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a b s t r a c t

In shape optimisation problems, subspaces generated with conventional dimension reduction ap-
proaches often fail to extract the intrinsic geometric features of the shape that would allow the
exploration of diverse but valid candidate solutions. More importantly, they also lack incorporation
of any notion of physics against which shape is optimised. This work proposes a shape-supervised
dimension reduction approach. To simultaneously tackle these deficiencies, it uses higher-level in-
formation about the shape in terms of its geometric integral properties, such as geometric moments
and their invariants. Their usage is based on the fact that moments of a shape are intrinsic features
of its geometry, and they provide a unifying medium between geometry and physics. To enrich
the subspace with latent features associated with shape’s geometrical features and physics, we also
evaluate a set of composite geometric moments, using the divergence theorem, for appropriate shape
decomposition. These moments are combined with the shape modification function to form a Shape
Signature Vector (SSV) uniquely representing a shape. Afterwards, the generalised Karhunen–Loève
expansion is applied to SSV, embedded in a generalised (disjoint) Hilbert space, which results in
a basis of the shape-supervised subspace retaining the highest geometric and physical variance.
Validation experiments are performed for a three-dimensional wing and a ship hull model. Our results
demonstrate a significant reduction of the original design space’s dimensionality for both test cases
while maintaining a high representation capacity and a large percentage of valid geometries that
facilitate fast convergence to the optimal solution. The code developed to implement this approach is
available at https://github.com/shahrozkhan66/SSDR.git.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Simulation-driven optimisation of free-form shapes is often
bstructed by high-dimensional design spaces stemming from
he baseline/parent shape parameterisation, which leads to the
otorious curse of dimensionality [1]. A common cure involves
imensionality reduction, also referred to as feature extraction/
mbedding or manifold learning, etc. These approaches aim to
xtract latent features/variables from the design space, which
an be classified as geometrically active or inactive depending
n their importance in affecting a shape’s geometric variabil-
ty [2]. Inactive features are redundant, and their usage has no
r minimal impact on shape variation and performance improve-
ent during optimisation; thus, they can be safely ignored to
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nc-nd/4.0/).
reduce the space’s dimensionality. The geometrically active la-
tent features form a new set of parameters for shape mod-
ification and construct a basis spanning a lower-dimensional
subspace for faster optimisation convergence with fewer com-
putationally intensive design evaluations. The widely used De-
sign Space Dimensionality Reduction (DSDR) approaches include
the Karhunen–Loève Decomposition (KLD) [3] (closely related to
Principal Component Analysis (PCA), the so-called proper orthog-
onal decomposition [4,5]) and their non-linear extensions, such
as kernel PCA [6], ISOMAP [7], LLE [8] to handle design space
non-linearities, if present. Recently, Machine Learning-based ap-
proaches, autoencoders [9,6], Generative-Adversarial Networks
(GANs) [1] and variations [10,11], emerging from applications
in image analysis, object recognition, speech analysis, cluster-
ing, and data visualisation etc., have gained attention in DSDR
literature.

Despite the demonstrated efficiency of the aforementioned
approaches for DSDR, they often suffer from certain drawbacks.
A common deficiency is their inability to preserve a shape’s com-

plexity and its intrinsic underlying geometric structure. Thus, the
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Nomenclature

G two-dimensional manifold
Γ three-dimensional body bounded by G
ϑ̄ coordinate set on G
t design parameters
T n-dimensional design space
tl, tu lower and upper design vector bounding

T
G(ϑ̄, t) continuous shape modification vector

function
g(t) performance index of the design
ϑM arbitrary moment vector point
M(ϑM , t) lumped geometric moment vector
M moment domain
P(ϑ, t) combined geometry and moment shape

signature vector
P(ϑ, t) deviation from the mean of shape signa-

ture vector
P shape signature vector domain
⟨P⟩ mean of shape signature vector
f (ϑ̄), f (ϑM ) positive weight functions
σ 2 variance of shape signature vector
v geometrically- and functionally-active

variable vector
V reduced m-dimensional subspace
Mp,q,r geometric moment of order s = p+q+r
MIp,q,r geometric moment invariant under uni-

form scaling and translation of order s =

p + q + r
MI s vector containing all sth-order geomet-

ric moment invariants
µp,q,r central geometric moment, invariant to

translation
ρ(x, y, z) probability density function
ω(ϑ) orthonormal functions forming the basis

of V
f vector field over volume of Γ
L self adjoint integral operator
ε desired level of confidence for capturing

the variance
d(t) spatial discretisation of P(ϑ, t)
W spatial discretisation of ω(ϑ)
Λ vector of KL-values/eigenvalues
H
(
O,O′

)
Hausdorff distance between two designs

Ψ total number of designs sampled from T

resulting subspace lacks the representation capacity and compact-
ess, which, as defined in [1,11], is subspace’s ability to produced
iverse and valid shapes, respectively, with least number of latent
ariables when being explored for shape optimisation. These
eficiencies can hamper the success of the optimiser as it may
pend the majority of the available computational budget on
xploring infeasible, practically invalid and similar shapes. Fur-
hermore, the basis of the subspace is solely formulated with
eometric features and no information related to physics, against
hich designs are assessed, is incorporated. Therefore, it may
ot be an optimisation-efficient subspace because, even if high
eometric variation is preserved, maximum design improvements
re not guaranteed; see [10,9,2,12]. However, it should be noted
2

that these techniques’ inability to extract appropriate geomet-
ric or physics-associated features is not necessarily an intrinsic
characteristic; it mainly stems from the geometry representa-
tions used in subspace learning, which are commonly low-level
shape discretisations. Thus, extracting intrinsic latent informa-
tion from such representations becomes implausible; therefore,
richer representations with high-level information related to the
underlying shape’s structure and physics are imperative.

1.1. Objective and contribution

To simultaneously tackle the aforementioned challenges as-
sociated with DSDR, we propose a shape-supervised approach,
hich, with the geometric modification function [4], uses the
hape’s integral properties, i.e., geometric moments and their in-
ariants [13,14], to harness the compact geometric representation
f the baseline shape and complement its physics during DSDR.
herefore, the resulting subspace

1. has not only enhanced representation capacity and com-
pactness to produce a valid and diverse set of design alter-
natives, respectively, but

2. is also physically informed to improve the convergence rate
of the shape optimiser towards an optimal solution.

well-known feature of geometric moments is their strong cou-
ling with physics as they provide the geometric foundation for
ifferent physical analyses and, like physics, provide important
lues about the form, distribution and validity of the design. As
ith physics, they depend on the design’s geometry, but their
valuation is substantially less expensive. Therefore, we perform
SDR in a supervised setting where geometric moments are used
s QoI to induce a notion of shape’s physical information, thus
esulting in a shape-supervised subspace, whose basis is not
nly associated with shape’s geometry but also with its physics.
complete workflow of the proposed pipeline is illustrated in

ig. 1. In conclusion, the selection of geometric moments in our
ork is motivated by the following fundamental insights:

1. Geometric moments of a shape are the intrinsic properties
of its underlying geometry and act as a unifying medium
between geometry, and its physical evaluation [13,14].

2. The analysis for any physics requires such integral prop-
erties of the geometry while moments of a domain are
sufficient to ensure accurate integration of a large class of
integrands [14,15].

3. Like physics, geometric moments also act as a compact
shape signature or descriptor facilitating various shape pro-
cessing tasks [16,17].

Geometric moments of higher order are also used in differ-
ent shape processing tasks such as object recognition [17], rigid
body transformation [16], etc. Most notably, in physical analyses,
they are used for parametric sensitivity analyses [18], material
field modelling [19], governing equation of motions for flows
around a body [15], and, recently, for meshfree FEA [14,20], in
which moment-based shape representations are used to aid the
interoperability between CAD representations and physics.

1.2. Overview of the proposed approach

To maximise the accumulation of both geometric and physical
variance in the subspace, our approach uses a set of compos-
ite moments by disintegrating the body geometry into several
subsets of coherent shape. Afterwards, we use the divergence
theorem to evaluate moments of all subsets up to a specific order.

Once moments are evaluated, they are used, along with the shape
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Fig. 1. Workflow illustration of the proposed shape-supervised DSDR approach. It commences by extracting latent features from a shape’s geometric and physical
omains and combines them in a subspace that guarantees geometric and functional variability. For reasons of computational efficiency, geometric moment invariants
re used to capture physical information, and once created, the subspace is connected to the optimiser and the design evaluation module to expedite convergence
o the optimal solution.
odification function, to form a Shape Signature Vector (SSV)
unction, which acts as a descriptor to uniquely represent each
nstance in the design space. Karhunen–Loève Expansion (KLE)
f SSV is evaluated, where the solution of a variational problem
llows for the evaluation of latent features as a linear combination
f original designs. The features provided by KLE are expressed
y the eigenfunctions of a symmetric and positive definite co-
ariance function constructed with SSV. The KL-values associated
ith each feature allow the identification of active and inactive

eatures. The active features reparameterise the shape and act as a
ew basis to span the subspace, retaining the highest variance in
eometry and physics. Moreover, different quality measures are
ormulated to assess the quality of the shape-supervised subspace
n producing rich and valid sets of shapes.

