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Abstract

We report studies of controlled interactions of localised dissipative structures in a system described by
the AC-driven damped nonlinear Schrodinger equation (equivalent to the Lugiato—Lefever model).
Extensive numerical simulations reveal a variety of interaction scenarios that are governed by the
properties of the system driver, notably its gradients. In our experiments, performed with a nonlinear
optical fibre (Kerr) resonator, the phase profile of the driver is used to induce interactions of the
dissipative structures on demand. We observe both merging and annihilation of localised structures,
i.e. interactions governed by the dissipative, out-of-equilibrium nature of the system. These
interactions fundamentally differ from those typically found for conventional conservative solitons.

1. Introduction

Localised structures coexisting with a homogeneous background are ubiquitous phenomena in extended
dissipative systems driven far from equilibrium. These structures consist of solitary excitations that manifest
themselves as electrical pulses in nerves [ 1], concentration spots in chemical reactions [2, 3], oscillons in water
waves [4, 5] and in granular matter [6, 7], filaments in gas discharges [8, 9], patches and fairy circles in vegetation
[10, 11], or feedback and cavity solitons in nonlinear optics [ 12—18]. More generally, they are referred to as
localised dissipative structures (LDSs) or dissipative solitons [19, 20].

Like other solitons, LDSs can interact and collide with each other, sometimes with particle-like
characteristics. But while conventional solitons of conservative integrable systems always emerge unscathed
from collisions [21], LDSs can form bound states, merge into one, or even annihilate [20]. These complex
interactions arise from the non-integrability of nonlinear dissipative systems, and their study is of particular
interest to better understand systems outside thermal equilibrium. Merging and annihilation of solitons have
been extensively studied experimentally in non-integrable conservative systems, mostly with optical waves [22—
27], but also, more recently, with matter waves [28]. In contrast, although several authors have reported complex
behaviours of ensembles of LDSs in various settings, experimental observations have been uncontrolled and
mostly qualitative (see, e.g. [6, 7, 20]). It is only in gas discharges [29] and in vertically driven fluids [5] that
quantitative measurements of the interaction laws have been obtained, with [5] also resolving the merging
dynamics. These two latter examples are realisations of, respectively, a reaction-diffusion system and a
parametrically driven damped nonlinear Schrédinger equation (NLSE) near the 2:1 resonance.

Here we report on a detailed numerical and experimental study of controlled merging and annihilation
dynamics of LDSs in a system described by an AC-driven damped NLSE near the 1:1 resonance. Experiments are
performed in a nonlinear optical fibre (Kerr) resonator, in which we can excite LDSs at selected and precise
positions, and systematically induce their interactions. The interactions are triggered by manipulating the phase
profile of the driver; the outcome controllably depends on the driving frequency and strength. Two LDSs either
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merge into one, or annihilate each other. In both cases, we temporally resolve the collision dynamics and clearly
observe the dissipative nature of the interaction through analysis of the energy balance.

2. Model equations and numerical simulations

To better illustrate our experimental findings, we start our discussion by presenting numerical results. In
dimensionless form, the AC-driven damped NLSE reads

W0+ [UPY + Uy = —i0 + iSeld, )

This equation represents in our case the mean-field behaviour of a Kerr resonator [30-32], but is also the small
amplitude limit of the AC-driven sine-Gordon equation [33, 34]. It has applications in non-equilibrium systems
ranging from plasma physics [35] to Josephson junctions [36], highlighting the general applicability of our study.
The equation can be cast into an autonomous form by substituting W(t, x) = (#, x) it

i + [P + e = =i + A + 1S ®)

which will be used throughout our work. This form is also referred to as the Lugiato—Lefever equation
(LLE) [30].

Depending on the driving strength Sand its frequency A, equation (2) exhibits a range of solutions, which
have been extensively investigated [30-34]. Briefly, the simplest steady-state (1), = 0) solutions are
homogeneous (1, = 0), and they satisfy the well-known cubic steady-state equation
X =7Y3—2AY? + (& + 1)Y with X = |SPand Y = |9]*. The steady-state curve (Y versus X) is single-
valued for A < /3, whereas for A > /3 itassumes an S-shaped hysteresis cycle with three possible states. The
latter range is of more relevance to our experimental configuration [16, 17], and thus the focus of our work. Only
the upper and lower states that exist for A > /3 are homogeneously stable (bistability): the intermediate,
negative slope, branch is unconditionally unstable. The upper branch exhibits however a Turing-pattern
instability (also known as modulation instability) with respect to inhomogeneous perturbations, which can lead
to the formation of a stationary periodic pattern [30]. The lower branch only exhibits such instability close to the
folding point for a very small range of parameters (Y > 1and /3 < A < 2)but is otherwise stable. LDSs can
manifest themselves under conditions of coexistence of a patterned solution and a stable homogeneous solution.
They can be understood to coincide with the patterned solution over a finite region in x, and with the
homogeneous lower-state solution elsewhere [37].

