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Abstract
We report studies of controlled interactions of localised dissipative structures in a systemdescribed by
theAC-driven damped nonlinear Schrödinger equation (equivalent to the Lugiato–Lefevermodel).
Extensive numerical simulations reveal a variety of interaction scenarios that are governed by the
properties of the systemdriver, notably its gradients. In our experiments, performedwith a nonlinear
opticalfibre (Kerr) resonator, the phase profile of the driver is used to induce interactions of the
dissipative structures on demand.We observe bothmerging and annihilation of localised structures,
i.e. interactions governed by the dissipative, out-of-equilibriumnature of the system. These
interactions fundamentally differ from those typically found for conventional conservative solitons.

1. Introduction

Localised structures coexistingwith a homogeneous background are ubiquitous phenomena in extended
dissipative systems driven far from equilibrium. These structures consist of solitary excitations thatmanifest
themselves as electrical pulses in nerves [1], concentration spots in chemical reactions [2, 3], oscillons inwater
waves [4, 5] and in granularmatter [6, 7],filaments in gas discharges [8, 9], patches and fairy circles in vegetation
[10, 11], or feedback and cavity solitons in nonlinear optics [12–18].More generally, they are referred to as
localised dissipative structures (LDSs) or dissipative solitons [19, 20].

Like other solitons, LDSs can interact and collide with each other, sometimeswith particle-like
characteristics. Butwhile conventional solitons of conservative integrable systems always emerge unscathed
from collisions [21], LDSs can formbound states,merge into one, or even annihilate [20]. These complex
interactions arise from the non-integrability of nonlinear dissipative systems, and their study is of particular
interest to better understand systems outside thermal equilibrium.Merging and annihilation of solitons have
been extensively studied experimentally in non-integrable conservative systems,mostly with optical waves [22–
27], but also,more recently, withmatter waves [28]. In contrast, although several authors have reported complex
behaviours of ensembles of LDSs in various settings, experimental observations have been uncontrolled and
mostly qualitative (see, e.g. [6, 7, 20]). It is only in gas discharges [29] and in vertically driven fluids [5] that
quantitativemeasurements of the interaction laws have been obtained, with [5] also resolving themerging
dynamics. These two latter examples are realisations of, respectively, a reaction-diffusion system and a
parametrically driven damped nonlinear Schrödinger equation (NLSE)near the 2:1 resonance.

Here we report on a detailed numerical and experimental study of controlledmerging and annihilation
dynamics of LDSs in a systemdescribed by anAC-driven dampedNLSE near the 1:1 resonance. Experiments are
performed in a nonlinear opticalfibre (Kerr) resonator, inwhichwe can excite LDSs at selected and precise
positions, and systematically induce their interactions. The interactions are triggered bymanipulating the phase
profile of the driver; the outcome controllably depends on the driving frequency and strength. Two LDSs either
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merge into one, or annihilate each other. In both cases, we temporally resolve the collision dynamics and clearly
observe the dissipative nature of the interaction through analysis of the energy balance.

2.Model equations andnumerical simulations

To better illustrate our experimental findings, we start our discussion by presenting numerical results. In
dimensionless form, theAC-driven dampedNLSE reads

Si i i e . 1t xx
t2 i∣ ∣ ( )Y + Y Y + Y = - Y + D

This equation represents in our case themean-field behaviour of a Kerr resonator [30–32], but is also the small
amplitude limit of the AC-driven sine-Gordon equation [33, 34]. It has applications in non-equilibrium systems
ranging fromplasma physics [35] to Josephson junctions [36], highlighting the general applicability of our study.
The equation can be cast into an autonomous formby substitutingΨ(t, x)=ψ(t, x) eiΔt

Si i i 2t xx
2∣ ∣ ( )y y y y y y+ + = - + D +

whichwill be used throughout ourwork. This form is also referred to as the Lugiato–Lefever equation
(LLE) [30].

