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A B S T R A C T   

By enhancing data accessibility, the implementation of data-driven models has been made possible to empower 
strategies in relation to O&M activities. Such models have been extensively applied to perform anomaly detection 
tasks, with the express purpose of detecting data patterns that deviate significantly from normal operational 
behaviour. Due to its preeminent importance in the maritime industry to adequately identify the behaviour of 
marine systems, the Real-time Anomaly Detection Intelligent System (RADIS) framework, constituted by a Long 
Short-Term Memory-based Variational Autoencoder in tandem with multi-level Otsu’s thresholding, is proposed. 
RADIS aims to address the current gaps identified within the maritime industry in relation to data-driven model 
applications for enabling smart maintenance. To assess the performance of such a framework, a case study on a 
total of 14 parameters obtained from sensors installed on a diesel generator of a tanker ship is introduced to 
highlight the implementation of RADIS. Results demonstrated the capability of RADIS to be part of a diagnostic 
analytics tool that will promote the implementation of smart maintenance within the maritime industry, as 
RADIS detected an average of 92.5% of anomalous instances in the presented case study.   

1. Introduction 

The application of innovative technologies in the maintenance 
context has demonstrated its capabilities to enhance operations and 
maintenance practices, reduce costs, extend equipment lifetime, 
improve safety, protect the environment, and ensure quality, thus 
guaranteeing the prosperity of Condition-Based Maintenance (CBM) 
within this industrial sector. Such a strategy facilitates data accessibility 
to enable innovative data-driven strategies, while enhancing current 
practices in relation to Operations and Maintenance (O&M) activities 
within this industrial sector through the identification of change which 
could indicate developing faults (Raptodimos & Lazakis, 2019). 

Accordingly, analysis can empower such strategies by implementing 
of Maintenance Analytics (MA) frameworks. As outlined by Karim et al. 
(2016), and Jasiulewicz-Kaczmarek and Gola (2019), MA is comprised 
of four interconnected time-line phases (maintenance descriptive ana-
lytics, maintenance diagnostic analytics, maintenance predictive ana-
lytics, and maintenance prescriptive analytics), the aim of which is the 
promotion of maintenance actions by improving the understanding of 
data and information. 

As part of the maintenance diagnostic analytics, anomaly detection, 
which aims to detect data patterns that deviate significantly from 
normal operation behaviour, is implemented to perform fault detection. 
Its implementation has been identified as being of paramount impor-
tance due to its extensive application domains (Erhan et al., 2021), in 
such areas as in manufacturing (Alaoui-Belghiti et al., 2019; Ducharlet 
et al., 2020; Morariu et al., 2020), railway (Oliveira et al., 2019; Shi 
et al., 2019; Xue & Gao, 2019), and aerospace (Imbassahy et al., 2020; Li 
et al., 2019; Roy et al., 2018). 

However, when the maritime sector is considered, only 2% of the 
classed ships operate under a Condition-Based Monitoring (CBM) 
scheme (Jaramillo et al., 2020). This indicates the lack of maturity of 
this industrial sector within the maintenance analytics context, thus 
making the implementation of fault diagnosis for marine machinery 
inconsistent while preventive maintenance is still preferred (Lazakis 
et al., 2018). If the application of data-driven methodologies for the 
application of anomaly detection of marine machinery is considered, 
only 7 identified studies related to such a matter have been identified, 4 
of them referring to the application of machine learning models, such as 
one-class support vector machine (Lazakis et al., 2018) or polynomial 
ridge regression model (Cheliotis et al., 2020) If deep learning 
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methodologies are considered, only variational autoencoders have been 
analysed to perform the anomaly detection task (Ellefsen et al., 2020), 
which are unable to consider sequential patterns. Accordingly, a com-
bination of VAE and LSTM is considered in this inquiry to analyse if the 
reconstruction process is enhanced by considered such temporal de-
pendencies. Moreover, there is a lack of available data for marine ma-
chinery in academia due to the sensitive and confidential information 
that can be extracted. Thus, most of the research performed is either 
based on simulated data, such as the case study implemented by Ellefsen 
et al. (2020), or does not consider deep learning methodologies due to 
the amount of data required and their lack of transparency (Cheliotis 
et al., 2020). It can be considered, therefore, that there is a lack of 
analysis of fault diagnosis of marine machinery in real scenarios, thus 
averting some data preparation steps, such as data imputation and 
steady states identification, which are fundamental when analysing real 
operational data (Cheliotis et al., 2019; Velasco-Gallego and Lazakis, 
2020, 2021). If the steady states identification is further analysed, it can 
be observed that, although it is considered a critical task when utilising 
data collected from marine machinery due to the emergence of non- 
operating periods, such as manoeuvring and engine transients, the 
implementation of such a task is usually performed manually. However, 
there is a need of implementing this pre-processing step automatically if 
real-time deployment is considered. Of all publications identified that 
consider the steady states identification as a pre-processing phase, only 3 
of them implemented data-driven models (Dalheim & Steen, 2020; 
Perera & Mo, 2016; Velasco-Gallego & Lazakis, 2021). To continue 
contributing towards the implementation of such a task, a novel steady 
states identification method based on the implementation of the first- 
order Markov chain, which has demonstrated promising results in 
analogous tasks, such as data imputation, (Velasco-Gallego & Lazakis, 
2021), is assessed in this study. In addition, the resulting anomalies and 
normal instances are represented in form of images to analyse how 
image thresholding techniques can contribute in the “visually” detection 
and ranking of anomalies. Accordingly, image generation is applied by 
the estimation of the NRMSE matrix and multi-level Otsu’s thresholding. 
Although time series imaging has been performed and presented 
promising results when applying forecasting (Li et al., 2020), there is no 
evidence that such a method has been performed within the anomaly 
detection task in the sector to the best of the authors’ knowledge. 