Two test cases, a three-dimensional (3D) wing and a ship
ull, are used to analyse the shape-supervised subspace’s ability
o produce diverse and valid designs. At the same time, the
hip hull model is also used for shape optimisation with re-
pect to the wave resistance coefficient (Cw). Cw is a significant
component of the total ship’s resistance and a critical design
criterion whose evaluation is computationally demanding. These
experiments validate the conservation of physical information
via geometric moments and expedite convergence to optimal
solutions.

1.3. Related works

Recently, GANs [1] have been used for reparameterisation
of the shape with latent features, as baseline parameterisation
approaches, like the ones used in free-form deformation, pro-
duce high-dimensional design spaces [21] that do not guarantee
feasible/valid shapes. Chen et al. [1] proposed the Bézier-GAN
for two-dimensional (2D) aerofoil design by introducing a Bézier
layer into GAN to maximise subspace’s representation capacity
and compactness. However, the baseline parameterisation cannot
automatically guarantee valid shapes and, as a result, these ap-
proaches require a training dataset of existing designs, which may
prevent optimisers from finding innovative designs; a drawback
studied in detail by Li and Zhang in [11]. Moreover, their usage
can be problematic for novel problems, as in this case, creating
training datasets can be extremely arduous.
3

Furthermore, although subspaces resulting from the
approaches described above may address the validity problem,
physics-associated features are still not present. The Active Sub-
space Method [22] and supervised KLE [12] can handle this issue,
but they become computationally intensive as they require direct
evaluation of physics quantities and/or their gradients. Yonekura
and Suzuki [9] recently used conditional variational auto-encoder
(CVAE) for aerofoil design. They used the lift coefficient as a
condition to auto-encoder during training so that the decoder
could generate the shape with specific performance. Chen and
Ahmed [23] proposed PaDGAN to augment the performance of
design into the generator to create high-quality designs with
good optimisation convergence. Another GANs-based method
was proposed by Shu et al. [10], which elevates the quality of
generated designs by iteratively updating the training dataset
using performance-based design filtering. All methods above,
i.e., [22,12,9,23,10] are efficient but supervised and therefore
require performance labels to be evaluated for a large shapes
dataset; if not readily available, the creation of such a dataset is
computationally very demanding.

The remainder of this paper is organised as follows: Section 2
discusses the problem formulation, evaluation of geometric mo-
ments and KLE of SSV. A detailed discussion on the relevance
of geometric moments with Cw , along with the description of
the test case, is given in Section 3. The numerical results of the
proposed technique are provided in Section 4. Section 5 presents
concluding remarks and opportunities for future work.

2. Proposed approach

This section provides an in-depth description of the proposed
approach, including the general assumptions and the mathemati-
cal formulation of SSV generation. A brief overview of the criteria
used to assess the quality of a subspace is also provided.

2.1. Problem formulation

Let Γ be a 3D body bounded by a closed 2D manifold G,
representing a baseline/parent design, and ϑ̄ ∈ G ⊆ Rn̄, with
n̄ = 1, 2, 3, a coordinate set on this manifold. For an automatic
shape modification, G is commonly parameterised with n geo-
metric parameters, defining the parametric/design vector t =
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t1, t2, . . . , tn) ∈ T ⊆ Rn. Here, T is the n-dimensional design
pace, which is bounded by appropriately defined set constraints,
.g., T :=

{
t : t li ≤ ti ≤ tui ,∀i ∈ {1, 2, . . . n}

}
with tl, tu ∈ Rn

enoting the lower and upper bound vector, respectively. The
arametric vector t of G yields a continuous shape modification
ector G(ϑ̄, t) ∈ RnG with nG = 1, 2, 3, which for any t ∈ T

modifies the initial ϑ̄ to produce new ϑ̄
′
that defines the modified

G′, i.e.,

ϑ̄
′
= ϑ̄ + G(ϑ̄, t), ∀ϑ̄. (1)

Furthermore, in shape optimisation, we also assume at least one
given function g : T → R which, for each t ∈ T , evaluates the
performance index ℓ = g(t) ∈ R of the corresponding design.
Therefore, the optimisation problem can be stated as follows:

Find t∗ ∈ Rn
:ℓ∗

= g(t∗) = min
t∗∈T

g(t). (2)

Obviously, optimal design will be then defined by the correspond-
ing set ϑ̄

∗
, with ϑ̄

∗
= ϑ̄ + G(ϑ̄, t∗).

In a typical shape optimisation problem, we may use a set
of alternative performance indices (multi-objective optimisation)
and additional functional constraints (design specifications/
requirements) expressed as inequalities and equalities that fur-
ther limit the space of feasible designs. Finally, an appropriate
optimisation method is employed to search for the optimum
solution (t∗) within the feasible space bounded by all imposed
constraints.

2.2. Design space dimensionality reduction

As explained in Section 1, the computational cost of shape
optimisation increases exponentially with the dimension of T .
This cost grows further if evaluating the performance index ℓ
is complicated and time-consuming. Therefore, in the present
work, we intend to cure the curse of dimensionality with feature
extraction techniques to create a lower-dimensional subspace
using DSDR. Typically, dimensionality reduction is achieved via
extraction of latent features/variables of T which reduces its
dimension while retaining, to the extent possible, the geometric
variability exhibited in the resulting domains G′. However, due
to the aforementioned drawbacks associated with a typical DSDR
approach, we aim to develop a subspace with latent variables
that go beyond the features extracted from T . These additional
elements comprise appropriate geometric moments computed on
the body geometry. Therefore, the resulting subspace is not only
adequately rich but also robust and efficient when used for shape
optimisation, as we will demonstrate in Section 3.

To construct this subspace, we consider that along with the
continuous shape modification vectors, G(ϑ̄, t), there is a lumped
geometric moment vector, M(ϑM , t) ∈ RnM with nM = 1, 2, . . . ,
which has a null measure and corresponds to an arbitrary point,
ϑM , where this moment vector is virtually defined. We further as-
sume G and M as domains of definition for G(ϑ̄, t) and M(ϑM , t),
respectively; see Fig. 2. Now, consider a combined geometry and
moment vector P(ϑ, t) ∈ RnP , nP = nG + nM , defined in the
domain P := G ∪ M with ϑ = (ϑ̄,ϑM ) and

P(ϑ, t) =
(
G(ϑ̄, t),M(ϑM , t)

)
. (3)

P(ϑ, t) contains both the geometry and its moments and forms a
unique SSV function encompassing high level information about
the baseline design. Also consider that P(ϑ, t) belongs to a disjoint
Hilbert space L2f (P) as shown in Fig. 2, which is defined by the
generalised inner product:

(a, b)f =

∫
P
f (ϑ)a(ϑ) · b(ϑ)dϑ

=

∫
f (ϑ̄)a(ϑ̄) · b(ϑ̄)dϑ̄ + f (ϑM )a(ϑM ) · b(ϑM ),

(4)
G

4

Fig. 2. Domains for shape modification vector and lumped geometric moment
vector in a disjoint Hilbert space.

with the associated norm ∥a∥ = (a, a)
1
2
f , where f (ϑ̄), f (ϑM ) ∈ R

are appropriate positive weight functions used to focus analysis
on certain regions of G.

The identification of optimal design through this process may
suffer from epistemic uncertainties [3]. Therefore, one can con-
sider t as an element of a stochastic space T with an associated
Probability Density Function (PDF) ρ(t), which represents the
prior probability of finding optimal design in a given T . An appro-
priate definition of ρ(t) is nontrivial; therefore, the prior is usually
defined as a uniform distribution function, i.e., any realisation of
t has the same probability of being t∗. Once ρ(t) is defined, the
mean and the variance of SSV can be evaluated as

⟨P⟩ =

∫
T
f (ϑ)P(ϑ, t)ρ(t)dt, (5)

σ 2
= ⟨∥P∥

2
⟩ =

∫
T

∫
P
f (ϑ)P(ϑ, t) · P(ϑ, t)ρ(t)dϑdt, (6)

where P is the deviation from the mean of SSV (i.e., P = P −

⟨P⟩) and ⟨·⟩ is the ensemble average over t. The aim for dimen-
sionality reduction is to find the lower-dimensional representa-
tion of P(ϑ, t), namely, P(ϑ, v), which, instead of t depends on
a Geometrically- and Functionally-Active Latent Variable (GFALV)
vector, v = {v1, v2, v3, . . . , vm} ∈ V ⊆ Rm. GFALV is constructed
using an appropriate combination of features from T and SSV
which will constitute the coordinates in a new m-dimensional
subspace, V :=

{
v : vli ≤ vi ≤ vui ,∀i ∈ {1, 2, . . .m}

}
, with m <

, i.e., V is a low-dimensional space when compared with the
riginal design space, T . This new vector space can be employed
o expedite the shape optimisation. Fig. 3 graphically illustrates
he notions of shape modification via original and the proposed
pproach.

.3. Geometric moments

In the construction of SSV, introduced in Eq. (3), we use a finite
umber of moments of Γ , which are defined by the following
quation;

p,q,r =

∫
+∞

−∞

∫
+∞

−∞

∫
+∞

−∞

xp yq zr ρ(x, y, z) dΓ ,

p, q, r ∈ {0, 1, 2, . . . },
(7)

which evaluates the s th-order geometric moments of Γ , where

= p + q + r and ρ(x, y, z) =

{
1 if (x, y, z) ∈ Γ

0 otherwise
. Given now a

non-negative integer s, we consider the vector M s to contain all
2
Mp,q,r moments for which p + q + r = s. For instance, M =
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Fig. 3. Representation of the scheme and notation used for the current
formulation of shape modification.

