

whereNϕ is the total number of sites with finite ϕi and N is the
total number of sites. In other words, F = 0 for the MI and
F ∼ 1 for the SF.

If the model has disorder, then a BG is expected to prevent
a direct MI to SF transition [1]. Unlike the SF, a BG no longer
supports macroscopic phase coherence, and is hence also an
insulating phase. However, the BGwill have small, isolated SF
domains, which means that the phase is compressible, unlike
the MI [1]. We can identify a BG–SF transition based on the
percolation of sites with a local SF character, as has been done
in prior works on percolation based methods [5, 6, 29–31]. To
do this, we define a percolation probability P as

P =
Nspan

Nϕ
, (11)

where Nspan is the number of sites in a percolating cluster.
For the MI and BG, we now have P = 0, whereas for the SF
P > 0. The application of a percolation analysis with conven-
tional mean-field approaches has been shown to produce com-
parative results to those obtained by quantumMonte-Carlo for
disordered systems on a square lattice [3, 5, 56–58]. Given a
distribution of SF clusters, we can also calculate several mea-
sures that characterise their structure and extent. Throughout
this work, we will also be interested in looking at the average
size of SF clusters, which is defined as

M =
∑
i

size of a local cluster i
total number of clusters

, (12)

where the size of a local cluster is calculated from the maxi-
mum separation between two sites in a SF cluster.
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For the 2D AA model, there is the possibility that short-
range, non-random disorder can result in phases that are
dominated by local properties of the system. An example of
this could be a thin line of SF sites percolating across an oth-
erwise insulating system. This state, while being for the most
part insulating, could be considered to host a macroscopic SF.
The macroscopic properties of the ground state are then dom-
inated by the local properties of comparatively few sites, e.g.
for the N = 99× 99 system we consider, a single percolating
line of SF sites could be supported by as little as 1% of the sites.
We will refer to ground states dominated by local properties as
belonging to an extended crossover domain.

We will characterise the extended crossover domains by
considering two local discrete functions thatmeasure the phase
at each site and its surroundings. These will be referred to as
locality functions. First, we define the insulating locality func-
tion SMI

i , which is 1 if a MI site (integer density and zero ϕi)
is surrounded by MI sites across each of its bonds, and 0 in all
other scenarios. The complimentary function 1− SMI

i is there-
fore 1 if a MI site has at least one neighbouring SF site. Sim-
ilarly, we can also define the SF locality function SSFi , which
is 1 if a SF site (non-zero ϕi) is surrounded by SF sites across
each of its bonds, and 0 otherwise. The complimentary func-
tion 1− SSFi is then 1 if a site has at least one neighbouring
MI site. By looking at the average values of these distribu-
tions, SMI and SSF, we end up with a measure between 0 and 1
which is more sensitive to the local structure and fluctuations
of clusters.

From this, we can first define a weak superfluid (wSF)
phase, which has a majority of sites being insulating, but
has a small percolating SF domain. This thin SF cluster acts
as a barrier to macroscopic insulation within the system. In
other words, more than 50% of sites will still have a MI
character. Note, at the 50% threshold of MI to SF sites,
SMI and SSF can change significantly, depending on the local
distribution of clusters. For example, if the system is com-
posed of two large clusters of MI and SF character on the
square lattice, the maximum values of the locality functions
will be

SMI = SSF =
N − 2

√
N

2N
, (13)

which is 0.4899 for a N = 99× 99 lattice. On the other hand,
if there is checkerboard pattern of MI and SF sites, each
site will be surrounded by neighbours with different phases,
resulting in SMI = SSF = 0. A similar result also follows if
the rows/columns on the lattice possess an oscillating MI/SF
character. The wSF ground state phase supports macroscopic
superfluidity, and will therefore be characterised by SSF ≈ 0,
SMI � 0, and P > 0.

The opposite scenario is that of a weak Bose glass (wBG),
which has a majority of sites being in the SF phase, but has
small MI domainswhich prevents a SF percolating through the
full system, meaning the state lacks macroscopic phase coher-
ence. This ground state will then be characterised by SSF � 0,
SMI ≈ 0 and P = 0.

Finally, we note that for the macroscopic SF andMI phases,
the corresponding locality functions will converge towards
SSF = 1 and SMI = 1 respectively. Note, both the wSF and

Figure 2. The red line shows the number of weakly modulated lines
NL as a function of β. The curve has been smoothed to better
illustrate the most prominent features. We also include a background
plot which shows the number of unique values (up to three
significant figures) NV in the energy potential as a function of β.
Several examples of the AA potential are plotted at the bottom of the
figure for visualisation purposes. As expected, NV is minimised
around rational β, but quickly inflates as we approach
quasicrystalline distributions. NL, on the other hand, can either be
peaked or minimised to zero around rational β. However, NL will
remain largely finite across a large range of irrational β.

wBG are not distinct phases from the usual SF or BG, but
are instead used to characterise the prevalence of extended
crossover domains.