Hence, to overcome the limitations presented in the preceding 
paragraph, a real-time anomaly detection intelligent system for fault 
diagnosis of marine machinery (RADIS) is proposed. In this study, a Long 
Short-Term Memory (LSTM)-based Variational Autoencoder (VAE) 
Neural Network (NN) for anomaly detection performance is presented in 
tandem with image generation by the estimation of the NRMSE matrix 
and multi-level Otsu’s thresholding. The focus of which is to address the 

anomaly detection task of marine systems. Although several studies 
have been performed related to the maritime industry, to the best of the 
authors’ knowledge, there is no evidence that such an approach has been 
developed and implemented. Additionally, data pre-processing is 
comprehensively analysed due to its importance in guaranteeing the 
adequate performance of RADIS. Specifically, the analysis of a novel 
steady states identification method is assessed. 

The following paragraphs are structured as follows. Section 2 pre-
sents a literature review. Section 3 describes the proposed methodology. 
Section 4 reflects on the results obtained after implementing the pro-
posed methodology through a case study. To finish, in Section 5, the 
conclusions are presented. 

2. Literature review 

The implementation of anomaly detection methodologies in sectors 
such as manufacturing, aerospace, and railways is wide and robust. 
Langone et al. (2015) demonstrated the applicability of implementing 
Least Squares Support Vector Machines (LS-SVMs). Yang et al. (2011) 
presented a hybrid feature selection scheme for unsupervised learning. 
Thirukovalluru et al. (2016) examined traditional handcrafted features 
and compared them with features learned by Deep Neural Networks 
(DNNs). Helbing and Ritter (2018) discussed recent applications of 
Artificial Neural Networks (ANNs) and Deep Learning (DL) approaches 
in the wind turbines sector. Shang et al. (2018) developed a recursive 
slow feature analysis. Di Maio et al. (2012) compared two unsupervised 
ensemble methods (fuzzy C-means and hierarchical trees). Predictions of 
multiple classifiers were combined to reduce variance of both results 
and bias. Amruthnath and Gupta (2018) tested the accuracy, perfor-
mance, and robustness of a total of 5 unsupervised learning algorithms 
(PCA T2 statistic, Hierarchical clustering, K-Means, Fuzzy C-Means 
clustering, and model-based clustering). Harrou et al. (2019) introduced 
a fault diagnosis approach for monitoring photovoltaic systems. An 
anomaly detection approach was developed by implementing a model- 
based on the one-diode model to mimic the characteristics of the 
photovoltaic array and, subsequently, apply a one-class Support Vector 
Machine (1SVM) to residuals from the simulation model to detect faults. 
Zhang et al. (2015) analysed Deep Learning Network (DBN) to perform 
classification. Specifically, an ensemble of DBNs with Multi-Object 
Evolutionary Algorithm based on Decomposition (MOEA/D) is imple-
mented to detect failure degradation. Yuan and Liu (2013) introduced 
manifold regularization based on semi-supervised learning to imple-
ment fault diagnosis. 

Although anomaly detection techniques have been widely applied in 
analogous industrial sectors, only a total of nine articles were identified 
in the maritime domain, which suggests a lack of analysis and 

Nomenclature 

AAKR Auto Associative Kernel Regression 
AE Auto-Encoder 
BIC Bayesian Information Criterion 
CBM Condition-Based Maintenance 
CI Confidence Interval 
CNN Convolutional Neural Network 
DBN Deep Belief Network 
DBSCAN Density-Based Spactial of Applications with Noise 
DT Digital Twins 
EB Expected Behaviour 
EM Expectation Maximization 
EWMA Exponential Weighted Moving Average 
FPGA Field Programmable Gate Array 
GMMs Gaussian Mixture Models 

IoS Internet of Ships 
LSTM Long Short-Term memory 
MA Maintenance Analytics 
NN Neural Network 
NRMSE Normalised Root Mean Square Error 
O&M Operations and Maintenance 
OCSVM One-Class Support Vector Machine 
OLS Ordinary Least Squares 
PLS Partial Least Squares 
PHM Prognostics and Health Management 
RADIS Real-time Anomaly Detection Intelligent System 
RNN Recurrent Neural Network 
SA Sensitivity Analysis 
SPRT Sequential Probability Ratio Test 
VAE Variational Autoencoder 
XAI eXplainable Artificial Intelligence  
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formalisation of anomaly detection approaches for the analysis of ma-
rine machinery behaviour. Aslam et al. (2020) provided a comprehen-
sive survey of the Internet of Ships (IoS) paradigm as well as its key 
elements and its main characteristics. The paper presented an inter-
esting review of automatic fault detection methodologies in the mari-
time industry and provided evidence of the importance of applying 
automatic and intelligent methods that detect and report faults. Lazakis 
et al. (2018) proposed a methodology for the monitoring and detection 
of operating anomalies in ship machinery based on a one-class Support 
Vector Machine (OCSVM). Brandsæter, Vanem, and Glad (2017) pre-
sented a cluster-based anomaly detection methodology. This was based 
on an original methodology that was divided into two main steps: signal 
reconstruction, through the implementation of Auto Associative Kernel 
Regression (AAKR), and residual analysis, by performing Sequential 
Probability Ratio Test (SPRT). The methodology was then modified to 
include two new steps: cluster analysis, by the utilisation of the k-means 
algorithm, and the selection of a set of closest points per cluster, which 
would replace the original dataset as training set to reduce the compu-
tational cost. The proposed methodology is expanded in Brandsæter, 
Vanem, and Glad (2019). Cheng et al. (2019) implemented a denoising 
filter based on Field Programmable Gate Array (FPGA) to apply fault 
feature extraction in gearbox vibration signals that contain strong noise. 
Precisely, a 50-stage low-pass filter design was implemented and proved 
to denoise gear fault vibration signal to diagnose the gearbox fault. 
Vanem and Brandsæter (2021) focused on unsupervised methods based 
on clustering in order to detect changes in the data streams. In specific, 
k-means clustering, Mixture of Gaussian models, density-based clus-
tering, self-organising maps, and support vector machines were ana-
lysed. Sensor signals related to the main bearing condition were 
introduced for validation purposes. Coraddu et al. (2019) applied a total 
of two anomaly detection methods: support vector machines and k- 
Nearest Neighbour. Data from the Research Vessel The Princess Royal 
were considered for the case study. Ellefsen et al. (2019)(a) reviewed 
four well-established deep learning techniques applied in Prognostics 
and Health Management (PHM) systems: Deep Belief Network (DBN), 
Auto-Encoder (AE), Long Short-Term Memory (LSTM), and Convolu-
tional Neural Network (CNN). Ellefsen et al. (2020) proposed a fault- 
type independent spectral anomaly detection algorithm for marine 
diesel engine degradation in autonomous ferries. The VAE was utilised 
as DNN, and thus trained on pre-processed normal operation data, the 
engine loads of which were merged into one context by applying a multi- 
regime normalization technique. Then, the trained VAE was used to 
estimate the velocity and the acceleration of the anomaly score at each 
time step in three fault types with different natures of degradation. Both 
the velocity and the acceleration were estimated dynamically to detect 
faults automatically when the estimations exceeded the threshold limits. 
Analogously, an unsupervised reconstruction-based fault detection al-
gorithm was also presented in Ellefsen et al. (2019)(b), as supervised 
classifiers are highly complex to be implemented within the maritime 
industry due to the lack of fault labels. Hence, VAE was selected as a 
reconstruction model, which was implemented in two data sets of real- 
operational data from a marine diesel engine. Cheliotis et al. (2020) 
combined Expected Behaviour (EB) models with the Exponential 
Weighted Moving Average (EWMA) for fault detection. Four different 
regression models were assessed: Ordinary Least Squares (OLS) single 
linear regression, multiple linear ridge regression, OLS single poly-
nomial regression, and multiple polynomial ridge regression. The esti-
mated residuals were analysed in an EWMA control chart that contained 
upper and lower control limits to detect faults. Data preparation was of 
paramount importance in this study due to the characteristics of the raw 
data and the models that were implemented. Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) algorithm was applied 
effectively to remove outliers and transient states of operation, and thus 
induce its applicability when dealing with these types of data. 