We are interested in the dynamics that take place when two LDSs collide. Unlike conservative solitons,
widely separated LDSs of the AC-driven NLSE (or LLE) are phase-locked to the driver, and thus all of them
possess identical traits (for given X and A), including frequency (A) and velocity. Accordingly, unassisted
collisions occur only when two LDSs are sufficiently close to interact attractively [38, 39], yet such interactions
are difficult to explore controllably. Inducing collisions by suitably modulating the phase of the driver [40-42]
addresses that issue. Specifically, given S(x) = Sy exp[i¢ (x)], an LDS at x; will move towards the local
maximum of ¢(x) with a drift velocity of dx; /dt = ¢ (x) [43, 44]. A collision is thus observed when exciting,
for example, two LDSs on opposite sides of a local maximum of ¢(x) [42].

To illustrate such induced collisions, we numerically integrate equation (2) using the split-step Fourier
method. We assume a Gaussian driver phase profile ¢ (x) = ¢ (0) exp(—x?/x). To create LDSs symmetrically
distributed about the phase maximum at x = 0, we use the initial condition

(0, x) = V2A [ sech[VA (x — x)] + sech[VA (x + xL)]]. 3)

The initial LDS separation 2x; = 70 is chosen to be much larger than their characteristic width (~1/A) [32—
34,45] so as to avoid any interactions during the transients leading to the LDS formation. Figures 1(a) and (b)
show typical results for two different sets of driver frequency A and strength Sy, as listed in the caption, and with
¢(0) = 0.5 rad and x, = 30. These parameters are chosen to replicate our experiments. Note that the
homogeneous background on which the LDSs are superimposed is only just visible in figures 1(a) and (b)
because of its small level, Y ~ 0.5. For clarity, the figures neglect the initial portion of the simulation (which lasts
for more than ¢t = 1700), during which the two LDSs slowly approach each other from their initial separation

of 2x; = 70.In both cases, it can be seen that the LDSs drift towards each other until they are close enough to
interact. The outcome of the collision is, however, markedly different. Indeed, for [A, So] = [2.91, 1.87] the two
LDS merge into one (figure 1(a)), while for [A, Sg] = [3.64, 2.10] the intracavity field after the interaction is
globally reduced to the homogeneous solution, i.e. the two LDSs annihilate one another (figure 1(b)).

Itis apparent that the interactions depend on the parameters of the driver. This has been numerically
explored further by systematically varying our four control parameters, A, Sy, ¢(0), and x,, over a wide range.
We have found that A and S, mainly govern the outcome of the collision, while the phase modulation
parameters ¢(0) and x, mostly determine the speed at which the LDSs approach each other, i.e. set the timing of
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Figure 1. Numerically simulated dynamics of induced LDS interactions for ¢(0) = 0.5 radandx, = 30.1In (a) [A, So] = [2.91, 1.87]
and two LDSs merge into one; in (b) [A, Sp] = [3.64,2.10] and two LDSs annihilate one another.

1
3 —
25
So oL
s Merging
B Annihilation
1.5 Emmmm Bound states _
s Breathing
. | | | | |

Figure 2. Results from numerical simulations illustrating the outcome of LDS interactions as a function of driving frequency A and
strength S for ¢ (0) = 0.5 rad,andx, = 30. Each solid dot represents a distinct simulation. No LDSs exist in the white-colour coded
area.

the collision. In figure 2, we summarise the numerically observed outcome of the interaction as a function of So
and A for the same driver phase modulation ¢(x) as above. As can be seen, merging (green) and annihilation
(blue) occur in clearly distinct, but adjacent, regions. For a given driving strength S, the system favours
annihilation over merging at higher driving frequencies. This can be related to the closer proximity to the folding
pointat A, ~ 72Sy[? /8, beyond which LDSs cease to exist in this system [33]. Interestingly, in the area marked
‘bound states’ no collision occurs. Instead, the two LDSs form a stable bound state [38, 46—49]: repulsive
interactions of the LDSs resist the drift induced by the driver phase modulation. Not surprisingly, this region
slightly grows at the expense of the ‘merging’ region when a shallower phase modulation is used (the merging/
annihilation boundary is mostly unaffected). In the grey region, labelled ‘breathing’, the individual LDSs exhibit
breathing as a result of an underlying Hopf bifurcation [34]. Their interaction can lead either to merging or
annihilation, depending on the phase of their breathing at the onset of the collision. The bound-state and
breather regimes will not be further discussed here because experimental limitations currently prevent us from
observing them. We also note that there exists other systems with overall similar phenomenology, such as those
described by Ginzburg-Landau equations, including e.g. fibre lasers [46, 50].