3. Weak modulation lines

From equation (3), we can expect weakly modulated domains
to frequently appear in the 2D AA model for a large range of
wavenumbersβ1,2. These domains can act as barriers tomacro-
scopic percolation, and will therefore influence the formation
of extended crossover domains. In order to show that this is
indeed the case, we will consider the relation between the
wavenumbers and the total number of weakly modulated lines.
First, we take a weakly modulated line to be defined when the
difference function d(Y) < 10−2 for a given row/column, and
will consider the limit of β1 = β2 ≡ β. For each row/column
of the potential, we then count the total number of weakly
modulated lines NL that fall below this threshold as a func-
tion of β for a 99× 99 lattice, shown by the line plot in
figure 2. Due to the quasiperiodic nature of the potential, NL

will rapidly oscillate with small changes in β. Importantly,
however, there are many regions at irrational β in which NL

is finite. We also colour regions of the plot according to the
number of unique values NV (to three significant figures) in
the 2D AA potential. As expected, the number of unique val-
ues will be minimised around rational wavenumbers, such as
β = [2/3, 3/4, 4/5 . . .], and the resulting potential will take a
superlattice form.

4. Example phases

In order to better understand the influence of extended
crossover domains, we will now consider the structure of
phases in the wSF and wBG domains on the lattice. First,
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Figure 3. Plots of the order parameters at μ/U = 1.0 and λ/U = 0.15, for different wavenumbers β and tunnelling J/U. Each column
corresponds to a fixed wavenumber and tunnelling J/U of (a) and (d) J/U = 0.004, (b) and (e) J/U = 0.008 and (c) and (f) J/U = 0.004,
where we plot the local (a)–(c) density ρi and (d)–(f) correlation ϕi order parameters. The wavenumber in (b) and (e) corresponds to a
rational wavenumber of β = 5/7, whereas the other wavenumbers are irrational. In the quasicrystalline limits, we see percolating lines of
densities around ρi = 3/2, which indicate an enhanced transition of the local SF clusters.

Figure 4. Plots of the order parameters at μ/U = 0.39 and λ/U = 0.525, for different wavenumbers β and tunnelling J/U. Each column
corresponds to a fixed wavenumber and tunnelling J/U of (a) and (d) J/U = 0.027, (b) and (e) J/U = 0.02 and (c) and (f) J/U = 0.025,
where we plot the local (a)–(c) density ρi and (d)–(f) correlation ϕi order parameters. The wavenumber in (b) and (e) corresponds to a
rational wavenumber of β = 8/11, whereas the other wavenumbers are irrational. In each case, we have BG/wBG phases near the onset of
percolation.

Figure 5. Plots of the order parameters for λ/U = 0.35, with different tilt angles θ. Each column corresponds to a fixed tilt angle, with the
tunnelling and chemical potential given as (a) and (d) J/U = 0.032; μ/U = 0.1, (b) and (e) J/U = 0.022; μ/U = 0.0 and (c) and (f)
J/U = 0.026; μ/U = 0.29. We also denote the local (a)–(c) density ρi and (d)–(f) correlation ϕi order parameters.

we will discuss the case of equal wavenumbers β1 = β2 ≡ β,
which results in the stabilisation of weak modulation lines. For
this case, we can observe both the wSF and wBG phase in
figures 3 and 4, where we have plotted the local density ρi
and order parameter ϕi. In figure 3, we can clearly see the
presence of a wSF phase, in which we have narrow perco-
lating lines of SF states with non-zero ϕ. This kind of phase
has similarities to other kinds of stripped SF phases in mag-
netic systems [59–61] or models with long-range interactions
[62, 63], which also have fluctuating SF order parameters
across the rows or columns of the lattice. In the many-body
2D AA model, these kinds of analogue stripe phases are now
primarily observed in the wSF domain due to the existence
of weak modulation lines in the quasiperiodic potential. The
wBG phase is a little more subtle, but it can be seen in figure 4
that it is possible to have large numbers of sites with non-zero

ϕ that do not percolate through the full system. Figure 4(d) is
a particularly clear example of this.

Next, we now turn to themore general cases of the tilted and
skewed potentials. As we have shown in figure 1, it is also pos-
sible for both the tilted and skewed potentials to exhibit sim-
ilar lines of weak modulation. These domains will of course
no longer form as precise vertical or horizontal lines on the
square lattice, but rather as correlated patches of weak modu-
lation. The strength of modulations across these patches will
be more significant than what is typically observed on the
weak modulation lines, which will therefore affect the stabil-
ity and structure of crossover domains. In figure 5, we show
example phases for the tilted potentials. Here, we can clearly
observe the formation of a wSF phase across diagonal lines
of weak modulation in figure 5(e). Furthermore, the wBG can
also form for certain regimes in figures 5(d) and (f). The phase
in these crossover domains possesses smaller clusters of MI
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Figure 6. Plots of the order parameters for λ/U = 0.35, with different skew angles φ. Each column corresponds to a fixed skew angle, with
the tunnelling and chemical potential given as (a) and (d) J/U = 0.015; μ/U = 0.5, (b) and (e) J/U = 0.01; μ/U = 0.7 and (c) and
(f) J/U = 0.027; μ/U = 0.3. We also denote the local (a)–(c) density ρi and (d)–(f) correlation ϕi order parameters.