As it can be perceived in the preceding paragraph, various challenges 
identified within the maritime industry need to be addressed in relation 

to fault diagnosis of marine machinery. For instance, to the best of the 
authors’ knowledge, none of the proposed frameworks deal with tem-
poral dependencies. Moreover, most of the case studies performed are 
either simulated or do not consider large amounts of data, thus averting 
some critical data preparation steps, such as data imputation, data 
denoising, and steady states identification, which are of preeminent 
importance when dealing with real scenarios. In relation to the frame-
work capability of being deployed in real-time, most of the studies do 
not evidence such an aspect. Given this challenge, the contributions of 
this paper in relation to the application of fault diagnosis of marine 
machinery are expressed hereunder.  

• The introduction of a LSTM-based VAE as part of RADIS. Although 
analogous methods have been implemented for anomaly detection in 
other sectors, there is still a lack of analysis and formalisation of deep 
learning methodologies within the maritime industry. Moreover, as 
stated in the preceding paragraph, none of the analysed fault diag-
nosis frameworks for the analysis of marine machinery consider the 
temporal dependencies. Therefore, by combining such approaches, it 
is expected that the reconstruction phase is enhanced with regards to 
the implementation of vanilla VAEs when time series data is being 
considering for analysis.  

• The utilisation of image thresholding techniques for the detection of 
anomalies. Image generation through the estimation of the NRMSE 
matrix and multi-level Otsu’s thresholding is proposed to investigate 
its applicability for the detection of anomalous values in time series 
data. The encoding of time series into images has demonstrated its 
competitive performance in automatically extracting features when 
performing forecasting (Li et al., 2020) or fault classification tasks 
(Fahim et al., 2021), for instance. Thus, to continue exploring the 
novel area of time series imaging to allow machines “visually” 
recognise and classify time series (Wang & Oates, 2015), image 
thresholding is introduced to “visually” detect and rank anomalies.  

• The analysis of a novel steady states identification method based on 
image generation by estimating the transition matrix obtained from 
the implementation of the first-order Markov Chain and connected 
component analysis. Based on the analysis of analogous studies, 
there is no evidence that such a pre-processing step is being per-
formed prior to the implementation of their respective anomaly 
detection frameworks. However, due to the appearance of different 
operating conditions in real scenarios, such a process needs to be 
automated. Furthermore, real datasets usually contain both transient 
and idle states that need to be adequately identified and discarded. 
Accordingly, this contribution aims to address the challenge of 
averting the training of the semi-supervised anomaly detection 
model with either abnormal data or non-operational data. 

3. Methodology 

The proposed methodology is graphically represented in Fig. 1. The 
first step refers to data pre-processing, which is of critical importance 
due to the characteristics of the data set. Subsequently, time series 
denoising is applied by the implementation of LSTM-based VAE NN. 
Accordingly, the NRMSE between the input time series and the gener-
ated time series is determined. By estimating such a coefficient for each 
generated time series, the NRMSE matrix is obtained. Therefore, if image 
thresholding is applied by considering multi-level Otsu’s thresholding 
method, the anomalousness of each instance of all the analysed se-
quences can be determined, thus labelling the behaviour identified at 
each time step. The training process of such an approach has been 
performed offline, whereas the remaining steps have been performed 
online. 

3.1. Data pre-processing 

To adequately apply pre-processing, a previous data understanding 
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phase needs to be applied to establish the steps required based on the 
characteristics of the data set. 

Raw data usually contain non-operational states that adversely alter 
the results outlined when performing data-driven tasks assessing the 
current and future health of marine machinery. Although the marine 
engines typically run under steady-state conditions, fluctuations may 
occur due to, for instance, environmental conditions or variations in the 
operating condition (Theotokatos et al., 2020). Therefore, if such states 
are not adequately addressed, a decrease in both computational effi-
ciency and model effectiveness can be perceived. To that end, the 
methodology presented by Velasco-Gallego and Lazakis (2022) is ana-
lysed for identifying normal operational instances, and thus avert the 
training of the LSTM-based VAE with either abnormal instances or non- 
operational instances. 

Such methodology is constituted by image generation of time series 
sensor data and connected component analysis. Firstly, the input time 
series is transformed into an image by the implementation of the first- 
order Markov chain. By applying such a process, it is determined that 

the occurrence at time t hinges only on the previous value and not on all 
values at time before t. Thus, if the time series values are clustered in a 
finite number of states, the first-order Markov chain transition matrix 
can be estimated, which will be considered as an image, and thus each of 
the pixels will be considered as an element of the matrix. 