Depending on the driving strength S and its frequencyΔ, equation (2) exhibits a range of solutions, which
have been extensively investigated [30–34]. Briefly, the simplest steady-state ( 0ty = ) solutions are
homogeneous (ψx=0), and they satisfy thewell-known cubic steady-state equation
X Y Y Y2 13 2 2( )= - D + D + with X S 2∣ ∣= and Y 2∣ ∣y= . The steady-state curve (Y versusX) is single-
valued for 3D < , whereas for 3D > it assumes an S-shaped hysteresis cycle with three possible states. The
latter range is ofmore relevance to our experimental configuration [16, 17], and thus the focus of ourwork.Only
the upper and lower states that exist for 3D > are homogeneously stable (bistability): the intermediate,
negative slope, branch is unconditionally unstable. The upper branch exhibits however a Turing-pattern
instability (also known asmodulation instability)with respect to inhomogeneous perturbations, which can lead
to the formation of a stationary periodic pattern [30]. The lower branch only exhibits such instability close to the
folding point for a very small range of parameters (Y>1 and 3 2< D < ) but is otherwise stable. LDSs can
manifest themselves under conditions of coexistence of a patterned solution and a stable homogeneous solution.
They can be understood to coincidewith the patterned solution over a finite region in x, andwith the
homogeneous lower-state solution elsewhere [37].

We are interested in the dynamics that take placewhen two LDSs collide. Unlike conservative solitons,
widely separated LDSs of the AC-drivenNLSE (or LLE) are phase-locked to the driver, and thus all of them
possess identical traits (for givenX andΔ), including frequency (Δ) and velocity. Accordingly, unassisted
collisions occur only when two LDSs are sufficiently close to interact attractively [38, 39], yet such interactions
are difficult to explore controllably. Inducing collisions by suitablymodulating the phase of the driver [40–42]
addresses that issue. Specifically, given S x S xexp i0( ) [ ( )]f= , an LDS at xL willmove towards the local
maximumoff(x)with a drift velocity of x t xd dL L( )f= ¢ [43, 44]. A collision is thus observedwhen exciting,
for example, two LDSs on opposite sides of a localmaximumoff(x) [42].

To illustrate such induced collisions, we numerically integrate equation (2)using the split-step Fourier
method.We assume aGaussian driver phase profile x x x0 exp 2

0
2( ) ( ) ( )f f= - . To create LDSs symmetrically

distributed about the phasemaximumat x=0, we use the initial condition

x x x x x0, 2 sech sech . 3L L( ) [ ( )] [ ( )] ( )⎡⎣ ⎤⎦y = D D - + D +

The initial LDS separation 2xL=70 is chosen to bemuch larger than their characteristic width ( 1~ D) [32–
34, 45] so as to avoid any interactions during the transients leading to the LDS formation. Figures 1(a) and (b)
show typical results for two different sets of driver frequencyΔ and strength S0, as listed in the caption, andwith
f(0)=0.5 rad and x0=30. These parameters are chosen to replicate our experiments. Note that the
homogeneous background onwhich the LDSs are superimposed is only just visible infigures 1(a) and (b)
because of its small level,Y∼0.5. For clarity, the figures neglect the initial portion of the simulation (which lasts
formore than t= 1700), duringwhich the two LDSs slowly approach each other from their initial separation
of2xL=70. In both cases, it can be seen that the LDSs drift towards each other until they are close enough to
interact. The outcome of the collision is, however,markedly different. Indeed, for [Δ, S0]=[2.91, 1.87] the two
LDSmerge into one (figure 1(a)), while for [Δ, S0]=[3.64, 2.10] the intracavity field after the interaction is
globally reduced to the homogeneous solution, i.e. the two LDSs annihilate one another (figure 1(b)).