Figure 7. Phase diagrams of the 2D AA model for fixed modulation strengths λ/U. Here, we consider (a) λ/U = 0.1, (b) λ/U = 0.15,
(c) λ/U = 0.2, (d) λ/U = 0.35 and (e) λ/U = 0.525. As we increase λ/U, the MI lobes are slowly reduced in extent, leaving behind larger
regions of the BG phase. At strong λ/U, the extruding features appearing from the BG lobes are still persistent. Furthermore, at integer μ/U,
the onset of the SF phase occurs at a small J/U < 0.01, with the wSF denoting regions of weak percolation.

sites across specific diagonal/zig-zag patterns on the lattice,
which will again prevent the onset of SF percolation.

We also consider several example phases for the skewed
potentials in figure 6. For these potentials, the wSF can some-
times appear in a more trivial manner across diagonal regions,
with some examples in figures 6(d) and (e). The wSF phase
in figure 6(e) is a special case in which SF clusters only form
across diagonal lines, giving rise to a 1D structure of the order
parameters. Finally, the wBG can also form with interesting
local properties and patterns of MI clusters, with an example
in figure 6(f).

5. Many-body phase diagrams

5.1. β1 = β2

5.1.1. Extended crossover domains. In figure 7, we plot
phase diagrams for the system as function of J/U and μ/U for
β = 1/

√
2, with different λ/U. We segment the ground state

phase into SF, MI, and BG domains, as has been previously
considered.However,we can nowconfirm the presence ofwSF
and wBG domains for the 2D AA model. The average of the
discrete locality functions, SMI and SSF, are shown in figure 8
for the phase diagrams of figure 7. We also plot additional
boundaries on these phase diagrams, with the red line indi-
cating when SF sites account for more than 50% of the overall
phase, and the black line for the onset of SF percolation. The
average locality functions show that there are domains where
SMI and SSF are non-zero but not unity, meaning that all sites
are not yet surrounded by the same local phase. From these
average locality functions, we can define the wSF and wBG

phases as previously discussed. The presence of the wSF and
wBG phases is far clearer in the case of larger λ/U, shown by
the extended transition in the locality functions in figures 8(b)
and (d). This shows a direct relation between the strength of the
2D AA potential and the presence of the extended crossover
domains,which is highlighted further by the growth of thewSF
and wBG regions in figure 7 for increasing λ/U.

A particularly noteworthy feature in figure 7 is the pres-
ence of lobe-like BG domains, with peculiar extruding fea-
tures of a wBG character. In reference [27], these features
were speculated to form due to the presence of weakly mod-
ulated lines. We can now confirm—through the measurement
of the wBG—that this is indeed the case. The sharp protrud-
ing features of the wBG are due to the support of an insulating
phase from the weakly modulated lines, and such a structure
would most likely be destroyed in a fully disordered system.
We also find that the wSF is stabilised by the weak modulation
lines near integer μ/U. This is due to small SF clusters form-
ing and percolating throughout the system, but with support
from relatively few lattice sites. In appendix B, we also plot
phase diagrams for some of these results at different system
sizes N, which reveals that the extent of crossover domains is
effectively independent from N.

5.1.2. Crossover domains and transition points. Due to the
inhomogeneous nature of the 2D AA model, calculating the
full ground state phase diagrams over large ranges of β would
be inefficient. For the sections that follow, we will instead
focus on the properties which will be most β dependent, i.e.
the crossover domains. Varying β in general can only impact
two of the properties of the system: (i) β can be tuned to a
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Figure 8. Plots of the (a) and (b) SMI and (c) and (d) SSF local measures for the characterisation of crossover domains. Here, we consider the
two phase diagrams in figures 7(b) and (d), which correspond to modulation strengths of (a) and (c) λ/U = 0.15 and (b) and
(d) λ/U = 0.35. The black line in each plot is the percolation transition, while the red line indicates when SF clusters account for more than
50% of the overall state.

quantity commensurate with the underlying lattice, therefore,
away from being a quasicrystal, or (ii) β can alter the appear-
ance/location of the weak modulation lines that support the
crossover domains. In order to study the effects of both sce-
narios, we will consider the behaviour of the BG–SF transition
points at differentμ/U for varying β. Note, that by calculating
transition points at different β, we will of course change the
total density. Here, we do not focus on criticality at fixed den-
sity, and instead use the transition points as measures for dif-
ferences in the structure of crossover domains. We choose two
transition points, which correspond to the lobe-like behaviour
of the BG and stabilisation of a wSF at an integer μ/U = 1,
and the extrusion of the wBG at μ/U = 0.39. It is at these
points of the ground state phase diagram that the presence
of extended crossover domains is particularly pronounced. In
appendix A, we also consider full phase diagrams towards a
flat, commensurate limit of β = 1.