To estimate such a matrix, the definition of the discrete time sto-
chastic process is considered. A discrete time stochastic process, (Xn)n∈N, 
which takes values in a finite set S, is considered to have the Markov 
property if the probability distribution of Xn+1 at time n+1 only hinges 
on the previous state Xn at time n, and not on all the past values of Xk for 
k ≤ n − 1. Thus, 

P(Xn+1= j|Xn = in,Xn− 1 = in− 1,⋯, Z0 = i0) = P(Zn+1= j|Zn = in) = p(i, j)
(1)  

where i0, i1, ⋯, in, j ∈ S. The probability p(i, j) indicates the probability 
that the previous state i is followed by the current state j. All the possible 
transition probabilities of a process can be collected in a rxr matrix, 

Fig. 1. Graphical representation of the proposed methodology.  

C. Velasco-Gallego and I. Lazakis                                                                                                                                                                                                           



Expert Systems With Applications 204 (2022) 117634

5

where each (i, j) entry Pij is p(i, j), 

P =
(
Pij

)

1≤i,j≤r =

⎛

⎜
⎜
⎝

p1,1 p1,2 ⋯ p1,r

p2,1 p2,2 ⋯ p2,r

⋮

pr,1

⋮

pr,2

⋱

⋯

⋮

pr,r

⎞

⎟
⎟
⎠ (2)  

and that satisfies 

0 ≤ Pij ≤ 11 ≤ i, j ≤ r, (3)  

∑r

j=1
Pij = 11 ≤ i ≤ r. (4) 

By considering the transition matrix estimated in the preceding step 
as a collection of discrete cells, a.k.a., pixels, the transformation from 
time series to image is achieved. Therefore, connected components 
labelling can be applied, in which the different connected components 
are clustered to identify the different states, and in turn determine those 
that only refers to steady states. 

Additionally, input data normalisation is applied to yield values 
between − 1 and 1. Each of the identified sequences is successively 
sectioned into subsequences by applying the sliding window algorithm. 
If required, data imputation can also be included within the data pre- 
processing step by implementing the methodologies proposed by 
Velasco-Gallego and Lazakis (2021), and Velasco-Gallego and Lazakis 
(2020). 

3.2. Time series denoising 

VAE, developed by Kingma and Welling (2013), is a generative al-
gorithm capable of modelling the distribution of the data. This is a 
modification of an autoencoder that learns the parameters of a proba-
bility distribution. The model is constituted by a probabilistic encoder, 
which aims to learn both how to reduce the input dimensions and 
compress the inputs into an encoded representation. This compressed 
state, a.k.a. latent space representation, presents the lowest possible 
dimensions of the inputs. Subsequently, the decoder is utilised to learn 
how to reconstruct the data contained in the latent space representation 
to reproduce the inputs as analogously as possible. The architecture of 
such a model is described in Fig. 2. 

The loss function being minimised is constituted by the reconstruc-
tion loss, which aims to ensure the efficient performance of the encoder- 
decoder arrangement, and the regularisation loss. The latter is deter-
mined by estimating the Kullback-Leiber divergence between the 
approximate posterior and prior latent variable z. 

To consider the temporal dependences of sensor data of marine 

systems, the VAE approach is combined with LSTM in both the encoder 
and the decoder. LSTM is a type of Recurrent Neural Network (RNN) 
introduced by Hochreiter and Schmidhuber (1997) that learns long-term 
dependencies. As described in Fig. 3, the core component of such a 
network is the memory cell, which consists of a cell state vector and 
gating units, the latter regulating the information flow into and out of 
the memory, to maintain its state over time. 

This step is performed by the implementation of the Python libraries 
Tensorflow and Keras. 

3.3. Fault detection 

By performing the preceding step, that is time series denoising, it is 
assumed that anomalous sequences will not be able to be properly 
reconstructed, and thus the resulting sequence will not be analogous to 
the observed one. Accordingly, the Normalised Root Mean Square Error 
(NRMSE) is estimated as presented in Eq. (5). 

NRMSE =
RMSE

y
, (5)  

where RMSE is the Root Mean Square Error (Eq. (6)) and y is the mean of 
the observed values presented in the subsequence. The NRMSE has been 
utilised instead of the RMSE to facilitate the comparison of other pa-
rameters that present distinct scales. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

, (6)  

where n corresponds to the number of samples, and yi and ŷi refer to the 
i-th occurrence of the observed and the predicted values of the 
subsequence. 

Therefore, if such a value is estimated for every subsequence, a 
NRMSE matrix is achieved. Thus, as anomalous pixels will present 
distinct intensities over operational values, they can be adequately 
detected by applying image thresholding. This is a phase that segments 
the image into significantly distinct and non-overlapping homogenous 
regions (Anitha et al., 2021). For this inquiry, such a segmentation is 
performed by analysing the pixels’ intensity and by considering a 
threshold-based technique. Specifically, the multi-level Otsu’s method is 
applied. Such a method performs image thresholding by proposing a 
criterion for maximising the between-class variance of pixel intensity 
(Liao et al. (2001)). If the NRMSE matrix is considered as a 2D greyscale 
intensity function, it can be established that such an image contains a 
total of N pixels with grey levels from 1 to L. The pixels’ number with 
grey level i is denoted as fi. Thus, the probability of grey level i in an 
image can be defined as expressed in Eq. (7). 

Fig. 2. VAE architecture.  
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pi =
fi

N
(7) 

By considering a total of M− 1 thresholds, {t1, t2,⋯, tM− 1}, which 
segments the initial image into M classes: C1 for [1,⋯, t1], C2 for 
[t1 + 1,⋯, t2], …, Ci for [ti− 1 + 1,⋯, ti], …, and CM for [tM− 1 + 1,⋯, L], the 
optimal thresholds {t1*, t2*,⋯, tM− 1

*} are selected by maximising the 
between-class variance, σB

2, as described hereunder. 