It is apparent that the interactions depend on the parameters of the driver. This has been numerically
explored further by systematically varying our four control parameters,Δ, S0,f(0), and x0, over awide range.
We have found thatΔ and S0mainly govern the outcome of the collision, while the phasemodulation
parametersf(0) and x0mostly determine the speed at which the LDSs approach each other, i.e. set the timing of
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the collision. Infigure 2, we summarise the numerically observed outcome of the interaction as a function of S0
andΔ for the same driver phasemodulationf(x) as above. As can be seen,merging (green) and annihilation
(blue) occur in clearly distinct, but adjacent, regions. For a given driving strength S0, the system favours
annihilation overmerging at higher driving frequencies. This can be related to the closer proximity to the folding
point at S 8c

2
0

2∣ ∣pD ~ , beyondwhich LDSs cease to exist in this system [33]. Interestingly, in the areamarked
‘bound states’ no collision occurs. Instead, the two LDSs form a stable bound state [38, 46–49]: repulsive
interactions of the LDSs resist the drift induced by the driver phasemodulation. Not surprisingly, this region
slightly grows at the expense of the ‘merging’ regionwhen a shallower phasemodulation is used (themerging/
annihilation boundary ismostly unaffected). In the grey region, labelled ‘breathing’, the individual LDSs exhibit
breathing as a result of an underlyingHopf bifurcation [34]. Their interaction can lead either tomerging or
annihilation, depending on the phase of their breathing at the onset of the collision. The bound-state and
breather regimeswill not be further discussed here because experimental limitations currently prevent us from
observing them.We also note that there exists other systemswith overall similar phenomenology, such as those
described byGinzburg–Landau equations, including e.g.fibre lasers [46, 50].

Experimental realisation

Wenowdescribe our experimental configuration, implemented in the optical domain. Specifically, we induce
controllable LDS interactions in a coherently driven passive optical fibre resonator that exhibits instantaneous
Kerr nonlinearity. In the high-finesse limit, this system is known to be governed by the LLE (2), withψ (t, x)
representing the slowly varying envelope of the electric field [31]. The LDSs of suchKerr resonator have been
observed experimentally before and are usually referred to as temporal cavity solitons [16–18]. These are pulses
of light that continuously circulate in the resonator, yet remain stationary in a reference frame that ismoving at

Figure 1.Numerically simulated dynamics of induced LDS interactions forf(0)=0.5rad and x0=30. In (a) [Δ, S0]=[2.91, 1.87]
and two LDSsmerge into one; in (b) [Δ, S0]=[3.64, 2.10] and two LDSs annihilate one another.

Figure 2.Results fromnumerical simulations illustrating the outcome of LDS interactions as a function of driving frequencyΔ and
strength S0 for 0 0.5 rad( )f = , and x0=30. Each solid dot represents a distinct simulation.No LDSs exist in thewhite-colour coded
area.
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the group velocity of the driving light in the fibre. The transverse coordinatex in equation (2) is thus a ‘fast-time’
x t that is defined in such a reference frame and that allows to describe the temporal profile of thefield
envelope. In contrast, t is a ‘slow-time’ that describes changes in the field envelope over consecutive roundtrips
around the resonator. The normalisation is such that dimensional time-scales τ′ and t′ (units of s) and the
electric field envelope E t ,( )t¢ ¢ (units of W1/ 2) are related to the dimensionless variables in equation (2) by [16]

t
t

t L
E

L
,

2
, . 4

R 2∣ ∣
( )a t t

a
b

y
g
a

=
¢

= ¢ =

Here tR is the roundtrip-time of the resonator,α is equal to half the percentage of total power loss per round-
trip, L is the resonator length, andβ2 (< 0) and γ are, respectively, the anomalous group-velocity dispersion and
Kerr nonlinearity coefficients of thefibre. The driving strengthS0 is related to the power Pin of the continuous-
wave (cw) laser driving the resonator as S P L0 in

3 1 2( )g q a= , where θ is the intensity transmission coefficient of
the coupler used to inject thefield into the resonator. Finally,Δ characterises the frequency detuning of the cw
driving laser atω from the closest resonator resonance at t,0 R 0( )w w w aD - .