{
M2,0,0,M0,2,0,M0,0,2,M1,1,0,M1,0,1,M0,1,1

}
∈ RnM=6. Further-

ore, the zeroth- and first-order moments, i.e., M0,0,0 and M1,0,0,
M0,1,0, M0,0,1, are commonly used in computer aided design and
engineering packages to compute an object’s volume, V = M0,0,0,
and its centroid c =

{
Cx, Cy, Cz

}
=

{
M1,0,0
M0,0,0

,
M0,1,0
M0,0,0

,
M0,0,1
M0,0,0

}
. If

(x, y, z) is the PDF of a continuous random variable then M0
=

, whereas M1, M2, M3 and M4, represent the mean, variance,
skewness and kurtosis of the random variable, respectively.

An appropriate combination of geometry and its moments re-
sults in a vector that better captures the shape’s intrinsic features
and offers a more accurate and unique shape representation that
acts as its descriptor, or signature [16]. Theoretically, s ranges
from 0 to ∞, though there exist classes of objects for which s is
finite when, e.g., dealing with the class of the so-called quadra-
ture domains in the complex plane [24] or when approximating
convex bodies using Legendre moments [25]. The geometric mo-
ments of Γ can be thought of as projections (with respect to L2
nner product) of ρ onto any polynomial basis, such as mono-
mials, Legendre polynomials, etc. [14]. In Mathematical Analysis,
the classical moment problem, which has been treated by various
famous mathematicians such as Markov in 1883 and Stieltjes in
his famous 1894 paper on: ‘‘Recherchers sur les fractions contin-
ues’’, can be stated as follows: Recover a function f (x) given its
moments Mp =

∫
xpf (x)dx, p = 0, 1, . . .. In all these guises, the

oment problem is recognised as a notoriously difficult inverse
roblem, often leading to the solution of very ill-posed systems
f equations that usually do not have a unique solution [26].

.3.1. Geometric moment computation
There exist several methods available in the literature for

valuating geometric moments, but the most commonly used
pproach is via Gauss’ divergence theorem [27,13,14], which al-
ows for the conversion of volume integrals to integrals over the
ounding surface(s). In the following, we briefly explain the eval-
ation of geometric moments using the divergence theorem for
triangulation S =

⋃N
i=1 Ti approximating the surface bounding

, where N is the number of triangles in S.
To start with, let be given a vector field f : Rn

→ R3 over
volume V of Γ , whose boundary comprises piecewise smooth
surfaces. The divergence theorem states that the volume integral
of the divergence (div) of f over V equals the surface integral of
the inner product of f with the normal vector n̂ of S over S. This
allows the conversion of volume integrals, which are generally
difficult to evaluate, into easier surface integrals, when f is con-
tinuous and has piecewise continuous first partial derivatives on
a neighbourhood of V . To evaluate the moments in Eq. (7) using
this theorem, we consider the following field:

f =
1
xp yq zr

(
x

î +
y

ĵ +
z

k̂
)
. (8)
3 p + 1 q + 1 r + 1
5

hen,

p,q,r =

∫
V
div(f) dV =

N∑
i=1

∫
Ti

f · n̂i dSi, (9)

where n̂i is the unit normal vector on the triangle Ti, which can
be represented as a linear parametric surface as

Si(u, v) = αiu + βiv + ci, (u, v) ∈ Ωi ⊂ R2, αi ⊥ βi (10)

Here,Ωi can be taken to be the triangle with vertices (0, 0), (1, 0),
(0, 1). Then

Mp,q,r =

N∑
i=1

∫
Ti

f · n̂i

√
EiJi − F2i dudv, (11)

here

i = Si,u·Si,u = |αi|
2, Fi = Si,u·Si,v = 0, Ji = Si,v·Si,v = |βi|

2. (12)

Here Ei, Fi and Ji are the constant first-order fundamental quan-
tities of the Si. Now, substituting Eq. (12) into Eg. (11) we get

Mp,q,r =

N∑
i=1

∫
Ti

f · n̂i |αi||βi| dudv (13)

with

n̂i =
Si,u × Si,v√
EiJi − F2i

=
αi × βi

|αi|
⏐⏐βi

⏐⏐ (14)

and

f(x, y, z)|Ti = f (xi(u, v), yi(u, v), zi(u, v)) , (15)

where xi(u, v), yi(u, v) and zi(u, v) are the x-, y- and z-components
of Si(u, v).

2.3.2. Geometric moment invariants
The geometric moments are generally variant with respect

to rigid and non-rigid transformations, such as translation, ro-
tation and scaling [28]. However, most physical quantities are
invariant to either all or some of these transformations. There-
fore, before the incorporation of geometric moments in P(ϑ, t),
their invariance with respect to translation and scaling has to be
secured. Invariant geometric moments with respect to translation
and scaling are discussed below; see also [28] for a complete
discussion on moment invariants.

Now, if we consider the geometric moments about the cen-
troid c(Γ ) = (Cx, Cy, Cz) of Γ , we get the so-called central
geometric moments which are invariant to translation and, based
on Eq. (7), are defined as:

µp,q,r =

∫
Γ

(x − Cx)p (y − Cy)q (z − Cz)rdΓ . (16)

To further achieve invariance of µp,q,r to scaling, we assume that
Γ is uniformly scaled by a factor γ , which gives

µ̂p,q,r = γ p+q+r+3µp,q,r . (17)

Then, one can easily conclude that

MIp,q,r =
µp,q,r

(µ0,0,0)1+(p+q+r)/3 (18)

is an invariant geometric moment for Γ under uniform scaling
and translation [28]. For any non-negative integer, s, the vector
MI s contains all the sth order invariant moments to translation
and scaling; recall that p+ q+ r = s. These vectors will therefore
take the place of the moment vector appearing in Eq. (3). More-
over, by definition, we have MI0 = 1 and all elements of MI1
equal to zero for any Γ .
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.4. Karhunen–Loève expansion of SSV

After the initial construction of SSV with the invariant geomet-
ic moments, we employ KLE, which aims to find an optimal basis
f orthonormal functions for the linear representation of SSV so
hat:

P(ϑ, t) ≈

m∑
i=1

viωi(ϑ), (19)

here {ωi(ϑ)}mi=1 are orthonormal functions forming the basis
f the subspace V which will retain, to the extent possible, the
ariance in shapes and moments exhibited in P . These functions
re used to form the GFALV vector, v ∈ V , whose ith element can
e represented as

i =
(
P,ωi

)
f =

∫
P
f (ϑ)P(ϑ, t) · ωi(ϑ)dϑ, (20)

hich, as explained earlier, will be used for shape modification
uring optimisation. The optimal condition for KLE is to construct
asis functions retaining maximum geometric variance (σ 2) via

Eq. (19). Therefore, combining Eqs. (6), (19) and (20) we find:

σ 2
=

∞∑
i=1

∞∑
j=1

⟨vivj⟩(ωi(ϑ),ωi(ϑ))f

=

∞∑
j=1

⟨
v2j
⟩
=

∞∑
j=1

⟨(
P,ωi(ϑ)

)2
f

⟩
.

(21)

he basis retaining the maximum variance is provided by the
olution of the following variational problem [3]:

min
ω∈L2f (P)

J (ω(ϑ)) =

⟨(
P,ω(ϑ)

)2
f

⟩
ubject to (ω(ϑ),ω(ϑ))2f = 1,

(22)

hich, as proven in [3], yields

ω(ϑ) =

∫
P
f (θ)

⟨
P(ϑ, t) ⊗ P(θ, t)

⟩
ω(θ)dθ = λω(ϑ), (23)

here ⊗ is the outer product, θ,ϑ ∈ G, and L is the self adjoint
ntegral operator whose eigensolutions form the basis function
or the linear representation of P(θ, t) given in Eq. (19). The
esulting eigenvectors, or KL-modes {ωi(ϑ)}∞i=1, are orthogonal
nd constitute a complete basis for L2f (G ∪ M). Additionally, the
igenvalues or KL-values {λi}

∞

i=1 represent the variance,

2
=

∞∑
i=1

λi, (24)

etained by the associated basis. The first m eigenvectors,
.e., {ωi(ϑ)}mi=1 constitute the optimal basis for the approximation
n Eq. (19). Moreover, considering ε as the desired level of confi-
ence for capturing the variance, m in Eq. (19) can be selected to
atisfy
m∑
i=1

λi ≥ ε

∞∑
i=1

λi = εσ 2 (25)

ith 0 < ε ≤ 1 and λi ≥ λi+1.
The numerical implementation of Eq. (23) – or its generalised

form; see Eq. (4) – is performed using the approach of Diez
et al. in [3]. Specifically, the steps that need to be followed are
presented below:

1. Define an orthonormal basis of RnP , {e }
nP ;
k k=1

6

2. Express the deviation from SSV mean, P , and KL-modes ω
in term of the basis, i.e.,

P(ϑ, t) =

nP∑
k=1

Pk(ϑ, t) ek; ω(ϑ) =

nP∑
k=1

ωk(ϑ) ek, (26)

where Pk = P · ek, ωk = ω · ek and nP = nG + nM .
Note that P in Eq. (26) represents a realisation of SSV,
associated to t, before dimension reduction is applied. Re-
gardless of shape modification function, ω in Eq. (26) is the
solution used to form the reduced-dimensional basis for
shape optimisation;

