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Abstract 38 

Chagas disease (CD) is a parasitic zoonosis endemic in most mainland countries of 39 

Central and South America affecting nearly 10 million people, with 100 million people 40 

at high risk of contracting the disease. Treatment is only effective if received at the early 41 

stages of the disease. Only two drugs (benznidazole and nifurtimox) have so far been 42 

marketed and both share various limitations such as variable efficacy, many side effects 43 

and long duration of treatment, thus reducing compliance. The in vitro and in vivo efficacy 44 

of poly-aggregated amphotericin B (AmB), encapsulated poly-aggregated AmB in 45 

albumin microspheres (AmB-AME) and dimeric AmB - sodium deoxycholate micelles 46 

(AmB-NaDC) was evaluated. Dimeric AmB-NaDC exhibited a promising selectivity 47 

index (SI = 3164) against amastigotes, which was much higher than those obtained for 48 

licensed drugs (benznidazole and nifurtimox). AmB-AME, but not AmB-NaDC, 49 

significantly reduced the parasitaemia levels (3.6-fold) in comparison to the control group 50 

after parenteral administration at day 7 post-infection. However, the oral administration 51 

of AmB-NaDC (10-15 mg/kg/day for 10 days) resulted in a 75 % reduction of 52 

parasitaemia levels and prolonged the survival rate in 100% of the tested animals.  Thus, 53 

the results presented here illustrate for the first time the oral efficacy of AmB in the 54 

treatment of trypanosomiasis. AmB-NaDC is an easily scalable, affordable formulation 55 

prepared from GRAS excipients, enabling treatment access worldwide and therefore it 56 

can be regarded as a promising therapy for trypanosomiasis. 57 

 58 
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1. Introduction 67 

Chagas disease (CD), also known as American trypanosomiasis, is a chronic life-68 

threatening parasitic infection caused by Trypanosoma cruzi that is endemic in the 69 

majority of Central and South America countries. CD affects more than 10 million people 70 

while placing approximately 100 million people at risk 1. CD presents in two phases. An 71 

initial acute phase lasts for about 2 months after infection during which time a high 72 

number of parasites circulate in the blood with limited or no symptoms. Even decades 73 

after primary infection, parasites reside mainly in the heart and digestive musculature 74 

resulting in cardiac disorders and digestive disorders (enlargement of oesophagus or 75 

colon) in 30% and 10% of patients respectively as well as neurological symptoms.  76 

Progressive destruction of the heart muscle or the nervous system can lead to heart failure 77 

and sudden death 1.  78 

Treating the parasitic infection in its acute phase (where the parasites reside within the 79 

blood) is of paramount importance and treatment involves benznidazole (BNZ) and 80 

nifurtimox (NFX, licensed only in Argentina and Germany). Both medicines are almost 81 

100% effective in curing the disease if given at the onset of the acute phase. However, 82 

the efficacy of both drugs diminishes the longer a person has been infected 1. Available 83 

treatments are far from ideal as their use is limited by: i) long duration of treatment (30, 84 

60 or 90 days) 2, ii) variable efficacy due to naturally resistant T. cruzi strains 3 and iii) 85 

serious undesirable side effects (occurring in 40% of treated patients) 1 combined with 86 

contraindications for their use in pregnancy, renal or hepatic failure 4. Ideally new 87 

chemical entities (NCEs) are required with enhanced potency, specificity, and lack of 88 

toxicity in order to provide breakthrough therapeutic benefits within a wide safety margin. 89 

However, the development of NCEs is a riskier and more expensive option 3 than 90 

repurposing or reformulating existing drugs, or combining them in novel fixed-dose 91 

combinations with enhanced efficacy and reduced duration of treatment.   92 

Amphotericin B (AmB) is a macrolide polyene chemotherapeutic that exists in three 93 

different aggregation states: monomer, dimer and poly-aggregate, which have exhibited 94 

different safety profiles 5. Parenteral AmB formulations, either the original micellar 95 

formulation with sodium deoxycholate (Fungizone®) or the less nephrotoxic and 96 

haemolytic liposomal formulation (AmBisome®), have been used as effective treatments 97 

for visceral leishmaniasis (VL) 6. Current research has indicated that poly-aggregated 98 
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AmB formulations reduce the toxicity and enhance the efficacy after intravenous 99 

administration 7 compared to AmBisome® due to the larger volume of distribution 8. 100 