Experimental realisation

We now describe our experimental configuration, implemented in the optical domain. Specifically, we induce
controllable LDS interactions in a coherently driven passive optical fibre resonator that exhibits instantaneous
Kerr nonlinearity. In the high-finesse limit, this system is known to be governed by the LLE (2), with ¢ (¢, x)
representing the slowly varying envelope of the electric field [31]. The LDSs of such Kerr resonator have been
observed experimentally before and are usually referred to as temporal cavity solitons [16—18]. These are pulses
of light that continuously circulate in the resonator, yet remain stationary in a reference frame that is moving at
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Figure 3. Experimental setup. cw: continuous-wave, EDFA: erbium-doped fibre amplifier, BPF: band-pass-filter, SMF: single-mode
fibre.

the group velocity of the driving light in the fibre. The transverse coordinate x in equation (2) is thus a ‘fast-time’
x — T thatis defined in such a reference frame and that allows to describe the temporal profile of the field
envelope. In contrast, tis a ‘slow-time’ that describes changes in the field envelope over consecutive roundtrips
around the resonator. The normalisation is such that dimensional time-scales 7/ and ¢ (units of s) and the
electric field envelope E (¢/, 7') (units of W'/ 2) are related to the dimensionless variables in equation (2) by [16]

!
t=al, T:T’/za ) ¢:E\(£- S
R |B2IL a

Here t is the roundtrip-time of the resonator, « is equal to half the percentage of total power loss per round-
trip, Lis the resonator length, and (3, (< 0) and -y are, respectively, the anomalous group-velocity dispersion and
Kerr nonlinearity coefficients of the fibre. The driving strength S is related to the power P;, of the continuous-
wave (cw) laser driving the resonator as Sy = (P, L0/ )} /2 where 0 is the intensity transmission coefficient of
the coupler used to inject the field into the resonator. Finally, A characterises the frequency detuning of the cw
driving laser at w from the closest resonator resonance at wp, A ~ fr (wy — w)/ .

A detailed schematic of our experimental setup is shown in figure 3. Overall, it is similar to the ones used in
[44, 51]. Note that these two previous studies were concerned with the manipulation of widely separated
solitons, that were fully independent from one another; here in contrast we use similar tools to induce and study
collisions of LDSs, i.e. a configuration in which solitons are closely interacting. As a coherent driver, we use a
narrow linewidth cw laser at 1550 nm wavelength, which is amplified up to 1.14 W using an erbium-doped fibre
amplifier (EDFA) before being coupled into the resonator by a 90/10 fibre coupler (§ = 0.1). Noise accumulated
during the amplification stage is mostly removed with an optical band-pass filter (BPF). The resonator is
composed of 100 m of standard silica single-mode fibre (SMF), with 3, = —21.4 ps’km™'and~y = 1.2
W~ km ™. It also incorporates an optical isolator to prevent resonance of stimulated Brillouin scattering
radiation, and a 99/1 fibre coupler through which the intracavity dynamics are monitored with a fast
photodiode and a real-time oscilloscope. The overall finesse of the resonator was measured to be
F = 7w/« ~ 21.5. The BPF at the 1% output filters out the homogeneous cw background that coexists with the
LDSs, thereby improving the signal-to-noise ratio of our data [16]. The resonance frequencies of our optical
fibre ring generally exhibit fluctuations due to environmental perturbations. To maintain a fixed A, we therefore
actively actuate the driving laser frequency to follow any changes in the resonances, by locking to a set level the
optical power reflected off the resonator input [ 16, 17, 44]. Changing the lock point allows us to controllably
adjust A, but we remark that the accuracy with which we can do so is insufficient to explore the formation of
bound states since they manifest themselves over a narrow range of driver frequencies (see figure 2). In this
context, we also note that, with our current configuration, we are unable to reach power levels required to
explore interactions of breathing LDSs.

To controllably induce LDS interactions, we phase modulate the resonator driving field with a 10 GHz
electro—optic modulator. The modulator is driven by one of two 10 GHz programmable pattern generators,
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Figure 4. (a), (b) Experimental density plots showing the evolution of the intracavity temporal intensity profile as two LDSs (a) merge
into one, and (b) annihilate each other. The successive traces are recorded with a real-time oscilloscope at 1 frame s~ (c), (d) The
roundtrip-to-roundtrip evolution of the total intracavity energy during LDS (c) merging and (d) annihilation. The experimental data
is represented by red circles, and results from numerical simulations are shown as blue solid lines.