3. Compute the integral in Eq. (4) by discretising the domain
of integration, ϑ̄ ∈ G, into E quadrilateral mesh elements
with measure equal to ∆Gi and centroid at{
ϑ̄i, i = 1, 2, . . . , E

}
;

4. Use the spatial discretisation d(t) and W of P(ϑ, t) and
ω(ϑ), respectively;

5. Finally, recast the problem as an eigenproblem of a matrix
(A):

AW = WΛ, (27)

where, W =
{
wi, i = 1, 2, . . . , nGE + nM

}
is a square ma-

trix whose ith column, wi, is the corresponding eigenvector
or KL-mode. The KL-values,
Λ = {λi, i = 1, 2, . . . , nGE + nM}, represent the variance
retained by the associated KL-mode. For example, at nP = 4
(with nG = 3 and nM = 1), A can be represented as

A =

⎡⎢⎣C11 C12 C13 C14
C12 C22 C23 C24
C13 C32 C33 C34
C14 C24 C34 C44

⎤⎥⎦
⎡⎢⎣Q 0 0 0
0 Q 0 0
0 0 Q 0
0 0 0 Q

⎤⎥⎦ , (28)

where Clk =
⟨
dl(t) [dk(t)]T

⟩
, ∀ l, k = 1, 2, . . . , nP and

Q is the weighted matrix to normalise Clk, so all of its
components have same influence while computing A. For
dimensionality reduction we first rearrange KL-values in Λ
in descending order, i.e., λi ≥ λi+1. Afterwards, we select
the first m KL-values {λi}

m
i=1 via Eq. (25) along with their

associated KL-modes
{
wi
}m
i=1, which correspond to features

with the greatest impact on geometry changes. The spatial
discretisation of P(ϑ, t) and ω(ϑ) (namely d(t) and W) can
now be approximated and defined as

d(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1(ϑ̄1, t)
...

P1(ϑ̄E, t)
P2(ϑ̄1, t)

...

P2(ϑ̄E, t)
P3(ϑ̄1, t)

...

P3(ϑ̄E, t)
P1(ϑM , t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≈

m∑
i=1

viwi
; wi

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω1(ϑ̄1)
...

ω1(ϑ̄E)
ω2(ϑ̄1)
...

ω2(ϑ̄E)
ω3(ϑ̄1)
...

ω3(ϑ̄E)
ω1(ϑM )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (29)

The latent variables v ∈ Rm formulated in Eq. (20) can be finally
obtained in a discretised form as

vi = d(t)T

⎡⎢⎣Q 0 0 0
0 Q 0 0
0 0 Q 0
0 0 0 Q

⎤⎥⎦wi. (30)

It should be noted that the KL-modes are formulated while taking
into account both geometry and geometric moments in order
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o preserve the underlying structure of G and to accumulate
the functional information of designs in T . Therefore, by using
only the first nGE elements of column vector wi in Eq. (30) one
could form the latent variable vector which is used for the shape
modification of G during the shape optimisation performed in the
subspace V :=

{
v : vli ≤ vi ≤ vui ,∀i ∈ {1, 2, . . .m}

}
.

.5. Additional design space considerations

Apart from the dimension of the design space, the use of
eaningful parameter bounds, [tl, tu], is also crucial since they
efine the allowable/feasible domain for exploration and identi-
ication of any optimum regions or points. Generally, exploration
f a large space is favoured, though it considerably increases
he chances of encountering invalid and impractical designs. Al-
hough such designs can be avoided by adding more design
onstraints, this will inevitably make the optimisation problem
n Eq. (2) more challenging and time-consuming. On the other
and, a narrow design space weakens the need for additional
onstraints but, at the same time, may eliminate large regions
here highly-improved or optimum designs lie. Therefore, de-
igners tend to use their field experience to define a design space
hat balances robustness and allows diversity in G.

2.5.1. Bounds on subspaces
Setting the subspace’s parameter bounds, (vl, vu), can be even

more challenging as designers have to work with latent variables,
v, instead of the original design variables t. Commonly, design
variables t have physical meaning, i.e., lengths, radii, angles, etc.,
whereas no physical interpretation is generally expected by any
components of v. We need to be very cautious when setting the
bounds of V since we have to ensure that any design produced
in V should also be a member of the appropriately bounded
T , i.e., conforming to all design constraints and requirements.
To overcome this problem, one may project the bounds of the
original design space on the subspace. In this setting, the range
of the ith latent parameter vi can be evaluated as

vi ∈

[
min
tψ∈X

(
d(tψ )T

[Q 0 0
0 Q 0
0 0 Q

]
wi

)
,

max
tψ∈X

(
d(tψ )T

[Q 0 0
0 Q 0
0 0 Q

]
wi

)]
,

ψ = 1, 2, 3, . . . ,Ψ ,

(31)

where Ψ is the number of points densely sampled from T . An-
other common approach employs the standard deviation from
the mean shape lying at the centroid of the design space. In this
approach, the bounds for the ith variable are set as

vi ∈

[
−

√
κλi,

√
κλi

]
, κ ∈ {1, 2, 3}. (32)

he latter approach is computationally efficient, and our experi-
ents have shown that it can provide a good balance between

he number of invalid shapes and the allowed diversity. Both
pproaches are analysed experimentally, and quality criteria are
roposed in the subsequent section.

.5.2. Design space quality
To quantify the quality of a subspace with respect to its ability

o produce a wide range of diverse and valid shapes, we intro-
uce relevant measures. The diversity measure is based on the
ausdorff distance [29], which is widely used to measure how far
wo subsets of a metric space are from each other. Therefore, it
7

can also be used to measure the similarity/diversity between two
free-form shapes. Consider now an instance of v that modifies the
parent design G to G′. Both G and G′ can be then discretised by
an appropriately dense point set, O = {oi, i ∈ {1, 2, . . . , no}} ∈

G ⊆ R3 and O′
= {o′

j, j ∈ {1, 2, . . . , n′
o}} ∈ G′

⊆ R3 containing
a total no and n′

o points, respectively. The Hausdorff distance, H ,
between O and O′ can be then evaluated as

H
(
O,O′

)
= max

{
sup
o∈O

d(o,O), sup
o′∈O′

d(O, o′)
}
, (33)

where d(o,O′) = info′∈O′ d(o, o′) quantifies the distance from a
point o ∈ O to the set O′. Note that both O and O′ need to be
subsets of the same metric space. In our case we use the Euclidean
distance for d(o, o′) (and d(o′, o)), and we further assume that the
Hausdorff distance between G and G′ is quantified by H

(
O,O′

)
,

i.e., H
(
G, G′

)
:= H

(
O,O′

)
. Hence, we define the diversity mea-

sure to be the average of the Hausdorff distance between the parent
design and a dense set of designs sampled from the subspace V .
Therefore, the higher the value of diversity measure the richer
the subspace. However, as mentioned before, a more diverse
design space may also have a high possibility of producing invalid
geometries. A typical example of invalid free-form geometries is
that of self-intersecting surfaces. An ideal subspace will have the
highest diversity and few invalid geometries. Therefore, we define
the validity measure as the ratio of invalid over valid designs for a
dense sampling of V . Obviously, subspaces with a validity measure
equal or close to 0 are preferred.

Algorithm 1 briefly summarises the step-wise procedure of
the proposed approach from dimension reduction to design space
formulation and shape optimisation.

Algorithm 1 Step-wise procedure for implementing the proposed
approach.

1: Create an initial model G composed of coordinate set ϑ̄ ∈

G ⊆ Rn̄ and parametrise it with n design parameters
(t1, t2, . . . , tn).

2: Define the design space T with lower and upper bounds of n
parameters, T := {t li ≤ ti ≤ tui , ∀i ∈ {1, 2, . . . n}}.

3: Define a shape modification vector G(ϑ̄, t) ∈ RnG to modify G
for any realisation t ∈ T .

4: Evaluate geometric moment invariant vector MI s ∈ RnM of
order s containing nM = (s + 1)(s + 2)/2 components using
Eq. (18).

5: Defined combined geometry and moment shape signature
vector P(ϑ, t) ∈ RnP , nP = nG+nM , in the domain P := G ∪ M
with ϑ = (ϑ̄,ϑM ); see Eq. (3).

6: Find the mean and variance of SSV using Eqs. (5) and (6),
respectively.

7: Employ the KLE to find an optimal linear representation of
SSV in Eq. (19) while recast the problem in Eq. (23) as an
eigenproblem resulting AW = WΛ.

8: Rearrange columns of W, which represents KL-
modes/eigenvectors, based on their associated
KL-values/eigenvalues, such that λi ≥ λi+1.

9: Identify first m KL-modes capturing minimum 95% of the
variance based on Eq. (25).

0: Form geometrically- and functionally-active latent variable
vector v = {vi, i = 1, 2, . . . ,m} as in Eq. (30), where m < n.

11: With v create a subspace V ⊂ Rm as, V := {v : vli ≤ vi ≤

vui , ∀i ∈ {1, 2, . . .m}}, where vli and vui are the lower and
upper bounds set using either Eq. (31) or (32).