A detailed schematic of our experimental setup is shown infigure 3.Overall, it is similar to the ones used in
[44, 51]. Note that these two previous studies were concernedwith themanipulation of widely separated
solitons, that were fully independent fromone another; here in contrast we use similar tools to induce and study
collisions of LDSs, i.e. a configuration inwhich solitons are closely interacting. As a coherent driver, we use a
narrow linewidth cw laser at 1550nmwavelength, which is amplified up to 1.14Wusing an erbium-doped fibre
amplifier (EDFA) before being coupled into the resonator by a 90/10 fibre coupler (θ=0.1). Noise accumulated
during the amplification stage ismostly removedwith an optical band-passfilter (BPF). The resonator is
composed of 100mof standard silica single-mode fibre (SMF), withβ2=−21.4 ps2 km−1 and γ=1.2
W−1 km−1. It also incorporates an optical isolator to prevent resonance of stimulated Brillouin scattering
radiation, and a 99/1 fibre coupler throughwhich the intracavity dynamics aremonitoredwith a fast
photodiode and a real-time oscilloscope. The overallfinesse of the resonatorwasmeasured to be

21.5 p a= ~ . The BPF at the 1%output filters out the homogeneous cwbackground that coexists with the
LDSs, thereby improving the signal-to-noise ratio of our data [16]. The resonance frequencies of our optical
fibre ring generally exhibit fluctuations due to environmental perturbations. Tomaintain afixedΔ, we therefore
actively actuate the driving laser frequency to follow any changes in the resonances, by locking to a set level the
optical power reflected off the resonator input [16, 17, 44]. Changing the lock point allows us to controllably
adjustΔ, but we remark that the accuracywithwhichwe can do so is insufficient to explore the formation of
bound states since theymanifest themselves over a narrow range of driver frequencies (seefigure 2). In this
context, we also note that, with our current configuration, we are unable to reach power levels required to
explore interactions of breathing LDSs.

To controllably induce LDS interactions, we phasemodulate the resonator driving fieldwith a 10 GHz
electro–opticmodulator. Themodulator is driven by one of two 10 GHz programmable pattern generators,

Figure 3.Experimental setup. cw: continuous-wave, EDFA: erbium-doped fibre amplifier, BPF: band-pass-filter, SMF: single-mode
fibre.
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selectedwith an electronic switch. The pattern generators are synchronised to each other by a single external
clock, such that the repetition rate of their output patterns is identical to the resonator free-spectral range. The
first generator (left infigure 3) is configured to produce a pattern of two 130 ps full-width-at-half-maximum
electronic pulses with 200 ps separation. These are fed to the phasemodulator in the initial stage of the
experiment. During that stage, wemechanically perturb the resonator, which results in the direct excitation of
two LDSs at the two phasemaxima [51]. After the LDSs are stably formed and trapped at themaxima [44], we
activate the electronic switch and the phasemodulator feed is abruptly changed (within a few nanoseconds) to
the output of the second pattern generator. That generator is set to produce a patternmade up of a single pulse
whose delay is adjusted to lie halfway between the two pulses generated by the first generator. Accordingly, the
LDSs in the resonator find themselves approximately symmetrically positioned about the new singlemaximum
of the phase profile. As in the simulations offigure 1, the LDSs thus start drifting towards thatmaximum,
interacting once sufficiently close to each other. Note that the newdriver phase profile takes a few photon
lifetimes (∼1μs) to get imprinted inside the resonator after the switch, but that transient is negligible compared
to the time it takes for the LDSs to collide/interact. Also, we have carefully verified that the∼0.5rad phase
modulation amplitude used in our experiments is small enough for the abrupt switch in phase profile not to
directly excite or erase LDSs as in [51].