selected with an electronic switch. The pattern generators are synchronised to each other by a single external
clock, such that the repetition rate of their output patterns is identical to the resonator free-spectral range. The
first generator (left in figure 3) is configured to produce a pattern of two 130 ps full-width-at-half-maximum
electronic pulses with 200 ps separation. These are fed to the phase modulator in the initial stage of the
experiment. During that stage, we mechanically perturb the resonator, which results in the direct excitation of
two LDSs at the two phase maxima [51]. After the LDSs are stably formed and trapped at the maxima [44], we
activate the electronic switch and the phase modulator feed is abruptly changed (within a few nanoseconds) to
the output of the second pattern generator. That generator is set to produce a pattern made up of a single pulse
whose delay is adjusted to lie halfway between the two pulses generated by the first generator. Accordingly, the
LDSs in the resonator find themselves approximately symmetrically positioned about the new single maximum
of the phase profile. As in the simulations of figure 1, the LDSs thus start drifting towards that maximum,
interacting once sufficiently close to each other. Note that the new driver phase profile takes a few photon
lifetimes (~1 us) to get imprinted inside the resonator after the switch, but that transient is negligible compared
to the time it takes for the LDSs to collide/interact. Also, we have carefully verified that the ~0.5 rad phase
modulation amplitude used in our experiments is small enough for the abrupt switch in phase profile not to
directly excite or erase LDSs as in [51].

The temporal intensity profile of the intracavity light measured at the 1% output of the resonator is recorded
every second by the oscilloscope (triggered by the pattern generators). Typical results are shown in figures 4(a)
and (b) as density plots representing vertical concatenations of successive recordings that have been obtained for
[A, So] = [2.91, 1.87] and [3.64, 2.10], respectively. The first 10 s of the measurements are very similar: two
LDSs with 200 ps separation are stably trapped at the maxima of the phase pulses defined by the first pattern
generator. After switching to the single phase pulse pattern (which occurs atf >~ 10 s) and inducing the LDS
interaction, a single LDS is seen to remain for [A, Sy] = [2.91, 1.87] while both disappear when [A, Sy] = [3.64,
2.10]. These results are strongly indicative of merging and annihilation, which is in agreement with numerical
simulations. Indeed, the simulation results in figure 1 use the very same parameters as the experiments here. Yet,
these results are limited by the slow 1 frame per second acquisition rate of the oscilloscope, which hinders direct
interpretation.

To clearly establish the origin of the observed dynamics, we have recorded the roundtrip-by-roundtrip
evolution of the intracavity energy on the real-time oscilloscope. Typical experimental results for merging and
annihilation are shown as red circles in figures 4(c) and (d), respectively. Here we have normalised the energy
such that a single isolated LDS carries an energy of 1 in arbitrary units. The results unambiguously reveal the
dissipative nature of the interactions: for [A, So] = [2.91, 1.87] the energy falls from two to one, implying
merging; for [A, Sy] = [3.64, 2.10] the energy falls from two to zero, implying annihilation. Note that for the
sake of clarity we only show short 50 s long segments of the overall evolutions during which the interaction
dynamics take place. These segments were recorded approximately 5 ms after the electronic switch controlling
the phase modulation feed was activated. We note that this large delay further highlights that our results cannot
be explained in terms of direct LDS erasure (and excitation) by the abrupt switch in phase profile. Indeed, such
dynamics typically occur in less than 100 ys, i.e. two orders of magnitude faster [51]. In fact, the 5 ms delay
agrees well with the time expected for the LDSs to drift sufficiently close to each other to interact, as confirmed by
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full numerical simulations of our experiment with equation (2) and that predicta 6.1 ms (5.8 ms) delay for
merging (annihilation), respectively. (Small discrepancies can be attributed to experimental uncertainties.) As a
final confirmation, in figures 4(c) and (d) we also plot, as blue solid lines, the energy evolutions extracted from
the numerically simulated merging and annihilation events shown in figure 1 (post-processed to take into
account the BPF at the resonator output). The outstanding agreement clearly confirms that merging and
annihilation of LDSs occur in our experiment.

3. Conclusions

We have demonstrated, to the best of our knowledge, the first example of experimentally controlled interactions
of LDSs. Our study also provides the first quantitative analysis of such interactions in an AC-driven nonlinear
Schrodinger system, and more generally, in any nonlinear dissipative system near the 1:1 resonance. We have
numerically identified a diversity of interaction scenarios for different parameters of the system driver.
Experiments performed in an optical resonator show unequivocal evidence of possible selection of LDS
interaction by the operator from merging to annihilation and paves the way to similar controlled experiments in
other systems [52]. These soliton interactions are fundamentally different from their counterparts in
conservative integrable systems where localised structures typically tunnel through each other. Controllable
outcome of the interaction process could potentially find application in the coding of optical signals in optical
information processing and communications.
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