12: Solve Eq. (2) to find an optimal design v∗ in V .
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Fig. 4. (a) Parametric representation of the aerofoil defined with 12 different
parameters (highlighted in red). (b) 3D wing model constructed with three
aerofoils; resulting in n = 33 design parameters and is used as a test case for
the validation of the proposed approach. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

3. Test cases

We used two different 3D modelling cases, a wing model
based on the NACA 2410 aerofoil1 (see Fig. 4) and a US Navy
Combatant DTMB 5415 hull model2 (see Fig. 5), to analyse and
validate the proposed approach. We use the wing model to
demonstrate the capability of the proposed approach to generate
subspaces with high representation capacity and compactness.
The hull model case goes one step further to demonstrate that
the proposed approach not only produces subspaces with high
representation capacity and compactness but are also physics-
informed as the physical QoI is dependent on geometric mo-
ments. Therefore, we can significantly expedite the shape opti-
misation process. In the subsequent subsections, we discuss these
two test cases in detail.

3.1. 3D wing model

The 3D wing model is based on NACA 2410 aerofoil sec-
tions, parameterised via the approach described in [30]; see also
Fig. 4(a). This parameterisation uses 12 parameters to define a foil
profile. The construction of the aerofoil commences with the def-
inition of four simple cubic Bézier curves employed to create the
final cubic B-spline curve. The foil’s chord length (L) is the only
dimensional parameter, and all remaining length parameters are
non-dimensionalised by it and vary between [0, 1] while always
guaranteeing a valid aerofoil shape instance. Readers are advised
to refer to [30] for details on the construction and the parametric
definition of the aerofoil. The wing, shown in Fig. 4(b), is con-
structed using three independent aerofoil sections placed at the
root, mid-span, and tip of the wing, which follow an appropriate
chord-length distribution along the span-wise direction. A fixed

1 See, for example, http://airfoiltools.com/airfoil/details?airfoil=naca2410-il
or more information on NACA 2410 profile.
2 See, for example, http://www.simman2008.dk/5415/combatant.html for
ore details on DTMB 5415.
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sweep angle is used, and the final NURBS surface, representing
the wing shape, is generated by a cubic lofting operation. The
principal dimensions of the wing, i.e., span length and swept
angle, are kept fixed and set to 1.2 meters and 4.29◦, respectively.
The chord length L at root and tip is equal to 0.15 and 0.06 m,
respectively. The remaining shape parameters, n = 3 × 11, are
efined to reconstruct NACA 2410 profiles for the parent design
nd are considered free parameters for the design space. Finally,
o initiate the DR, the entire surface is discretised with E =

0× 25 nodes by directly evaluating them on the NURBS surface
f the wing.

.2. DTMB hull model

The DTMB 5415 hull model is a widely used benchmark ship
mployed in shape optimisation, especially in the pertinent re-
earch community. In the present work, this parent model is
onsidered for the minimisation of the ship hull’s wave-making
esistance coefficient, Cw . Wave-making resistance constitutes a
art of the ship’s total resistance. It corresponds to the energy
onsumed to generate the free-surface waves appearing when a
ody moves on or near the free-surface of oceans, rivers or lakes.
t is a significant part of a ship’s total resistance for high Froucad
e numbers, i.e., high speed–length ratios, common for military
nd large container ships. Moreover, Cw is sensitive to local fea-
ures of the hull form, such as the bulbous bow or sonar dome;
hus, a significant reduction in Cw can be achieved without shape
ptimisation affecting the ship’s overall dimensions or capacity,
hich are critical design constraints. Therefore, minimising this
esistance component is extremely important for several ships;
owever, evaluating it is computationally intensive.
Relation of moments with Cw: The flow around a slender ship

oving on the free surface with a constant velocity can be repre-
ented by using an appropriate source–sink distribution along its
entre plane. The strength of these sources is proportional to the
ongitudinal rate of change of the ship’s cross-sectional area [31],
nd this aspect can be well captured by geometric moments,
specially those of higher order. In fact, an early derivation for
he evaluation of Cw for slender ships, known as Vosser’s integral,
eveals explicit dependence on the longitudinal derivative of the
ross-sectional area [31], i.e., S ′(x) =

d
dxS(x) where S(x) =∫

Φ(x) dydz is the cross-sectional area, and Φ(x) denotes the cross-
section of a ship hull at the longitudinal position x. Let now
mp =

∫ L
o xpS ′(x)dx be the p-th order moment of S ′(x) with x = 0

and x = L corresponding to the stern and bow tips of the hull,
respectively. Assuming now that S(0) = S(L) = 0 we get:

mp = −p
∫ L

0
xp−1S(x)dx = −p

∫ L

0

∫
Φ(x)

xp−1dxdydz, (34)

which leads to

mp = −pMp−1,0,0, (35)

where Mp−1,0,0 is a component of the hull’s geometric moments
vector of order s = p + q + r = p − 1; see Eq. (7) . Thus,
p-order 1D moments of S ′(x) are directly linked to (p − 1)-
order 3D longitudinal moments of the hull. These moments along
with corresponding G(ϑ, t), create the SSV which can be used
in the previously described KLE formulation. We can thus say
that our design vector is augmented with a physics-informed part
expressed by geometric moments.

It should be noted that one cannot expect that every physical
QoI of integral character is strongly connected with the geomet-
ric moments of the body; thus, the usage of moments cannot
guarantee a physics-informed subspace. For example, viscous-
pressure resistance is expressed as an integral over the wetted

http://airfoiltools.com/airfoil/details?airfoil=naca2410-il
http://www.simman2008.dk/5415/combatant.html
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surface of the body; nevertheless, it depends on local proper-
ties of the surface, such as smoothness and curvature, which
can act as turbulence generators by triggering flow separation.
However, even if there is no strong connection of physics under
consideration with geometric moments, their usage, as explained
earlier, can still provide a high-level intrinsic geometric infor-
mation of the shape’s geometry, which is imperative to learning
an efficient subspace with enhanced representation capacity and
compactness.

Shape Modification Method: To achieve a plausible shape
variation of the parent hull during shape optimisation, a Global
Modification Function (GMF) employing n = 27 parameters
is used for G(ϑ̄, t) with nG = 3. GMF is a grid modification
approach performed using a shape modification function based
on vector-valued functions defined on a design grid. These func-
tions are defined with the objective that during modification, the
underlying structure of the design should be preserved, and the
design grid used for simulation to evaluate Cw does not have
to regenerate. Details of the description of this approach can be
found in [4].

Hydrodynamic Solver and Setup: Hydrodynamic simulations
for evaluating Cw are performed using a software package based
on a linear potential flow theory using Dawson (double-model)
linearisation, whose details of the employed formulation, numer-
ical implementations, and validation of the numerical solver are
provided in [32]. The computational domain for the free-surface
calculation extends from 1Lpp upstream to 3Lpp downstream, and
1.5Lpp sideways. A total of 75 × 20 grid nodes are used for
the free surface, whereas E = 90 × 25 nodes are used for the
hull discretisation and simulation is performed at Froude number
0.25.

4. Results and discussion

This section discusses the results of extensive experimentation
with the proposed approach to analyse its performance and prove
its capability for efficient dimensionality reduction compared to
other existing methods.

4.1. Evaluation of geometric moment invariants

Geometric moments and their invariants of any order can be
calculated for geometries satisfying the conditions indicated in
Section 2.3. However, high-order geometric moments can be sen-
sitive to noise [17] while at the same time, numerical inaccuracies
are ever-present when evaluating high-order terms [16]. Further-
more, a literature review in various application areas, ranging
from kinetic equations [15] to shape retrieval [28], reveals that
moments of an order higher than four are rarely useful. We
limited the order of geometric moments invariants appearing in
SSV up to s = 4 in this connection. The 0th-, 1st, 2nd-, 3rd-
and 4th-order geometric moments have nM equal to 1, 3, 6, 10
and 15 components, respectively. The moment invariants for the
wing and the submerged part of the hull are presented in Tables 1
and 2, respectively. Due to symmetries in shape, any vanishing

geometric moment invariants are not added to SSV.