However, although the activity of AmB in T. cruzi infections was first reported in 1960 9 101 

and there are several studies illustrating the in vitro nanomolar trypanocidal activity for 102 

Fungizone® and lipidic AmB formulations (Amphocil® and AmBisome®) 10, only a few 103 

reports describe AmBisome’s in vivo effects in T. cruzi infected mice 3, 11 and there are 104 

no licensed AmB formulation in the market. However, when used against T. cruzi high 105 

parenteral doses (> 25mg/kg) over a prolonged duration were needed. AmB is a BCS 106 

Class IV drug with low solubility and low permeability across the gastrointestinal 107 

epithelium resulting in low oral bioavailability (< 0.9%) 12. Although oral formulations 108 

of AmB are under research for VL 6b, 13, no reports are available for the treatment of CD 109 

in vivo, even though  an oral AmB treatment alone or in combination with existing drugs 110 

could enhance efficacy of current treatment options avoiding AmB systemic toxicity 12a, 111 
14. 112 

The hypothesis underpinning this work is that amorphous dimeric AmB will be ideal for 113 

CD treatment via the oral route, as it maintains high activity and enhanced solubility in 114 

aqueous media providing greater oral bioavailability. In contrast, parenteral poly-115 

aggregated formulations of AmB with a higher volume of distribution will allow for 116 

accumulation of AmB in tissues in the acute phase preventing parasite migration and 117 

reducing the parasitic load in the chronic phase of CD. Thus, we have entrapped AmB in 118 

the polyaggregate state within albumin microspheres (AmB-AME) and prepared 119 

lyophilized amorphous micellar sodium deoxycholate AmB dispersions (AmB-NaDC). 120 

The proposed formulations allow for a higher dose to be administered with longer dosing 121 

intervals, as evidenced by the presented in vitro and in vivo efficacy studies against T. 122 

cruzi in BALB/c mice, and can be up-scaled resulting in cost-effective parenteral and oral 123 

solutions for T. cruzi treatment.  124 

2. Materials and methods 125 

2.1. Materials.  126 

Amphotericin B (>95% HPLC) was obtained from Azelis (Barcelona, Spain). Serum 127 

albumin solution (20%) was obtained from Instituto Grifols SA (Barcelona, Spain). All 128 

chemicals, solvents and acids, unless otherwise stated, were of ACS grade or above and 129 

were obtained from Sigma-Aldrich (Madrid, Spain) or Panreac S.A. (Barcelona, Spain) 130 
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and used without further purification. Cell culture media were bought from Sigma-131 

Aldrich (Madrid, Spain). 132 

2.2. Preparation of AmB formulations 133 

A summary of all formulations is illustrated in Table S1 in Supplementary material. 134 

Dimeric AmB 135 

Before adding AmB (50 mg) into the aqueous solution containing 41 mg of NaDC, the 136 

pH was adjusted to 12.0 using 2 M sodium hydroxide. The mixture was stirred until a 137 

clear orange solution was obtained, when the pH was reduced to 7.4 ± 0.05 by adding 2 138 

N ortho-phosphoric acid. The dimeric micellar sodium deoxycholate AmB formulation 139 

(AmB-NaDC) was frozen at - 40°C and lyophilized (Telstar, Barcelona, Spain) 5.  140 

Poly-aggregated AmB  141 

AmB (50 mg) was added in 10 ml of an aqueous solution containing 41 mg of sodium 142 

deoxycholate (NaDC, Fluka Chemie A. G., Buchs, Switzerland), 10 mg of dibasic sodium 143 

phosphate and 0.9 mg of monobasic sodium phosphate (Panreac S.A., Barcelona, Spain). 144 

The dispersion was stirred until a homogeneous yellow suspension was obtained (5 mg 145 

mL-1, pH 7). The resultant suspension was frozen at - 40°C and lyophilized (Telstar, 146 