In figure 9(a), we plot the BG–SF transition points as a
function of β. Here, we also include a plot of the average clus-
ter size M from equation (12) in figures 9(b) and (c), which
illustrates structural changes in the distribution of clusters.
Startingwith the red line, whereμ/U = 1,we can immediately
see that the transition points show little variation in this inter-
val, with most JC/U ∼ 10−3. The largest fluctuations occur for
the superlattice limits of the 2D AA potential, which desta-
bilise the lobe-like structure of the BG. This behaviour can be
linked to the underlying structure of wSF or wBG domains,
as observed in figure 3. For quasicrystalline distributions with
irrational β, the local SF clusters account for a very small frac-
tion of the overall phase. Despite this small fraction, the local
SF clusters still percolate due to their formation across weakly
modulated lines. This is in contrast to what is seen for superlat-
tice potentials with rational β, where the SF clusters generally
account for a much larger fraction. The structure of local SF
clusters can take a more crystalline form in these limits, and
may even introduce larger fluctuations to the weakly modu-
lated lines. This short-range order will influence the percola-
tion of local SF clusters, and therefore destabilise the lobe-like
structure observed on the phase diagrams. In figure 9(c), there
are large fluctuations in M at the BG–SF transition point as
we vary β. We find that there are then several distinct sce-
narios for M. First, there are several domains in which M is

Figure 9. Plots of the transition points at fixed chemical potentials
for λ/U = 0.15, showing the (a) JC/U BG–SF transition point and
the corresponding (b) and (c) value of M (which are plotted
individually for visual clarity). For certain β, we also show the
rational fraction above JC/U peaks and on the β grids as vertical
lines. The structure of local SF clusters can be divided into two
distinct regimes based on whether or not JC/U is maximised or
minimised for each μ/U. These then directly correspond to
superlattice and quasicrystalline realisations of the AA potential.

very small. Since there is at least one percolating cluster at the
BG–SF transition point, i.e. a cluster with a size of≈100, this
means that the total number of clusters must be very large in
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Figure 10. Phase diagrams of the 2D AA model for rational wavenumbers β and a fixed modulation strength of λ/U = 0.15. The inset
figures represent small portions of the 2D AA potential. We also express the wavenumber to four decimal places, for comparison with
figure 2. The exact wavenumbers are given as (a) β = 29

41 , (b) β = 5
7 , (c) β = 3

4 and (d) β = 11
13 . For superlattice realisations of the potential

with smaller fluctuations in energy, wSF and wBG phases will appear less frequently on the phase diagrams. Furthermore, it is also possible
to stabilise macroscopic DW order at finite J/U.

order forM to be very small. This also indicates the influence
of crossover domains and the wSF again, as they are typi-
cally characterised by a large, percolating cluster surrounded
by smaller clusters, as per figure 3.We also observe large peaks
of M > 100 at several rational and irrational wavenumbers.
This then corresponds to a phase with very few SF clusters,
which will be extended across the entire lattice.

We also plot the BG–SF transition points for μ/U = 0.39,
which is the blue line in figure 9, corresponding to the extrud-
ing feature for the wBG. Here, we see that this particular fea-
ture is quite sensitive to smaller changes in β. The positions
of the local minima and maxima of JC/U shows several anal-
ogous properties to what was observed previously. For qua-
sicrystalline β, we know that the phase will possess many SF
sites, as per figure 4. Small MI domains across weakly mod-
ulated regions will, however, prevent percolation until a large
JC/U. When considering superlattice potentials, the onset of
short-range order can remove such regions in the system, lead-
ing to a reduction in the JC/U transition point. In figure 9(b),
Mwill also feature similar kinds of rapid oscillations. Around
some of the smaller JC/U,M will also be small, meaning that
there is again a large number of SF clusters. For the irrational
wavenumbers, M is typically larger than 100, implying the
presence of relatively much fewer SF clusters. This also high-
lights the fact that the wBG is typically composed of a vast
number of SF clusters, before they eventually all percolate at
the BG–SF transition point.

Depending on the rational fraction of β in figure 9, we can
also link the structure of crossover domains to the range of
short-range order. Generally speaking, for the smaller numer-
ators/denominators, the transition point will be significantly
shifted from what is seen at irrational β. The reason for this is
due to the absence of long-rangevariations in the on-site poten-
tial. As the numerators/denominators are enlarged towards
irrational limits, we introduce long-range variations to the on-
site energies εi, and hencewe observe less dramatic shifts in the
crossover domains. These properties effectively mimic what is
seen in figure 2 for the number of weakly modulated lines and
unique values. When β is irrational, long-range variations in
energy can allow for the appearance of veryweakly modulated

lines in equation (3) at specific rows and columns. If β is ratio-
nal, then it is possible that the condition in equation (3) may
not be satisfied for any row or column, leading to the absence
of barriers to macroscopic percolation.