9

Table 1
Geometric moment invariants up to 4th-order evaluated for the baseline wing
shape.
MI0,0,0 MI1,0,0 MI0,1,0 MI0,0,1 MI2,0,0
1 0 0 0 9.927E−02
MI0,2,0 MI0,0,2 MI1,1,0 MI0,1,1 MI1,0,1
8.922E−04 10.268 −3.222E−04 −1.213E−02 4.482E−01
MI0,0,3 MI0,1,2 MI0,2,1 MI0,3,0 MI1,0,2
18.353 −2.170E−02 −1.004E−03 7.692E−06 8.018E−01
MI1,1,1 MI1,2,0 MI2,0,1 MI2,1,0 MI3,0,0
−1.191E−03 −1.012E−04 −5.843E−02 −4.146E−04 −4.479E−03
MI0,0,4 MI0,1,3 MI0,2,2 MI0,3,1 MI0,4,0
2.415E+02 −2.855E−01 7.848E−03 −3.353E−05 1.925E−06
MI1,0,3 MI1,1,2 MI1,2,1 MI1,3,0 MI2,0,2
10.553 −1.070E−02 4.311E−04 −8.069E−07 1.143
MI2,1,1 MI2,2,0 MI3,0,1 MI3,1,0 MI4,0,0
−4.585E−04 7.540E−05 9.955E−02 −3.682E−05 2.257E−02

Table 2
Geometric moment invariants up to 4th-order evaluated for the baseline hull
shape.
MI0,0,0 MI1,0,0 MI0,1,0 MI0,0,1 MI2,0,0
1 0 0 0 2.315
MI0,2,0 MI0,0,2 MI1,1,0 MI0,1,1 MI1,0,1
4.197E−02 6.984E−03 0 0 −2.378E−02
MI0,0,3 MI0,1,2 MI0,2,1 MI0,3,0 MI1,0,2
−3.303E−04 0 1.076E−03 0 2.786E−03
MI1,1,1 MI1,2,0 MI2,0,1 MI2,1,0 MI3,0,0
0 −9.078E−03 2.452E−03 0 4.404E−01
MI0,0,4 MI0,1,3 MI0,2,2 MI0,3,1 MI0,4,0
1.333E−04 0 2.258E−04 0 3.997E−03
MI1,0,3 MI1,1,2 MI1,2,1 MI1,3,0 MI2,0,2
−8.841E−04 0 −5.538E−04 0 2.298E−02
MI2,1,1 MI2,2,0 MI3,0,1 MI3,1,0 MI4,0,0
0 6.045E−02 −2.238E−01 0 12.370

4.2. Dimension reduction

The proposed DSDR approach commences with the definition
of bounding limits for parameters in T , which for the wing and
ull models are assigned to 0 ≤ t ≤ 1 and −1.02 ≤ t ≤ 1.02,
espectively. According to [4,30] these values provide sufficient
ariation with a relatively large number of valid shapes. During
imension reduction, the ensemble averages, ⟨·⟩ (in Eq. (5)), over
is evaluated using Monte Carlo sampling, with statistically

onverged number of samples Ψ = 9000, {tψ }
Ψ
ψ=1 ∼ ρ(t). ρ(t) is a

selected to be a uniform distribution, thus each shape in T has the
same possibility to be optimal. The lth component of {P l(ϑ, tψ )},
namely dl(tψ ), which is discretised deviation from the mean SSV,
is evaluated as

dl(tj) = {Pl(ϑ, tψ )} −
1
Ψ

Ψ∑
ψ=1

{Pl(ϑ, tψ )}, (36)

which for all the samples gives a matrix Dl =
[
dl(tψ ),∀j = 1, 2,

3 . . .Ψ ]. Using this, the sub-matrix in Eq. (28) can be evaluated
as

Clk =
1
DlDT . (37)
Ψ
k



S. Khan, P. Kaklis, A. Serani et al. Computer-Aided Design 150 (2022) 103327

S
a
d
r
E

N

t
o

imilarly, all the components of Clk, l, k = 1, . . . , nP are evalu-
ted to compute A. Now, in the discrete form, quality of lower-
imensional representation P(ϑ, v) can be assessed via the
econstruction error, measured by the Normalised Mean Squared
rror (NMSE) as

MSE =

∑Ψ

ψ=1

d(tψ ) − d(vψ )
2∑Ψ

ψ=1

d(tψ )2 . (38)

In order to test and analyse the performance of the proposed
approach, different subspaces with varying SSVs are constructed.
The employed SSVs contain either a single high order vector,
i.e., MI s ∈ RnM with s = 2/3/4 and nM = 6/10/15, respec-
ively, and their combinations specifically for the hull model. In
ther words, the tested SSVs are the following:

(
G(ϑ, t),MI2

)
,(

G(ϑ, t),MI3
)
,
(
G(ϑ, t),MI4

)
,
(
G(ϑ, t),MI2,MI3

)
,
(
G(ϑ, t),MI2,

MI4
)
,
(
G(ϑ, t),MI3,MI4

)
and

(
G(ϑ, t),MI2,MI3,MI4

)
, which

form the shape-supervised subspaces VG,MI2 , VG,MI3 , VG,MI4 ,
VG,MI2,3 , VG,MI2,4 , VG,MI3,4 and VG,MI2,3,4 , respectively. For the wing
model only VG,MI2 , VG,MI3 and VG,MI4 are tested. The comparison
of these subspaces, in terms of their diversity/richness and va-
lidity/robustness, along with their capacity to generate optimal
designs will helps us analyse the correlation of each moment
(and moment combinations) with shapes’ performance. The per-
formance of these shape-supervised subspaces is also compared
with VG that does not employ any moment-based information. As
explained in Section 3.2, the wave-making resistance coefficient,
Cw , of hull has strong dependence on geometric moments. There-
fore, in this case, performance of above mentioned subspaces is
also compared with VG,Cw , which augments geometry, G(ϑ, t),
with the calculated value of Cw .

As previously mentioned, the employed grid for the baseline
wing and hull is composed of E = 25 × 90 nodes, which, along
with nG = 3 and the moments, when provided, will produce
the matrices, A, in Eq. (27). Specifically, the construction of VG ,
VG,Cw , VG,MI2 , VG,MI3 , VG,MI4 , VG,MI2,3 , VG,MI2,4 , VG,MI3,4 and VG,MI2,3,4
is performed on the basis of an A matrix with 2250 × 2250,
2251 × 2251, 2256 × 2256, 2260 × 2260, 2265 × 2265,
2266 × 2266, 2271 × 2271, 2275 × 2275 and 2281 × 2281
elements,3 respectively. For the hull model, the weighting func-
tion f (ϑ) is defined in a way that only counts nodes belonging to
the submerged part of the hull and nodes above the waterline
assume a zero weight since they do not play any role in the
resistance components considered in our problem. On contrary,
for the wing model, f (ϑ) is set to take into account entire shape
during the implementation of the proposed approach. It should be
also noted that for both test cases vector spaces are normalised
to exhibit the same variance associated to geometry and moment
invariants. The selection of active KL-modes (eigenvectors) for the
construction of subspaces is performed in a way that guarantees
that every subspace retains at least 95% of the variance associated
to T . In other words, the number is determined by the sum of
KL-values (eigenvalues) that reach this threshold; see Eq. (24).

Figs. 6 and 7 depict the percentage of variance retained for
the wing and hull models with respect to the dimension of
each subspace and the dimension required for each subspace
to reach that level. One may easily observe in these figures
that all considered augmented subspaces perform much better
than the purely geometry-based subspace VG when assessing
variance retention. Successful DSDR requires a subspace retaining
the highest possible variance with the fewest latent variables. In
this aspect, all shape-supervised subspaces reach the threshold
variance (95%) with half or less dimensions when compared to
VG , even if a single component is added to SSV. For the wing

3 Assuming usage of all moment’s components.
10
Fig. 6. Percentage of variance retained by each of the wing model’s subspace
versus its dimension.

Fig. 7. Percentage of variance retained by each of the hull model’s subspace
versus its dimension. The horizontal red line indicates the 95% threshold.

model case, shape-supervised subspaces, VG,MI2 , VG,MI3 and VG,MI4
have similar performance; requiring m = 11 dimensions to
capture 95% of variance; thus, resulting in a 67% dimensional
reduction, i.e., from n = 33 to m = 11. More importantly,
these subspaces capture higher geometric variance with fewer
latent variables compared to solely geometry-based subspace
VG , which requires m = 14 dimensions for 95% of variance.
For the hull model, a more detailed analysis, employing shape-
supervised subspaces with moments combinations, is performed.
In this case, the inclusion of a single geometric moment, i.e., MI2,
MI3 or MI4, performs almost identically to Cw ’s inclusion, which,
as stated earlier, confirms the close relation of these moments
with Cw . With regards to dimensionality reduction, VG requires
a minimum of m = 15 dimensions to capture 95% of variance,
which corresponds to a 44% reduction when compared to the
original space, T ⊆ R27(n = 27). On the other hand, VG,Cw , VG,MI2 ,
VG,MI3 and VG,MI4 need m = 8, which corresponds to a reduction
of 70%, while the spaces using moment combinations exhibit the
best performance, i.e., VG,MI2,3 , VG,MI2,4 , and VG,MI3,4 require m =

6 parameters achieving a reduction of 78% and finally VG,MI2,3,4
needs only m = 5, resulting in reduction of 81%. This demon-
strates clearly the effectiveness of the approach in significantly
reducing dimensionality. Finally, we need to note that VG,MI2 ,
VG,MI3 and VG,MI4 achieve the same reduction as VG,Cw which
is created in a physics-supervised setting with the inclusion of
Cw [12]. Moreover, the construction of VG,Cw is time consuming
as Cw evaluation is computationally expensive, whereas geomet-
ric moments have minimal cost. This provides clear support to
our claim that geometric moments are adequate in capturing
the physics involved in our problem and costly computational
approaches can be avoided.