{t1
*, t2

*,⋯, tM− 1
*} = argmax

{
σB

2(t1, t2,⋯, tM− 1)
}

1 ≤ t1 < ⋯ < tM− 1 < L
(8)  

where 

σB
2 =

∑M

k=1
ωk(μk − μT)

2 (9)  

with 

ωk =
∑

i∈Ck

pi, (10)  

μk =
∑

i∈Ck

ipi

ω(k)
. (11) 

The ωk in Eq. (9) relates to the zeroth-order cumulative moment of 
the kth class Ck, and the numerator in Eq. (10) refers to the first-order 
cumulative moment of the kth class Ck; that is, 

μ(k) =
∑

i∈Ck

ipi. (12) 

To adequately select the optimal number of classes, Gaussian 
Mixture Models (GMMs) with an Expectation Maximization (EM) algo-
rithm is implemented. 

4. Results 

Having explored the methodology being analysed, a case study is 
introduced to assess its performance. Specifically, a Diesel GenSet of a 

tanker ship used for auxiliary needs is considered. This is a four-stroke 
in-line engine, comprised of a total of 6 cylinders. Further specifica-
tions are described in Table 1. 

The diesel generator power, the exhaust gas outlet temperature of 
each cylinder, the winding temperature (phases T, S, and R), the 
turbocharger exhaust gas outlet temperature, the cooling air tempera-
ture, the lubricating oil inlet temperature, and the cooling fresh water in 
pressure are analysed. 

Such parameters are considered for this inquiry due to its critical 
importance in adequately monitoring the diesel generator being ana-
lysed to ensure its availability, whilst averting any operational issues. 
For instance, an anomaly detected in the winding temperature param-
eter may suggest the occurrence of overheating problems. That is to say, 
if the alternator overheats, the windings could burn out, thus altering 
their insulating properties. Another example is the monitoring of the 
exhaust gas temperature, as, if an increased is perceived, it could imply a 
malfunction of either the cooling system or the fuel system. Further-
more, other anomalous behaviours may occur in relation to the sensor 
being utilised, such as problems with the communications, sensor fail-
ure, or human error. 

In total, more than 66,000 instances are analysed for each parameter, 
instances that have been collected in a 1-minute frequency. Fig. 4 rep-
resents graphically the time series raw data of the fourteen parameters 
being analysed. The descriptive statistics are also presented in Table 2. 

Fig. 3. LSTM cell architecture.  

Table 1 
Specifications of the analysed Diesel GenSet.  

Dimensions [L × W × H] (mm) 6004 × 1600 × 2466 

Frequency (Hz) 60 
Speed (rpm) 900 
Power (kW) 998 
Bore (mm) 230 
Stroke (mm) 300 
Cooling Water-cooled 
Cylinders 6 
Weight (t) 19.8 
Aspiration Turbocharged  
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As it can be perceived, the distinct instances of the time series can be 
categorised in various states, such as idle states, transient states, and 
operational states of machinery. If Fig. 4 is further analysed, different 

adjustments can also be observed between operational states, which 
occur due to either contractual agreements between the charterer and 
the shipowner, relating to daily vessel speed and fuel oil consumption, or 

Fig. 4. Time series plot of the fourteen monitored parameters.  

Table 2 
Descriptive statistics of the monitored parameters.  

Id Parameter Name Mean Std. Min. 25% 50% 75% Max. 

0 Power (kW)  151.67  159.15 0 0  177.9 273.2  555.9 
1 CYL6 EXH GAS OUT TEMP (◦C)  222.68  153.00 48.1 64.3  329.7 370  438.7 
2 CYL5 EXH GAS OUT TEMP (◦C)  209.99  144.67 47.6 58.4  309.8 351.3  421.1 
3 CYL4 EXH GAS OUT TEMP (◦C)  231.52  160.16 48.5 65.7  336.8 386.5  453.1 
4 CYL3 EXH GAS OUT TEMP (◦C)  230.16  157.23 48.7 67  330.7 383.8  448.1 
5 CYL2 EXH GAS OUT TEMP (◦C)  231.68  158.10 48.5 67.3  344.9 383.3  448.5 
6 CYL1 EXH GAS OUT TEMP (◦C)  215.61  143.68 47.1 67.5  312.1 355.4  411.7 
7 WINDING TEMP T PHASE (◦C)  44.88  8.34 26.6 39.5  45.8 50.5  67.7 
8 WINDING TEMP S PHASE (◦C)  46.11  8.80 26.7 40.6  47.3 51.9  68.8 
9 WINDING TEMP R PHASE (◦C)  44.53  8.55 25.5 39.3  45.4 50.2  69.6 
10 TC EXH GAS OUT TEMP (◦C)  263.94  190.23 31.6 49.4  384.7 444.2  510.1 
11 COOLING AIR TEMP (◦C)  39.36  6.46 25.5 35.2  40.6 44.7  52.6 
12 LO INLET TEMP (◦C)  57.30  6.62 31.8 51.4  61.3 62.1  68.4 
13 CFW IN PRESS (bar)  2.91  1.20 0 1.7  3.8 4.1  4.5  
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environmental conditions. Accordingly, steady states identification 
needs to be performed as part of the pre-processing step in order to 
consider those instances that refer to operational steady states only. For 
this inquiry, a total of 25 states have been considered when estimating 
the transition matrix. The categorisation of the time series instances of 
the diesel generator power parameter can be observed in Fig. 5. 

If only operational sequences are assessed, a total of 81 are 
perceived. Each of these sequences have been further analysed to either 
accept or reject it for the training, validation, and test processes. If 
considered, the steady states identification methodology is applied again 
if the analysed sequence presents more than one steady state. Therefore, 
multiple iterations may need to be performed in order to obtain the 
optimal number of operational steady sequences. 

As part of the pre-processing phase, data normalisation is applied to 
each sequence to yield values between − 1 and 1. 