5.1.3. Density waves from superlattice potentials. We now
focus on the case of superlattice potentials when β is ratio-
nal, which is an interesting limit of the 2D AAmodel. We plot
the ground state phase diagrams for a number of different ratio-
nal wavenumbers in figure 10.With the superlattice potentials,
it is still possible to observe wSF and wBG phases in certain
regimes, but their domain is severely reduced compared to the
case of quasicrystalline potentials.

Interestingly, for some of the superlattice potentials, we
can also observe the formation of macroscopic DW phases at
finite tunnelling strengths, as shown in figure 10. Similar to
the MI, the DWs are macroscopically insulating and possess
no transport. They will, however, contain non-uniform densi-
ties. Each distinct DW lobe therefore corresponds to a different
non-integer filling of the lattice. The size and structure of DW
lobes and intermediate wBG/wSF phases depends on the ratio-
nal wavenumber and extent of long-range fluctuations. If the
numerator/denominator of β is small, there will only be a few
distinct on-site energies in the 2D AA potential. The number
of distinct DW lobes that appears on the phase diagram will
then also be small, as seen in figures 10(b) and (c). Further-
more, the width of these DW states is comparable to the size of
the MI lobes in J/U. For the larger numerators/denominators
of β in figures 10(a) and (d), fluctuations in on-site energies
will become more pronounced, and the number of unique DW
states will increase. The width of each DW lobe in J/U will
decrease, however, indicating a stronger sensitivity of these
states to particle number fluctuations.

To better illustrate the stability of macroscopic DW order in
the 2D AA model, we plot the average density in figure 11, as
a function of μ/U around a rational wavenumber of β = 3/4,
when J/U = 0 and λ/U = 0.15. Here, we see that when β is
varied between rational and irrational limits, the properties of
theDW states begin to drastically change. Notably,we observe
that long plateaus of average density no longer form in the
DW regions when β starts to become incommensurate with
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Figure 11. Average density as a function of μ/U around β = 3/4,
when J/U = 0 and λ/U = 0.15. All states are insulating for these
parameters. We observe that the average density plateaus in the DW
domains become unstable as we move further away from the
rational limit in β. This is a consequence of the number of unique
values in the energy potential increasing.

the lattice. In other words, the total number of distinct DW
states has significantly increased, but their width inμ/U is van-
ishingly small, giving rise to an almost continuous behaviour
of ρ̄ at J/U = 0. It is important to note that away from the
rational limit of β = 3/4, the number of unique values in the
potential will quickly inflate, as seen in figure 2. The small
width of each DW in μ/U implies that the system will be very
sensitive to particle number fluctuations, and hence why even
small tunnelling strengths can immediately destroy DW order
in these regimes. Similar properties are also observed around
other rational β.

5.2. Tilted potential with β1 = β2

5.2.1. Ground state phase diagrams. In figure 12, we plot
phase diagrams for twomodulation strengthsλ/U over a range
of rotation angles, with inset figures showing the tilted poten-
tial. Startingwith small rotation angles in figure 12,we observe
that the tilted potential no longer stabilises weak modulation
lines, but rather weakly modulated zig-zag patterns on the lat-
tice. The overall structure of the phase diagrams is now far
more reminiscent of those observed in randomly disordered
systems, but now with the underlying phases possessing long-
range order. We do observe regions where the ground state is
a wSF or wBG for larger λ/U, but this is in relatively nar-
row regions for small θ. This is evidence that weak modula-
tion regions and crossover domains are playing a smaller role,
but can still dominate the ground state properties in specific
regions.

As θ increases, the AA potential will generally have less
correlated regions of weak modulation, exaggerating the loss
in observable effects and extended crossover domains. A spe-
cial case is seen for θ = 15◦, where the extruding feature of
the BG reappears on the phase diagram. By inspecting the AA
potential in figure 12(c), it can be seen that there are now diag-
onal lines of weak modulation, which will act as a barrier to
SF percolation. SF clusters can also form on these diagonal
lines, as shown in figures 5(b) and (e). The SF or wSF phase is
not stabilised around integer μ/U, however, since the diagonal
lines are not connected by bonds, and hence no percolation

can occur through them. This again leads to the destruction
of the lobe-like BG pattern on the phase diagram. By further
increasing θ to 30◦ in figures 12(d) and (i), we observe simi-
lar properties to before, with the crossover domains no longer
dominating large regions of the phase diagram.

For larger angles, e.g. θ = 40◦, the crossover domains are
actually enhanced as shown in figures 12(e) and (j). This is
due to the large rotation angles tending the potential towards
a more uniform limit, with large regions of positive/negative
on-site potential connected by extended flat regions; see the
insert of figure 12(e).We also note that for all considered phase
diagrams here, no DW phases are found to be stable at finite
tunnelling strengths.