Figs. 8 and 9 show the first three KL-modes, w1, w2 and
w3 for all employed subspaces projected on the wing and hull
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Fig. 8. Shape deformation of the wing model corresponding to the first three eigenvectors of all employed subspaces: (a) VG (b) VG,MI2 , (c) VG,MI3 and (d) VG,MI4 .
agnitude of surface displacement is colour coded [small: blue to large: yellow]. (For interpretation of the references to colour in this figure legend, the reader is

eferred to the web version of this article.)
Fig. 9. Shape deformation of hull model corresponding to the three first eigenvectors of all employed subspaces: (a) VG (b) VG,Cw , (c) VG,MI2 , (d) VG,MI3 , (e) VG,MI4 ,
f) VG,MI2,3 , (g) VG,MI2,4 , (h) VG,MI3,4 and (i) VG,MI2,3,4 . Magnitude of surface displacement is colour coded [small: blue to large: yellow]. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of this article.)
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rids, respectively. This projection is of great practical value as
t highlights the type and order of variance corresponding to
ach KL-mode. There are some interesting remarks drawn from
hese figures. From Fig. 8 it can be seen that the first (w1) and
hird (w3) KL-modes of VG show high deviation at the lower
urface (pressure side) of wing, with (w1) affecting the leading
dge and (w3) affecting the leading edge area near the root.
n the contrary, w2 affects mainly the upper surface. The sets
f KL-modes of VG,MI2 , VG,MI3 and VG,MI4 , are very similar to
ach other. Specifically, w1, in all cases, relates to both upper
nd lower surfaces, whereas, interestingly, w2 and w3 are sim-
lar to the w1 and w2 of VG . For the hull model, apart from
ig. 9(b), variation is exhibited only below the waterline as the
roposed method assigns zero weight to nodes above the wa-
erline. The first KL-mode (w1) of VG,Cw is highly affected by
he inclusion of physics, i.e., C , whereas the remaining two
w s

11
w2 and w3) are identical to w1 and w2 of VG . This pattern
ersists for the remaining higher modes, not depicted in the
igure. In case of shape-supervised subspaces for the hull model,
esults can be grouped in two sets, {VG,MI2 ,VG,MI4 ,VG,MI2,4} and
VG,MI3 ,VG,MI2,3 ,VG,MI3,4 ,VG,MI2,3,4} as their respective KL-modes
are noticeable similarities. Although both sets exhibit different
irst and second modes when compared with VG , the third mode,
.e., w3, is very similar along all cases but VG,Cw

which pushed
own that mode to become w4. However, w1 of the second set
ears some resemblance to w1 of VG while the first set seems to
ore closely follow the w2 of VG . Figs. 11 and 10 depict NMSE

see Eq. (38)) versus subspace dimensionality for the wing and
ull models, respectively. NMSE reduces for all subspaces as their
imension m increases. Except for VG,Cw in case of hull model,
here is no significant difference between the NMSE of the initial
ubspace V(G) and the remaining shape-supervised subspaces.
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Fig. 10. Reconstruction accuracy of wing model’s subspaces measured via NMSE
ith respect to their dimensionality (m).

Fig. 11. Reconstruction accuracy of hull model’s subspaces measured via NMSE
with respect to their dimensionality (m).

Fig. 12. Decomposition of hull model for DSDR with composite-SSV.

.3. Shape-supervised DSDR with composite-SSV for the hull model

For feature-rich and complex geometries like the hull model,
eometric moments of higher-order (above four) may be needed
o capture local features that do affect wave-making resistance
f they reside, for example, in the bulbous bow. However, as
entioned earlier, incorporating higher-order moments comes
ith problems related to noise and numerical issues. Therefore,

nstead of evaluating higher-order geometric moments, one may
ecompose the geometry into sufficiently simple parts so that
ower-order moments can efficiently describe them. This decom-
osition results in a composite moment vector containing up to
th-order moment invariants for each part. The corresponding
SV will incorporate the moment composite vector in such cases.
enceforth, in this connection, we shall refer to composite-SSV
ersus the global-SSV used in the previous section.
The hull decomposition we have used is shown in Fig. 12.
e split the hull model into four parts: sonar dome, for-part,
id-body, and aft-part. After the segmentation, composite-SSV is
omposed of all sth order moment invariants, MI s ∈ R4nM , nM =

s + 1)(s + 2)/2, obtained for each of the four segments and the
shape modification vector function (G), which is evaluated for the
ntire shape to ensure smooth deformation over the segments.
12
Fig. 13. Percentage of variance retained by each of the hull model’s subspace
versus its dimension. The horizontal red line indicates the 95% threshold.

Fig. 14. Dimension required by each of the hull model’s subspace to reach 95%
of the variance threshold.

KLE is then performed on the composite-SSV in a similar manner
to global MI s to obtain a single subspace used for shape optimi-
sation. Fig. 13 corresponds to the previously discussed Fig. 7. We
should also note here that the segmented shape is only used with
the shape-supervised subspaces, and therefore the results for VG
nd VG,Cw remain unchanged.
Fig. 13 depicts a similar pattern, in terms of variance, of the

shape-supervised subspaces constructed with composite-SSV to
the ones constructed previously with the global-SSV. However,
in this case, the variance retained by the first few latent variables
is comparably less. For example, at m = 1, VG,MI2,4 exhibits a
variance of approximately 63%, whereas the same space recorded
the largest variance (around 82%) in the global case. In the com-
posite case, the largest variance is retained by VG,MI3 , followed
VG,MI4 , VG,MI2,4 at m = 1. It is also interesting to note that the
variance retained by VG,Cw , over all plotted dimensions, closely
matches the variance retained by VG,MI3 in this case. This again
demonstrates how moments, especially composite MI3, are able
to capture the behaviour of Cw in the proposed approach for
dimensionality reduction.

Fig. 14 shows the final dimensionality of all subspaces. In the
case of composite-SSV, dimensionality of the shape-supervised
subspaces is higher than what was achieved with global-SSVs.
The dimensions of VG,MI2 , VG,MI3 and VG,MI4 increased from 8 to
10 (and 9 VG,MI3 ) and now exhibit a dimensionality reduction
of approximately 63%, 67% and 63%, respectively. A significant
increase is observed in the case of VG,MI2,3,4 , whose dimensionality
increased from 5 to 7, which now matches the dimensionality of
VG,MI2,4 . Finally, NMSE values for the composite case resemble the
results presented in Fig. 11 and therefore no separate figure is
included here.
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Fig. 15. (a) Average percent of invalid wing designs and (b) average diversity
easure for wing designs in subspaces VG , VG,MI2 , VG,MI3 and VG,MI4 .

.4. Subspace quality analysis (SQA)

Once the new basis and the corresponding subspaces are
ormed for both test cases, their quality for representation capac-
ty and compactness against the criteria defined in Section 2.5.2
s analysed. The analysis assesses the suitability of the subspace
or shape optimisation, i.e., we assess whether the subspace V re-
ulting from new parameterisation of shapes with latent variables
can captures the underlying shape structure adequately and
hether it produces valid and diverse geometries. To commence
hese analyses, we use five random Monte Carlo samplings of

= 5, 000, 000 parameter vectors from each subspace and
ompute the average number of invalid shapes (i.e., shapes with
elf-intersecting geometries) appearing in each subspace. We first
riefly analyse the quality of shape-supervised subspaces, VG,MI2 ,
G,MI3 and VG,MI4 constructed for the wing model and compare
hem with VG . Afterwards, we perform a detailed Subspace Qual-
ity Analysis (SQA) for the hull model’s subspaces constructed with
global- and composite-SSVs.

4.4.1. SQA for the wing model
Fig. 15 shows the average number of invalid wing designs and

the average diversity of designs present in subspaces VG , VG,MI2 ,
G,MI3 and VG,MI4 bounded with Eq. (31). From Fig. 15(a), it can

be seen that the VG subspace, constructed using only geometry,
as in [3], produces a significantly larger number of invalid shapes
when compared to the proposed shape-supervised subspaces,
i.e., VG,MI2 , VG,MI3 and VG,MI4 . Average diversity measure, calcu-
lated using Eq. (33), for the wing case and for all subspaces is
shown in Fig. 15(b). Note that the diversity of designs in VG is
only slightly higher to the ones in VG,MI2 , VG,MI3 and VG,MI4 , which
is practically negligible. These results show that even if there is
no prior information of physics or its dependence on geometric
moments, the shape-supervised subspaces are significantly more
robust in terms of providing valid shapes while maintaining sim-
ilar levels of design diversity. These capabilities of subspaces are
beneficial for accelerating the convergence of shape optimisation
towards optimal solution [33].

4.4.2. SQA for the hull model
For the hull model, apart from comparing subspaces formed

with global- and composite-SSVs, we also assess the effect of the
approach employed in setting parameter bounds (see Eqs. (31)
and (32)) on their quality. We henceforth denote with SL1 and
SL2 the results following the approach in Eqs. (31) and (32),
respectively. The resulting percents of invalid geometries using
SL and SL are shown in Fig. 16.
1 2

13
Fig. 16. Average percent of invalid hull designs in VG , VG,Cw and shape-
supervised subspaces sampling with global- and composite-SSVs when bounded
by SL1 and SL2 approaches.

Fig. 17. Percentage of invalid hull designs as a function of dimensionality of
subspace formed with SL1 bounding approach.

The following remarks can be drawn by observing the re-
sults in Fig. 16: (i) SL1 leads to more invalid geometries for all
subspaces; (ii) shape-supervised subspaces with composite-SSV
have a lower percentage of invalid geometries to global-SSV,
even when SL1 is used; (iii) the number of invalid geometries
in VG are substantially higher than any other subspace regard-
less of the bounding approach; finally (iv) in all cases, shape-
supervised subspaces tend to produce a similar or even lower
number of invalid shapes when compared to VG,Cw . These results
confirm the ability of shape-supervised subspaces to generate a
large number of valid geometries, thereby promoting fast con-
vergence in optimisation and, more importantly, also manifest
the ability of geometric moments to attain the performance of
the physics-informed DSDR with Cw , without the computational
penalty induced by it.