Barcelona, Spain) for 48 h 15. 147 

Microencapsulated poly-aggregated AmB  148 

Amphotericin B within albumin microspheres (AmB-AME) was prepared as previously 149 

described 8 with some modifications. Briefly, poly-aggregated AmB suspension (213 ml) 150 

was mixed with 100 ml of a 20% serum albumin solution (Instituto Grifols SA, Barcelona, 151 

Spain). The mixture was spray dried in the open mode using a Büchi B 191 spray dyer 152 

(Flawil, Switzerland) fitted with a standard 0.7 mm 2-fluid nozzle. The following 153 

parameters were used for spray-drying: an air flow rate of 463 L h-1, a 120 °C inlet 154 

temperature, a pump rate of 3 mL min-1 and 100% aspiration. The resulting outlet 155 

temperature was set between 70-75°C. The encapsulation efficiency of AmB into albumin 156 

microspheres was quantified as previously described 15. Unloaded albumin microspheres 157 

(AME) were also prepared under the same conditions and starting materials but without 158 

including the poly-aggregated AmB suspension. 159 
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Physical mixtures 160 

AmB and all other excipients used in the preparation of dimeric AmB-NaDC or AmB-161 

AME were mixed using a mortar and pestle in the same ratio as in the final formulations.  162 

2.3. Characterization of AmB formulations 163 

AmB aggregation state, particle size and water sorption kinetic profiles were measured  164 
8. Poly-aggregated AmB, poly-aggregated AmB-AME and dimeric AmB-NaDC 165 

formulations were also characterised by Electron Microscopy, Fourier Transform Infrared 166 

Spectroscopy (FT-IR), Powder X-ray diffraction (PXRD), Differential Scanning 167 

Calorimetry (DSC), Modulated temperature DSC (MTDSC) and Thermogravimetric 168 

Analysis (TGA) 16. A detailed description of the methodologies applied is provided in SI. 169 

2. Characterization of AmB formulations.  170 

In vitro stability in simulated gastrointestinal and intestinal fluids  171 

Simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 6.8) without 172 

enzymes were prepared as previously described 17. AmB-NaDC and AmB-AME  (1 mg 173 

mL-1, 250 μL) were suspended in prewarmed (37±0.5°C) SGF or SIF (100 mL) under 174 

gentle shaking (120 rpm) for a maximum of 3.5 h or 24 h respectively. At regular time 175 

intervals, aliquots (1 mL) were removed and AmB content and aggregation state was 176 

analysed by UV. The absorbance at 328 and 407 nm was used to quantify the AmB in 177 

both aggregation states, dimer and monomer.  The calibration curve obtained in SGF was 178 

y= 0.1116x-0.0249 (R2= 0.9995) and in SIF was y=0.1016x+0.0315 (R2= 0.9996) (where 179 

y was absorbance and x was concentration in µg mL-1). Experiments were performed in 180 

triplicate.  181 

In vitro drug release 182 

The release studies were carried out under sink conditions in 50 mL tubes containing 183 

phosphate buffer with 1% sodium deoxycholate (50 mM, 45 mL, pH 7.4 ±0.1), 184 

maintained  at 37 ± 0.5 °C, with stirring at  50 rpm 18. AmB or AmB-AME (equivalent to 185 

5.0 mg of AmB) were dissolved in 5 ml of physiological sterile 0.9% saline and 5% 186 

glucose solutions (1:9 v/v) as used for in vivo studies and added to the release buffer (5 187 

mL). At appropriate time intervals (5, 15, 30, 60, 120, 240, 300, 360 and 1440 min), 188 

samples (2 mL) were withdrawn and filtered through a 0.45 µm Millipore membrane filter 189 
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and analyzed using a validated HPLC assay 19. The volume was replaced each time with 190 

fresh prewarmed medium to maintain sink conditions. 191 

 192 
2.3. Trypanocidal assays 193 

2.3.1. In vitro trypanocidal assay 194 

Trypanosoma parasites are found in different forms during their life cycle. 195 

Trypomastigotes enter the host either through the wound originated from the triatomine 196 

insect vector or through intact mucosal membranes, such as the conjunctiva. Inside the 197 

host, the trypomastigotes invade cells near the site of inoculation, where they differentiate 198 