From these results, we can see that properties of the
crossover domains are strongly dependent on large, correlated
domains of weak modulation. For θ = 0◦, weakly modulated
lines have a significant impact on the percolation of local SF
clusters. When considering tilted potentials, we generally can
no longer form regions of weak modulation across the entirety
of the lattice. Even if smaller domains of weak modulation
exist, these are connected by paths of stronger modulation, as
is the case for the zig-zag patterns in figure 12(b). For smaller
rotations, we can still observe differences in the formation of
extended crossover domains, which is a consequence of these
weakly modulated patterns influencing local SF percolation.
For different system sizesN, we also observe equivalent results
in appendix B.

5.2.2. Crossover domains and transition points. As we have
seen, the study of J/U transition points atμ/U = 1 andμ/U =
0.39 have been very importantmeasures in the characterisation
of extended crossover domains. In figure 13, we again plot the
BG–SF transition points in J/U and the correspondingM for
a range of tilt angles θ. Here, we immediately observe sev-
eral profound differences to what has been seen previously.
First, the transition point at μ/U = 1 quickly rises for small
rotations and oscillates around J/U = 0.008 for the majority
of θ, which implies that the lobe-like structure of the BG will
be partially destroyed. This is to be expected from the previ-
ous phase diagrams. Compared to the transition points with no
rotations, there are no significant fluctuations in JC/U for the
majority of tilt angles. As we approach θ = 45◦, the transition
point will slowly decrease towards 0, indicating the return of
weakly modulated domains. At θ = 45◦, it can be seen that
there is a sudden jump in the transition points. The reason for
this can be inferred from the quasicrystalline distribution. Tak-
ing θ = 45◦, the 2D AA potential reduces to a flat distribution.
The transition points at θ = 45◦ are therefore those of the dis-
order free system at an effective chemical potential of μ− 2λ.
The behaviour of M in figure 13(b) at the transition point is
also different from what was observed previously. For small
tilt angles,Mwill oscillate around small, but finite values. For
θ > 8◦, M will eventually be minimised around 0, implying
the presence of amuch larger number of SF clusters throughout
the system. As we approach the flat, commensurate potential
at θ = 45◦,Mwill slowly begin to increase since the structure
of clusters will become more uniform.
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Figure 12. Phase diagrams of the tilted 2D AA model, for different rotation angles θ. Here, we consider fixed modulation strengths of
(a)–(e) λ/U = 0.15 and (f)–(j) λ/U = 0.35, with the inset figures representing small portions of the 2D AA potential. Each column
represents a fixed rotation of (a) and (f) θ = 0◦, (b) and (g) θ = 5◦, (c) and (h) θ = 15◦, (d) and (i) θ = 30◦, (e) and (j) θ = 40◦. The BG
will generally lose the lobe-like structure at finite θ, but several unique features can still be observed due to patterns of weak modulation.

Figure 13. Plots of the transition points at fixed chemical potentials
for λ/U = 0.15, showing the (a) JC/U BG–SF transition point and
the corresponding (b) value of M. The transition points remain
stable for a large range of θ. As θ→ 45◦, the potential becomes
more crystalline/uniform, which shifts transition points due to the
formation of more uniform SF clusters.

At μ/U = 0.39, the BG–SF transition points also show
significant differences. As before, the extruding feature effec-
tively vanishes, and the transition point will remain stable at
J/U = 0.04 for most of the tilt angles. Curiously, however, at
θ = 15◦, the extruding feature does return for a small range of
tilt angles. The reason for this change is due to the existence of
diagonal weakly modulated lines, as shown in figure 12(c). As
we approach the limit of θ = 45◦, the transition point slowly

increases, before another sharp changewhen the 2DAA poten-
tial becomes more uniform. The tilted potentials substantially
impact the formation and structure of crossover domains in
the 2D AA model, but importantly do not completely destroy
them. By inspecting the M in figure 13(b), we can observe
analogous properties to before. M will also be minimised to
zero formost θ, apart form θ = 15◦ and near the commensurate
limit of θ = 45◦ due to the reasons discussed previously.

5.3. Skewed potential with β1 �= β2

5.3.1. Ground state phase diagrams. In figure 14, we plot
phase diagrams and potentials for two modulation strengths
λ/U, over a range of skew angles φ. From these, we can
see comparable results to what has been found with the tilted
potentials. Starting with a skew angle of 40◦ in figures 14(b)
and (g), the AA potential forms similar looking zig-zag pat-
terns of weak modulation. This will generally destabilise the
lobe-like structure of the BG, and remove the extruding fea-
tures. As before, the wSF and wBG phases will become
less pronounced, highlighting changes to the percolation of
local SF/MI clusters. However, we do observe that the wSF
and wBG phases are more robust for stronger AA potential
strengths. This is also reflected in the structure of crossover
domains, as seen in figures 6(a) and (d).