Once the pre-processing step is finalised, the LSTM-based VAE is 
applied to perform the time series reconstruction task. To that end, the 
grid search algorithm in tandem with k-fold cross-validation has been 
implemented to perform hyperparameter optimisation. Accordingly, a 
total of four hyperparameters have been considered (the number of 
layers in both encoder and decoder and their respective units, the 
number of latent dimensions, and the length of the sequences). The 
ranges analysed for each of the hyperparameters are specified in Table 3. 
The NRMSE metric has been considered to compare the results of each 
analysed combination. The selection of the sequence length is critical for 
the adequate performance of the model, as the greater is the length of 
the sequence the more the error is increased. This may indicate that the 
model may not adequately capture long dependences throughout the 
time series. Moreover, it has been perceived that when the number of 
units per layer and the number of latent dimensions is optimal, the 
benefit of considering multiple layers in both in the encoder and in the 
decoder is minimal. The same is perceived when many units per layer 
and latent dimensions is considered, as it has been perceived that by 
considering a total of 6 latent dimensions and 129 of units per layer the 
minimum RMSE value is achieved. Therefore, after analysing all the 
resulting architectures, the LSTM of both the encoder and decoder of the 
VAE-LSTM is formed by 1 layer (129 units) and tanh activation function. 
The number of latent dimensions is set to 6 and the sequence length to 3. 
Moreover, the ratio of the validation set has been set to 0.20. Adam 
optimizer has been applied to compile such a model. Subsequently, the 
model has been trained, setting the number of epochs to 100 and the 
batch size to 5. The main results obtained from the best set of hyper-
parameters is presented in Table 4. 

To assess the anomaly detection performance of the model, noise has 
been injected by considering different Gaussian distributions of various 
mean levels, analogous to how it had been performed in Zhao et al. 
(2019). Accordingly, the exhaust gas outlet temperature parameter of 
cylinder three has been altered to perform anomaly simulation, as, if an 
alteration of such a parameter is perceived it could imply a malfunction 
of either the cooling system or the fuel system. A total of 75 simulations 

have been performed, as it is considered that this number of simulations 
is appropriate to generally characterise the results. To simulate the real- 
time process, each instance of the time series has been provided in a 1- 
minute frequency basis, as this is the frequency at which data has been 
collected and provided by the ship operator. The average execution time 
of RADIS for detecting anomalies in an instance is 0.68 s (0.05 s per 
parameter). The hardware used consists of an Intel(R) Core (TM) i7- 
4790 CPU @ 3.60 GHz 3.60 GHz and Windows 10. In total, 75 simula-
tions have been performed in a sequence that has not been utilised for 
training purposes to ensure the generalisation capabilities of the pro-
posed model. For the training process, a total of 65 sequences identified 
in the steady states identification stage have been utilised, a total 20% of 
them being considered for validation purposes. The average NRMSE 
with a Confidence Interval (CI) of 95% obtained for each parameter is 
described in Fig. 6. Moreover, to complement such results and enhance 
visibility, the NRMSE obtained at each instance of the sequence for 
parameters 0 (power), 4 (exhaust gas outlet temperature of cylinder 3), 
which has been altered to simulate anomalies, and 9 (winding temper-
ature at R phase), are also graphically represented in Fig. 7. 

As observed in both figures, the injection of random noise to simulate 
anomalies in parameter 4 caused an increase in the reconstruction error, 
and thus an increment in the resulting NRMSE value. Such a fact is not 
observed in Figs. 8-9, in which parameter 4 has not been altered. In fact, 
parameter 4 presents analogous results in relation to the remaining 
parameters. 

Accordingly, when performing image generation and scaling of the 
NRMSE values into the most common pixel format, the range of which 
varies between 0 and 255, it is expected that the pixels with higher in-
tensity will refer to those parameters that present an anomalous value 
for that specific instance. By comparison, those parameters with non- 
anomalous values will constitute the pixels with the lowest intensity 
of the image (see Fig. 10). Therefore, image thresholding can be applied 
to not only automatically detect such anomalous values but also rank 
them depending on their level of anomalousness. Hence, possible re-
lationships between parameters may be suggested for further analysis 
based on the resulting thresholding. 

Specifically, multi-level Otsu’s method is employed, as it is consid-
ered that image thresholding can adequately detect anomalies; anoma-
lous pixels will present distinct intensities over operational values due to 
the results obtained in estimating the NRMSE between the reconstructed 
and observed subsequences. However, to implement such a method, the 

Fig. 5. Steady states identification for the diesel generator power parameter.  

Table 3 
Range of values analysed for hyperparameter optimisation.  

Hyperparemeter Range 

Number of layers in both encoder and decoder (1, 2) 
Number of units per layer (2, 256) 
Number of latent dimensions (1, 24) 
Length of sequences (3, 180)  
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optimal number of classes needs to be specified. In this inquiry, GMMs 
with an EM algorithm is applied to assess its performance when selecting 
such classes. Therefore, Bayesian Information Criterion (BIC) is deter-
mined to identify the optimal number of components. Initial studies 
were conducted by considering a range of components between 1 and 
10. However, it was perceived that multi-level Otsu’s method was not 
efficient when a large number of classes were considered, making the 
implementation of this method in real time unfeasible. Accordingly, a bi- 
level thresholding task has been considered instead. Thus, C1 refers to 
anomalous instances, while C2 refers to normal instances. The selection 
of the number of classes for each sequence is applied by the imple-
mentation of the same approach, although the range of components 
between 1 and 2 is considered instead. Such a process has been per-
formed to apply image thresholding in the generated images at each 
specific instance of the sequence and for each simulation performed. 
Once all the images were thresholded, the results were summarised by 
estimating the average accuracy, which is 92.5%. The proposed meth-
odology presented promising results. However, as any other methodol-
ogy, its limitations and disadvantages cannot be dismissed. The main 
limitations and disadvantages identified by the authors are presented 
hereunder.  

• The steady states identification is performed by the implementation 
of the first-order Markov chain. Thus, it is assumed that the time 
series follows the Markov property, and, therefore, the future states 
depend only on the current state. Moreover, the identification of 
steady states may be ineffective for short time intervals, as individual 
displacements are deterministically related in time (DelSole, 2000). 
Therefore, initial states in the analysed time series may not be 
identify appropriately. 

• From the results obtained by the application of the grid search al-
gorithm, the current version of the VAE-LSTM may not capture long 
dependencies throughout the time series. Therefore, further efforts 
need to be addressed in future research to overcome such a 
limitation.  