into intracellular amastigotes. The amastigotes multiply and differentiate into 199 

trypomastigotes, being released into the bloodstream infecting cells from a variety of 200 

tissues and transforming into intracellular amastigotes in new infection sites. The 201 

triatomines becomes infected by feeding on blood that contains trypomastigotes which 202 

transform into epimastigotes in the vector's midgut. The parasites multiply and 203 

differentiate into infective metacyclic trypomastigotes in the hindgut which will be 204 

transmitted in the next blood meal 20. To test the in vitro efficacy of novel formulations, 205 

a standardized protocol for screening potential drugs for the treatment of Chagas disease 206 

was followed using epimastigotes and amastigotes because trypomastigotes are unable to 207 

replicate 21. Screening using epimastigotes enables testing directly the efficacy of drugs / 208 

formulations against the parasite and amastigotes (intracellular forms) assesses the ability 209 

of the drug to permeate cellular membranes and remain effective against the amastigotes 210 

form of the parasite.  211 

Parasites 212 

The T. cruzi clone CL-B5 were kindly provided by Dr F Buckner through Instituto 213 

Conmemorativo Gorgas (Panama) and were stably transfected with the Escherichia coli 214 

β-galactosidase gene (lacZ). The epimastigotes were grown at 28 °C in liver infusion 215 

tryptose broth (complemented with 10% fetal bovine serum, FBS (Internegocios, 216 

Argentina), penicillin and streptomycin) and afterwards, were harvested during the 217 

exponential growth phase. 218 

Epimastigote susceptibility assay 219 
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The assay was performed in 96-well microplates (Cellstar, E.E.U.U.) with cultures that 220 

have not reached the stationary phase, as was previously described 10a. Briefly 221 

epimastigotes were seeded at a concentration of 2.5 × 105 per mL in a total volume of 200 222 

μL. Plates were incubated with the formulations which were serially diluted 2-fold at 28 223 

°C for 72 h. Then, chlorophenol red−β-D-galactopyranoside solution (50 μL - CPRG 224 

Roche, Indianapolis, IN) was added to obtain a final concentration of 200 μM. Plates were 225 

incubated for another 4 h at 37°C and then, were read at 595 nm. Benznidazole was used 226 

as a reference drug. Each concentration was tested in triplicate and each experiment was 227 

performed twice separately. The efficacy of each compound was estimated by calculating 228 

the IC50 (drug concentration that produces 50% reduction in parasites). 229 

Amastigote susceptibility assay 230 

 231 
The assay was performed by a colorimetric method using chlorophenol red−β-D-232 

galactopyranoside (CPRG) 2, 10a. Briefly, NCTC-929 fibroblasts [a gift from Dr Gomez-233 

Barrio (Universidad Complutense de Madrid, Spain)] were cultured in 24-well tissue 234 

culture plates at a concentration of 2.5 × 103 cells/well which was previously optimised.  235 

NCTC-929-derived trypomastigotes were added to the monolayers at a parasite: cell ratio 236 

of 5: 1 and were incubated for 24 h at 33 °C with 5% CO2. In order to remove the 237 

extracellular trypomastigotes, the infected cells were then washed twice with PBS. The 238 

formulations were added in triplicate resulting in a final volume of 900 μL/well. Plates 239 

were incubated for 7 days at 33 °C. CPRG solution (100 μL) in 0.3% Triton X-100 was 240 

then added to obtain a final concentration of 400 μM. The colorimetric reaction was 241 

quantified by measuring optical density (OD) at 595 nm wavelength after 4 h of 242 

incubation at 37 °C. 243 

The percentage of anti-amastigote activity (%AA) was expressed as indicated in Equation 244 

1: 245 

AA (%) = 100 - 
OD experimental wells

OD control wells)
 x 100              (Eq. 1) 246 

Background controls (only NCTC- 929 cells) were subtracted from all values. 247 

2.3.2. In vivo trypanocidal assay 248 
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All experiments were approved and performed in accordance with the local ethical 249 

committee of the Fundacion Moisés Bertoni (PROCIENCIA-14-INV-022, CONACYT-250 

Paraguay). Bloodstream trypomastigotes of the Y strain (ATCC 50832) were used which 251 

were harvested from T. cruzi infected BALB/c mice on the day of peak parasitaemia as 252 

previously described 22. Female 4-6 week old BALB/c mice (18−20 g) were obtained 253 

from the Animal Facility of the Instituto de Investigaciones en Ciencias de la Salud, 254 