For φ = 30◦ in figures 14(c) and (h), we have a special case
that has one rational and one irrational wavenumber, leading
to a potential with lines of constant εi along the diagonals. Dif-
ferent clusters of phases will, therefore, only form across these
diagonals, as per figures 6(b) and (e). This results in a phase
diagram that possesses quite a different structure from what
has been seen previously. For instance, the BG now has mul-
tiple smaller lobes at certain μ/U. The wSF shows even more
profound differences due to the unique characteristics of this
potential. Effectively, in this scenario, the wSF is a measure of
a 1D MI–SF transition in the 2D structure. Furthermore, we
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Figure 14. Phase diagrams of the skewed 2D AA model, for different skew angles φ. Here, we consider fixed modulation strengths of
(a)–(e) λ/U = 0.15 and (f)–(j) λ/U = 0.35, with the inset figures representing small portions of the 2D AA potential. Each column
represents a skew angle of (a) and (f) φ = 45◦, (b) and (g) φ = 40◦, (c) and (h) φ = 30◦, (d) and (i) φ = 25◦, (e) and (j) φ = 5◦. The results
share many similar properties those in figure 12, with weakly modulated regions still giving rise to unique features on the phase diagrams.

also note that the number of unique values in the potential is
comparable to the lattice side length due to the diagonal lines
of constant εi, leading to the appearance of DW states at finite
tunnelling strengths around J/U ≈ 10−2.

At several of the intermediate skew angles, we also see
phase diagrams comparable to figures 12(d) and (i) and ran-
domly disordered systems. Interestingly, the wSF can be sta-
bilised across a larger set of chemical potentials, away from
the BG domains. Finally, as φ→ 0◦, the potential will again
becomemore crystalline and uniform, similar to what was seen
in figures 12(e) and (j) but now with a diagonal, effectively
1D, form. Similar results are also observed in appendix B for
different system sizes N.

5.3.2. Crossover domains and transition points. Here, we
will again plot how certain J/U transition points and M are
influenced across a full range of φ in figure 15. From these
results, we observe some very immediate similarities to what
was seen with the tilted potentials. Moving away from φ =
45◦, the lobe-like structure and extruding features of the BG
are again destroyed, and the transition points remain stable
across the majority of φ. This is to be expected, as the skewed
potentials will also no longer stabilise precise lines of weak
modulation throughout the lattice. As we approach φ = 0◦,
both transition points will start decreasing towards a fixed
value, before a sudden jump. This behaviour is again due to
the emergence of crystalline properties within this interval,
with a flat distribution of on-site energies at φ = 0◦. We finally
note that both the skewed and tilted potentials share many
similar properties and features on the phase diagrams. This is
due to the fact that both kinds of potentials can stabilise simi-
lar kinds of weakly modulated zig-zag patterns on the lattice,
which allows for the formation of extended crossover domains.
Finally, in figure 15(b), the properties ofM at these transition
points also mimics the behaviour of figure 13(b).

Figure 15. Plots of the transition points at fixed chemical potentials
for λ/U = 0.15, showing the (a) JC/U BG–SF transition point and
the corresponding (b) value of M. The transition points are again
stable for a large range of φ. As φ→ 0◦, the potential becomes more
crystalline/uniform, which shifts transition points due to the
formation of more uniform SF clusters.

6. Conclusions

In summary, we have shown the presence of intriguing
crossover domains in the many-body 2D AA model. The dis-
covery of these extended crossover domains complements
the prior findings of reference [27], and reveals the presence
of wSF and wBG regions across a wide regime of parame-
ters. The AA potential is markedly distinct from randomly
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disordered systems, as it may permit the formation of large,
correlated domains that possess weak modulation. These
domains can then act as barriers to macroscopic superfluid-
ity and insulation, with the long-range order playing a key role
in the percolation of MI and SF clusters throughout the lat-
tice. This can dramatically shift transition points, with themost
striking feature being the appearance of BG lobes with sharp,
wBG extrusions, which we have now confirmed to exist across
a wide range of quasicrystalline distributions. At integer μ/U,
the insulating behaviour of the BG is destroyed through the
percolation of small SF clusters, resulting in a wSF phase. We
have also linked the appearance of these features to changes in
the underlying structure of phases in the crossover domains. In
particular, we find that local SF clusters are either the major-
ity or minority of the phase at irrational wavenumbers, due to
localisation across precise lines of weak modulation.

By considering more general AA potentials, we have also
shown that unique properties of the crossover domains can still
be observed, provided that there are smaller domains of weak
modulation. If these domains do not exist in the 2D AA poten-
tial, we actually find results comparable to those in randomly
disordered systems, but with local structures now possessing
long-range order.

Furthermore, we have also studied the importance of long-
range variations within the on-site potential in stabilising
extended crossover domains. At the superlattice limits of the
2D AA model, there is a small number of unique values in
the energy distribution, which implies the presence of both
short- and long-range order. As a result, the percolation and
transition of crossover domains will become more correlated
and uniform, leading to greater shifts in the transition points.
On a global scale, phase boundaries can dramatically change,
and DW phases at finite tunnelling strengths can also form. On
the other hand, when we consider rational wavenumbers that
approach quasicrystalline distributions, the influence of long-
range variations in on-site energy becomes clear. The number
of unique values in the energy distribution will be comparable
to the total number of lattice sites, leading to the formation of
much fewer regions of weak modulation that stabilise SF per-
colation. The number of unique DW states will also be vast,
and possess a strong sensitivity to particle number fluctuations.