The temporal intensity profile of the intracavity lightmeasured at the 1%output of the resonator is recorded
every second by the oscilloscope (triggered by the pattern generators). Typical results are shown infigures 4(a)
and (b) as density plots representing vertical concatenations of successive recordings that have been obtained for
[Δ, S0]=[2.91, 1.87] and [3.64, 2.10], respectively. Thefirst 10s of themeasurements are very similar: two
LDSswith 200 ps separation are stably trapped at themaxima of the phase pulses defined by thefirst pattern
generator. After switching to the single phase pulse pattern (which occurs at t;10 s) and inducing the LDS
interaction, a single LDS is seen to remain for [Δ, S0]=[2.91, 1.87]while both disappear when [Δ, S0]=[3.64,
2.10]. These results are strongly indicative ofmerging and annihilation, which is in agreement with numerical
simulations. Indeed, the simulation results infigure 1 use the very same parameters as the experiments here. Yet,
these results are limited by the slow 1 frame per second acquisition rate of the oscilloscope, which hinders direct
interpretation.

To clearly establish the origin of the observed dynamics, we have recorded the roundtrip-by-roundtrip
evolution of the intracavity energy on the real-time oscilloscope. Typical experimental results formerging and
annihilation are shown as red circles infigures 4(c) and (d), respectively. Here we have normalised the energy
such that a single isolated LDS carries an energy of 1 in arbitrary units. The results unambiguously reveal the
dissipative nature of the interactions: for [Δ, S0]=[2.91, 1.87] the energy falls from two to one, implying
merging; for S, 3.64, 2.100[ ] [ ]D = the energy falls from two to zero, implying annihilation. Note that for the
sake of clarity we only show short 50 μs long segments of the overall evolutions duringwhich the interaction
dynamics take place. These segments were recorded approximately 5ms after the electronic switch controlling
the phasemodulation feedwas activated.We note that this large delay further highlights that our results cannot
be explained in terms of direct LDS erasure (and excitation) by the abrupt switch in phase profile. Indeed, such
dynamics typically occur in less than 100 μs, i.e. two orders ofmagnitude faster [51]. In fact, the 5msdelay
agrees well with the time expected for the LDSs to drift sufficiently close to each other to interact, as confirmed by

Figure 4. (a), (b)Experimental density plots showing the evolution of the intracavity temporal intensity profile as two LDSs (a)merge
into one, and (b) annihilate each other. The successive traces are recordedwith a real-time oscilloscope at 1frame s−1. (c), (d)The
roundtrip-to-roundtrip evolution of the total intracavity energy during LDS (c)merging and (d) annihilation. The experimental data
is represented by red circles, and results fromnumerical simulations are shown as blue solid lines.
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full numerical simulations of our experiment with equation (2) and that predict a 6.1ms (5.8 ms)delay for
merging (annihilation), respectively. (Small discrepancies can be attributed to experimental uncertainties.)As a
final confirmation, infigures 4(c) and (d)we also plot, as blue solid lines, the energy evolutions extracted from
the numerically simulatedmerging and annihilation events shown in figure 1 (post-processed to take into
account the BPF at the resonator output). The outstanding agreement clearly confirms thatmerging and
annihilation of LDSs occur in our experiment.

3. Conclusions

Wehave demonstrated, to the best of our knowledge, the first example of experimentally controlled interactions
of LDSs.Our study also provides thefirst quantitative analysis of such interactions in anAC-driven nonlinear
Schrödinger system, andmore generally, in any nonlinear dissipative systemnear the 1:1 resonance.We have
numerically identified a diversity of interaction scenarios for different parameters of the systemdriver.
Experiments performed in an optical resonator showunequivocal evidence of possible selection of LDS
interaction by the operator frommerging to annihilation and paves theway to similar controlled experiments in
other systems [52]. These soliton interactions are fundamentally different from their counterparts in
conservative integrable systemswhere localised structures typically tunnel through each other. Controllable
outcome of the interaction process could potentially find application in the coding of optical signals in optical
information processing and communications.
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