• The Markov states and the hyperparameters of the VAE have been 
selected heuristically. More sophisticated methods need to be 
applied to optimise this step. Moreover, it has also been perceived 
that selection of the windows size when implementing the sliding 
window algorithm is critical for the success of RADIS.  

• Multi-level Otsu’s method may be unfeasible when it is implemented 
in real time if the number of classes are large. It has been perceived 
that the execution time when implementing multi-level thresholding 
is three time more than if bi-level thresholding is applied instead. 

• The application of RADIS has been simulated so that such a meth-
odology can be implemented in real time. However, the training of 
the proposed neural network is done offline. Moreover, as only a 

Table 4 
NRMSE results in the form of mean +- confidence interval (95%) of the best set 
of hyperparameters (validation set).   

Folds 

Id 0 1 2 3 4 

0 6.39e-04 ±
5.49e-05 

5.27e-04 ±
3.36e-05 

5.30e-04 ±
2.48e-05 

5.39e-04 ±
4.68e-05 

5.00e-04 ±
2.86e-05 

1 1.21e-04 ±
1.89e-05 

1.46e-04 ±
1.66e-05 

1.53e-04 ±
1.65e-05 

1.54e-04 ±
2.69e-05 

1.84e-04 ±
1.80e-05 

2 1.10e-04 ±
1.44e-05 

2.06e-04 ±
1.56e-05 

2.19e-04 ±
1.75e-05 

2.02e-04 ±
3.22e-05 

2.42e-04 ±
2.03e-05 

3 1.62e-04 ±
1.84e-05 

1.56e-04 ±
1.88e-05 

2.10e-04 ±
2.31e-05 

1.97e-04 ±
2.66e-05 

2.16e-04 ±
1.99e-05 

4 8.50e-05 ±
1.32e-05 

1.49e-04 ±
1.73e-05 

1.65e-04 ±
1.50e-05 

1.68e-04 ±
2.05e-05 

2.18e-04 ±
2.23e-05 

5 1.28e-04 ±
1.69e-05 

1.30e-04 ±
1.57e-05 

1.19e-04 ±
1.47e-05 

1.38e-04 ±
2.34e-05 

1.15e-04 ±
1.24e-05 

6 6.77e-05 ±
9.49e-06 

1.75e-04 ±
1.82e-05 

1.92e-04 ±
2.12e-05 

1.97e-04 ±
3.96e-05 

1.54e-04 ±
1.72e-05 

7 1.04e-03 ±
6.37e-05 

8.55e-04 ±
4.61e-05 

7.06e-04 ±
3.65e-05 

5.96e-04 ±
4.53e-05 

7.02e-04 ±
3.42e-05 

8 8.73e-04 ±
5.73e-05 

9.01e-04 ±
4.54e-05 

6.59e-04 ±
3.61e-05 

8.80e-04 ±
7.34e-05 

7.55e-04 ±
3.87e-05 

9 9.50e-04 ±
5.99e-05 

8.23e-04 ±
4.33e-05 

7.17e-04 ±
4.01e-05 

7.81e-04 ±
5.65e-05 

7.91e-04 ±
4.99e-05 

10 9.26e-05 ±
1.41e-05 

1.14e-04 ±
1.31e-05 

1.24e-04 ±
9.70e-06 

1.33e-04 ±
1.89e-05 

1.20e-04 ±
1.55e-05 

11 1.20e-04 ±
1.00e-05 

8.87e-05 ±
1.17e-05 

8.20e-05 ±
1.41e-05 

9.39e-05 ±
4.32e-06 

6.64e-05 ±
7.19e-06 

12 3.86e-05 ±
3.55e-06 

4.68e-05 ±
1.26e-05 

4.95e-05 ±
1.41e-06 

3.66e-05 ±
2.76e-06 

4.95e-05 ±
7.27e-06 

13 1.18e-03 ±
4.16e-04 

8.48e-04 ±
6.56e-05 

1.32e-03 ±
8.16e-05 

1.43e-03 ±
2.40e-04 

1.26e-03 ±
8.60e-05  

Folds 
Id 5 6 7 8 9 
0 5.42e-04 ±

3.00e-05 
5.66e-04 ±
3.82e-05 

5.54e-04 ±
3.68e-05 

6.17e-04 ±
8.98e-05 

4.58e-04 ±
2.40e-05 

1 2.29e-04 ±
2.36e-05 

1.56e-04 ±
2.50e-05 

1.39e-04 ±
2.07e-05 

2.02e-04 ±
4.66e-05 

1.30e-04 ±
1.50e-05 

2 2.47e-04 ±
2.71e-05 

1.51e-04 ±
2.09e-05 

1.16e-04 ±
2.28e-05 

1.88e-04 ±
5.14e-05 

1.20e-04 ±
2.27e-05 

3 2.95e-04 ±
2.67e-05 

1.56e-04 ±
2.71e-05 

1.18e-04 ±
1.61e-05 

2.16e-04 ±
5.00e-05 

1.58e-04 ±
1.89e-05 

4 2.01e-04 ±
2.14e-05 

1.57e-04 ±
2.13e-05 

1.32e-04 ±
1.65e-05 

2.45e-04 ±
6.21e-05 

1.80e-04 ±
2.04e-05 

5 1.53e-04 ±
1.67e-05 

1.28e-04 ±
1.93e-05 

1.19e-04 ±
1.65e-05 

1.97e-04 ±
6.73e-05 

1.59e-04 ±
2.39e-05 

6 2.32e-04 ±
2.61e-05 

1.47e-04 ±
2.64e-05 

1.02e-04 ±
1.87e-05 

2.63e-04 ±
7.39e-05 

1.34e-04 ±
1.81e-05 

7 6.46e-04 ±
3.34e-05 

8.64e-04 ±
5.74e-05 

1.02e-03 ±
6.53e-05 

6.72e-04 ±
6.63e-05 

8.41e-04 ±
5.45e-05 

8 7.61e-04 ±
3.96e-05 

7.58e-04 ±
4.89e-05 

9.57e-04 ±
7.06e-05 

6.78e-04 ±
6.41e-05 

7.28e-04 ±
5.02e-05 

9 8.47e-04 ±
4.28e-05 

9.14e-04 ±
5.99e-05 

9.93e-04 ±
6.61e-05 

7.87e-04 ±
7.86e-05 

7.64e-04 ±
4.67e-05 

10 1.45e-04 ±
1.72e-05 

1.09e-04 ±
1.65e-05 

7.40e-05 ±
1.03e-05 

2.01e-04 ±
7.58e-05 

8.58e-05 ±
1.08e-05 

11 9.89e-05 ±
1.14e-05 

7.57e-05 ±
4.58e-06 

9.01e-05 ±
1.30e-05 

1.22e-04 ±
6.75e-05 

1.08e-04 ±
8.43e-06 

12 4.63e-05 ±
6.98e-06 

4.98e-05 ±
4.01e-06 

4.37e-05 ±
6.06e-06 

5.65e-05 ±
1.12e-05 

7.77e-05 ±
4.19e-06 

13 1.20e-03 ±
7.26e-05 

1.13e-03 ±
1.14e-04 

1.08e-03 ±
8.22e-05 

1.06e-03 ±
2.03e-04 

1.25e-03 ±
9.26e-05 

Id Average     
0 5.36e-04 ±

1.14e-05     
1 1.65e-04 ±

6.87e-06     
2 1.92e-04 ±

7.59e-06     
3 1.97e-04 ±

7.79e-06     
4 1.72e-04 ±

6.95e-06     
5 1.34e-04 ±

6.16e-06     
6      

Table 4 (continued ) 

1.68e-04 ±
7.83e-06 

7 7.81e-04 ±
1.52e-05     

8 7.87e-04 ±
1.57e-05     

9 8.27e-04 ±
1.66e-05     

10 1.18e-04 ±
5.59e-06     

11 9.10e-05 ±
4.42e-06     

12 4.97e-05 ±
2.35e-06     

13 1.18e-03 ±
4.40e-05      
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Fig. 6. Average NRMSE with CI 95% of the analysed parameters with injected anomalies in parameter 4.  

Fig. 7. NRMSE with CI 95% of parameters 0, 4, and 9 divided by instance with injected anomalies in parameter 4.  

Fig. 8. Average NRMSE with CI 95% of the analysed parameters.  
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simulation has been performed to assess the real-time deployment of 
RADIS, a real-world case study needs to be performed to verify such 