During the review of this manuscript, a complementary
study was also performed on the 2D AA model [64]. Part of
the study in reference [64] introduced random phase fluctua-
tions in equation (2), and confirmed that very similar wSF and
wBG domains can still be observed.
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Appendix A. Crossover domains towards the
crystalline limit

In this appendix, we will briefly consider the influence of
crossover domains as we approach a crystalline limit of the
2D AA model. We will take β1 = β2 ≡ β, and plot full phase
diagrams towards β = 1. In figure A1, we plot these regions
for different cases of β, with the insets figures showing a
small portion of the 2D AA potential for reference. Here, we
generally see very similar behaviour and properties to what
is observed in figure 7, with the BG retaining its lobe-like
structure for a wide range of wavenumbers. The wSF remains
localised around integer chemical potentials, highlighting the
stability of weakmodulation lines in forming local SF clusters.
Furthermore, the wBG remains localised to the sharp extrud-
ing feature of the BG. As we approach β = 1 in figures A1(c)
and (d), the potential will begin to take a larger and more reg-
ular form on the lattice. Despite this, the BG will still maintain
its lobe-like appearance, and may even further destabilise the
MI for β → 1, giving rise to a triangular structure on the phase
diagram.We also observe that the extruding features emerging
from the overall BG lobe are persistent for a range of β, with
the wBG forming across similar regions throughout.

Appendix B. System size scaling

Here,wewill briefly consider finite-size scaling effects for sev-
eral of the results presented in this paper. First, in figure B1,
we consider a set of phase diagrams for equal wavenumbers
β1 = β2 ≡ β. We consider the results in figures 7(b) and (d)
for different lattice sizes, with each column of figure B1 denot-
ing a different system size N. We observe only minor fluctua-
tions in the transition points for each system size, with the most
significant deviation being the absence of an extended wBG
domain in figures B1(d), (e), (i) and (j). The reason for this has
been covered in prior work [27], and it is due to the absence of
specific lines with weaker modulation in smaller lattices. Note,
while the weakest modulation lines are not observed in the
smaller 2D AA potentials, they can in fact be shifted back into
the system via phase factors in equation (2). Thiswould restore
the extended wBG domain, even for the smaller systems. Fur-
thermore, these results also complement the recent findings of
reference [64], which were published during the review of this
article. One of the models considered in reference [64] studies
the same 2D AA potential we use in this paper, but with ran-
dom phase fluctuations in equation (2). Their findings closely
match the results of this paper, and also confirm that there is
very little system size dependence of the BG–SF transition
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Figure A1. Phase diagrams of the 2D AA model for different irrational wavenumbers β, at a fixed modulation strength of λ/U = 0.15. The
inset figures represent small portions of the 2D AA potential. We also express the wavenumber to four decimal places, for comparison with
figure 2. The exact wavenumbers are given as (a) β = 2
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3 . The BG retains a lobe-like
structure across a large range of irrational wavenumbers due to the presence of weakly modulated lines. When β → 1, the potential takes a
more regular and crystalline form.

Figure B1. Phase diagrams of the 2D AA model for fixed modulation strengths (a)–(e) λ/U = 0.15 and (f)–(j) λ/U = 0.35. Here, we
consider different system sizes of (a) and (f) N = 99 × 99, (b) and (g) N = 77× 77, (c) and (h) N = 55× 55, (d) and (i) N = 33× 33,
(e) and (j) N = 11× 11. We observe minor fluctuations in the transition points for different system sizes, which are attributed to the absence
of certain lines of weak modulation.

Figure B2. Phase diagrams of the 2D AA model for a fixed modulation strength of λ/U = 0.35, considering the (a)–(e) tilted potential with
θ = 5◦ and the (f)–(j) skewed potential with φ = 40◦. Here, we plot the different system sizes of (a) and (f) N = 99× 99, (b) and
(g) N = 77 × 77, (c) and (h) N = 55 × 55, (d) and (i) N = 33 × 33, (e) and (j) N = 11 × 11. Minor fluctuations are again observed, with
the growth of DW domains at smaller N.
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points for the case of equal wavenumbers β1 = β2 ≡ β. We
would also like to mention some other fluctuations to the tran-
sition points, which can be seen by growth of DW domains
for the smaller system sizes. As discussed in our results, DW
order is stabilised when there are very few distinct on-site ener-
gies present in the AA potential. For the smaller systems, there
will of course be a smaller sampling of these on-site energies,
which therefore enhances DW order at very small J/U.

Finally, we also plot a set of phase diagrams for the tilted
and skewed potentials over different system sizes in figure B2,
using the parameters of figures 12(g) and 14(g). We again find
that there are no significant changes between the different sys-
tem sizes. Since there are no precise lines of weak modulation
in the system, we observe no significant changes in structure to
the crossover domains. The DW regionswill, however, slightly
grow in size due to the reasons discussed previously.
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