Fig. 17 depicts the relation of invalid shapes percentage to
dimensionality m when subspaces are formed with SL1. The first
bvious observation is that there are either no or only a few
nvalid geometries for the first few dimensions, but these increase
apidly after the 4th or 5th dimension. This trend is more promi-
ent for VG : while m = 2 shows no invalid geometries, m = 3
ecords an increase to 3.5%, and at m = 4 this abruptly goes up
o 23% and stabilises to around 30% till m = 10 before increasing
further. A downwards shift can be observed for shape-supervised
subspaces with composite-SSV, but, in this case, the relation with
dimensionality is also affected. The selection of the SL2 bounding
approach does not affect this relationship.
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Fig. 18. Average diversity measure for hull designs in VG , VG,Cw and shape-
supervised subspaces created with global- and composite-SSV bounded by SL1
and SL2 techniques.

Fig. 19. Plot showing the diversity measure of hull designs as a function of
imensionality of subspace formed with SL2 bounding approach.

Finally, we also analysed the diversity of subspaces as de-
cribed in Section 2.5.2. The results of the analysis are collectively
resented in Fig. 18. Similar to the validity analysis, these results
re obtained by averaging over 5 Monte-Carlo samplings with a
ize of Ψ = 5, 000, 000 and diversity is only measured for valid
geometries. Most subspaces bounded by SL1 have a higher diver-
sity index than when bounded with SL2. Note that despite their
lower-dimensionality, shape-supervised subspaces have similar
diversity to VG , which is especially true when subspaces, formed
with either global- or composite-SSV, are bounded by SL2. More
importantly, VG , VG,Cw and VG,MI3 have similar diversity perfor-
mance although VG,Cw and VG,MI3 have lower dimensionality and
less than half of the invalid shapes when compared to VG . Fig. 19
draws a more detailed picture of these results as it depicts diver-
sity performance buildup with subspace dimensionality. Diversity
increases monotonically with dimensionality; however, it slowly
tends to its maximum value after including a sufficient number
of dimensions for each subspace. This observation is in line with
our previous analysis in which we indicated that the first few KL-
modes (5 to 8) forming the basis of these subspaces capture most
of the variance.

4.5. Shape optimisation of the hull model

When comparing SL1 with SL2, we can see that the num-
ber of invalid geometries generated by SL is twice as large as
1

14
Table 3
Average Cw values over three optimisation runs
after 150 iterations.
Design spaces Cw

Global-SSV Local-SSV

VG 6.6772E−04
VG,Cw 6.5408E−04
VG,MI2 6.7591E−04 6.6582E−04
VG,MI3 6.6895E−04 6.1056E−04
VG,MI4 6.8511E−04 6.7065E−04
VG,MI2,3 7.0910E−04 6.9833E−04
VG,MI2,4 6.9694E−04 6.8407E−04
VG,MI3,4 7.0599E−04 6.9029E−04
VG,MI2,3,4 6.9875E−04 6.8052E−04

SL2; however, there is no significant difference between the two
approaches in terms of diversity. We, therefore, employ SL2 to
set the bounding limits of subspace used for shape optimisa-
tion. Finally, after performing the dimensionality reduction, the
optimisation problem is redefined as follows:

Find v∗
∈ Rm such that

Cw(v∗) =min
v∈V

Cw(v)

subject to 0.95V0 ≤ V (v) ≤ 1.05V0,

0.95BWL0 ≤ BWL(v) ≤ 1.05BWL0 ,

LWL(v) = LWL0 and T (v) = T0,

(39)

here V , BWL, LWL, T correspond to volume, length and beam at
the waterline, and draft, respectively. The sub-index (0) indi-
ates the quantity values for the parent hull. The optimisation
roblem above is solved using Jaya Algorithm (JA), a simple yet
fficient optimiser; see more details in [34]. Furthermore, as JA
mploys a stochastic approach, results may differ in each run;
herefore, three different optimisation runs are performed, and
esults are averaged in this work. In each run, a total of 150
terations are considered, and Fig. 20 displays the convergence
raph over the first 50 iterations. Optimum designs obtained
or each case, are depicted in Fig. 21(a). The contours shown
n Fig. 21(a) constitute the so-called hulls’ body-plan. It consists
f halves of cross-sections resulting from intersecting the hull
ith planes located perpendicularly to its longitudinal symmetry
lane. Cross-sections from amidships to the forward part of the
ull are drawn on the righthand side of the figure, while the
emaining sections, amidships to the stern, are drawn on the
efthand side. An example of construction of such cross-sections is
hown in Fig. 21(b). Cross-sections highlighted in blue correspond
o optimised designs, while the ones highlighted in grey are of the
aseline design. Plotting both baselines and optimised designs’
ross-sections on the same image facilitates the comparison of
heir geometrical features. Such comparison is widely used in
aval architecture. The QoI value, i.e., the wave-resistance of the
ull, is the criterion for deciding which of the two is the best hull.

The convergence graph in Fig. 20 clearly demonstrates the
ompetitive performance of the proposed approach. Shape opti-
isation performed with shape-supervised subspaces (both
lobal- and composite-SSV) converges substantially faster than
G and, more importantly, exhibits a similar convergence perfor-
ance with VG,Cw . One of the reasons for the slower convergence
f VG is the existence of many invalid shapes, whereas the
emaining subspaces perform better from the very beginning. All
hape-supervised spaces tend to approach the performance of
G,Cw and especially, VG,MI3 that even surpasses it when built with
omposite-SSV.
Table 3 provides the average Cw values obtained at the final

teration over three runs for all cases. It can be seen that all cases
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Fig. 20. Cw optimisation history for VG , VG,Cw , and the shape-supervised
ubspaces with global- and composite-SSV.

Fig. 21. (a) Comparison between the baseline and optimised hull shapes, in
erm of cross-sections (or body-plan), obtained at the end of the optimisation
rocess. (b) Example of construction of hull’s cross-sections. (For interpretation
f the references to colour in this figure legend, the reader is referred to the
eb version of this article.)

how a substantial improvement when compared to the parent
esign whose C value is 1.025 × 10−3. However, there is no
w

15
significant difference between optimum designs generated from
VG , VG,Cw and the shape-supervised subspaces. When comparing
global- to composite-SSVs, the latter perform consistently better,
although slightly, and the overall best is achieved by VG,MI3 using
composite-SSV, which might be a rather unexpected result since
t surpasses the performance attained by VG,Cw .

.6. Computational cost

The computational cost of constructing shape-supervised sub-
paces is higher than the cost of a purely grid-based geometric
ubspace. However, using moments is glaringly cheaper than
erforming physics simulations, in our case Cw . On a PC with a
ual 24-core 2.7 GHz Intel

®
Xeon

®
Gold 6226 CPU and 128 GB

f memory, it takes approximately 9.04 s to evaluate all moment
nvariants {MI s, s = 1, 2, 3, 4} for a hull meshed with 2,512,886
ertices. On the other hand, the employed potential flow solver
equires approximately 69.30 s for a single evaluation of Cw for a
hull meshed with 2250 vertices. Therefore, performing dimension
reduction with shape-supervised approaches provides the same
(or better) quality with a significantly lower computational cost
when compared to the other supervised techniques in this work.

5. Conclusion and future work

Despite the success of design space dimensionality reduction
for accelerating computationally demanding shape optimisation
processes, the existing approaches suffer from two critical draw-
backs: (i) low-levels of robustness, i.e., a non-negligible percent-
age of designs in the reduced dimensionality subspace corre-
sponds to invalid/infeasible instances, and (ii) inability to capture
high-level structure information, i.e., high-level features, associ-
ated to physics, which would considerably improve performance,
are not captured. Therefore, in this work, we propose a shape-
supervised approach for reducing the dimension of the initial
design space. Our approach uses geometric moment invariants of
both global and composite nature to construct a shape-signature
vector (SSV) that describes important underlying intrinsic struc-
tures of the shape, which can, to some extent, substitute physics
information. The subspaces produced in this work retain the re-
quired reconstruction capabilities, offer diversity and robustness,
and, more importantly, are physics informed. The representa-
tion capacity and compactness of the produced subspaces are
accessed, and the former is found to be equivalent to the original
spaces, whereas the latter is significantly better, i.e., significantly
fewer invalid designs are generated.

Furthermore, the applicability of the proposed method is
tested against the challenging problems of wing design and
ship-hull shape optimisation. The wing and hull models are
parameterised with 33 and 27 design variables parameters, re-
spectively. The shape optimisation performed for the hull model
aims at its wave resistance coefficient (Cw) minimisation. The
esults confirm our claims and demonstrate the higher conver-
ence capability of the shape-supervised approach. One may
asily apply the same approach to shape optimisation of other
ree-form shapes in computational mechanics.

In the future, we would also like to explore the possibility
f SSV’s integration into a generative adversarial network and
erform physics-augmented training. At the same time, we plan
o extend our work in an Iso-Geometric Analysis setting, where
on-uniform Rational B-splines representations (NURBS) of the
hape for DSDR, analysis and Bayesian shape optimisation, similar
o [35], would be directly used.
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