an aspect. Thus, efforts in relation to inference acceleration, 
continuous training, and real-time deployment need to be met. 

To guarantee the enhancement opportunities based on the results 
obtained from this inquiry, the following work guidelines are considered 
for further research: 

• The analysis of optimisation techniques to adequately select the ar-
chitecture of the deep neural network and sufficiently select the 
different hyperparameters of the applied models. The implemented 
grid search algorithm presented a significant computational cost for 
the analysis implemented, as only one potential area of a search 
space has been introduced. Therefore, further search spaces need to 
be considered to adequately perform the optimisation task. More-
over, as part of the future of research, evolutionary algorithms are 
expected to be also analysed to evaluate if the computational cost is 
reduced while the level of accuracy is either maintained or enhanced.  

• The study of explainable artificial intelligence to provide further 
understanding in relation to the models’ behaviour.  

• The consideration of further anomaly contexts. For this inquiry, the 
addition of gaussian noise has been considered to alter the analysed 
sequences. However, it is of preeminent importance the analysis 
other contexts, such as degradations and contextual anomalies, 
which may be distinguished while performing diagnostic analytics.  

• Time series similarity methods, including such measurements as 
transform-based similarity and time domain similarity, need to be 
analysed further prior to the implementation of image thresholding. 
Moreover, the extraction of statistical features may need to be 
considered as complementary to image thresholding as part of the 
fault diagnosis step.  

• The implementation of ensemble methods for anomaly detection, as 
it is expected that by combining several anomaly detection tech-
niques the performance of this task will be enhanced.  

• The consideration of performance metrics to assess unsupervised 
learning. Although assumptions have been made to perform a semi- 
supervised learning task, the results obtained shows that the sce-
narios usually considered within the maritime industry are unsu-
pervised. Accordingly, there is a need to study such metrics to ensure 
the efficient and effective performance of the proposed framework 
and enhance it.  

• The exploration of weather and performance characteristics of the 
vessel to assess the possible enhancement of the proposed framework 
while providing support to ship owners, operators, and managers at a 
strategic level. 

5. Conclusions 

There is no doubt whatsoever about how data-driven models 
empower strategies in relation to O&M activities within the maritime 
sector. The application of anomaly detection techniques is merely one 
example. Such techniques, the aim of which is to detect data patterns 
that deviate significantly from normal operation behaviour, have been 
fundamental in sectors such as manufacturing, railway, and aerospace. 
However, when the maritime industry is considered, anomaly detection 
is, as yet a nascent practice. Consequently, further efforts need to be 
applied to implement innovative and collaborative tools that will facil-
itate the application of smart maintenance in this industrial sector. 

Accordingly, RADIS is proposed, a Long Short-Term Memory-based 
Variational Autoencoder Neural Network for anomaly detection per-
formance in tandem with image generation through estimation of the 
NRMSE matrix and multi-level Otsu’s thresholding. To highlight and 
validate the performance of such a framework, a total of fourteen pa-
rameters collected from a diesel generator of a tanker ship was consid-
ered. Results demonstrated the capability of the proposed framework to 

Fig. 9. NRMSE with CI 95% of parameters 0, 4, and 9 divided by instance.  

Fig. 10. Image generated for instance 0 and simulation 0.  
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detect anomalies that sensor data of marine machinery may contain. 
However, as expected, the performance of such an approach hinges on 
the characteristics of the anomalies, the utilisation of adequate pre- 
processing steps to ensure data quality, and the optimal definition of 
both the architecture and the training process of the model. 

Thus, further research in this matter is of paramount importance, so 
that best practices can be established to ensure the adequate develop-
ment of a real-time maintenance analytics tool to establish smart 
maintenance within the maritime industry. Examples of future guide-
lines that both industry and academia may need to consider are related 
to the analysis of optimisation techniques to adequately select the ar-
chitecture of the deep neural network, the study of explainable artificial 
intelligence, the analysis of time series similarity methods, and the 
implementation of ensemble methods. 
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