Universidad Nacional de Asuncion (UNA, Paraguay). Mice were housed according to the 255 

standards of the Committee of Animal Welfare and were kept in a room at 20−24 °C 256 

under a 12/12 h light/dark cycle and provided with sterilized water and food ad libitum. 257 

The animals were allowed to acclimatise for 7 days before the onset of the experiments. 258 

Animals were infected by intraperitoneal injection of 104 Y strain trypomastigotes of T. 259 

cruzi.  260 

Treatment  261 

The experimental protocol performed allows the analysis of the effect of the AmB 262 

formulations on the parasite load 21. Mice were randomly split into groups of ten to ensure 263 

that a 50% difference in parasitic load can be detected with 95% confidence. At day 5 264 

post-infection, parasitaemia (number of trypomastigotes mL-1 of blood) was quantified 265 

microscopically using the Pizzi−Brener method 23. Only animals that demonstrated 266 

homogeneous parasitaemia were used. In all the experiments, both a negative control 267 

group (untreated mice) and a reference group (treated with 100 mg/kg/day of 268 

benznidazole) were included. AmB formulations freshly diluted to 1 mg mL-1 using a 269 

mixture of physiological sterile 0.9% saline and 5% glucose solutions (1:9 v/v) were 270 

administered by intracardiac puncture at day 5 and 8 post-infection: poly-aggregated 271 

AmB at the dose of 2.5 and 5 mg kg-1, AmB-AME at the dose of 2.5 and 5 mg kg-1 and 272 

dimeric AmB-NaDC at the dose of 0.5 mg kg-1. Higher doses of dimeric AmB-NaDc 273 

were not used as it has been linked to animal mortality 5. Intracardiac administration was 274 

used to spare the high potential risk of AmB thrombophlebitis (Goodwin, S.D. et al 1995 275 

Clin Infect Dis 20(4):755-61.) and to avoid damage of the tail vein needed for sampling 276 

for analysis of the parasitaemia levels.  Parasitaemia was quantified at 7, 9 and 12 days 277 

post-infection. In the second experiment, the effect of AmB AME dose and effect of 278 

single versus multiple administrations was studied. AmB-AME diluted as described 279 

above was administered by intracardiac injection as a single dose of 20 mg kg-1 at day 5 280 

post-infection, or as two doses of 2.5 and 5 mg kg-1 at days 5 and 8 post-infection or as 281 
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three doses of 5 and 10 mg kg-1 at days 5, 8 and 11 post-infection. Parasitaemia was again 282 

quantified at 7, 9, and 12 days post-infection 21. In a third experiment, fed animals were 283 

treated by oral gavage at day 5 post-infection with dimeric AmB-NaDC at a dose of 5, 10 284 

or 15 mg kg-1 daily for 10 consecutive days. The formulation was freshly reconstituted 285 

with deionised water to 5 mg mL-1 and further diluted with 5% sterile glucose to 1 mg 286 

mL-1 prior to administration. Parasitaemia was quantified at 10, 14, and 17 days post-287 

infection due to the longer duration of the oral treatment compared to parenteral regimens. 288 

Results from each tested formulation were compared to the control groups. The 289 

percentage of parasitaemia reduction was calculated using Equation 2: 290 

Parasitaemia reduction (%) = 100 −  (
𝑃𝑇

𝑃𝐶
)  𝑥 100     (Equation 2) 291 

where PC is the number of trypomastigotes mL-1 of blood in the control group and PT is 292 

the number of trypomastigotes mL-1 of blood in the treated group at the same day post-293 

infection 10a. The mice survival rate was recorded up until the end of the acute phase (30 294 

days) in all the experiments. 295 

2.4. Cytotoxicity assays 296 

Fibroblast NCTC929 (as above) were used to assess the cytotoxicity of the formulations. 297 

The cells were grown in Minimum Essential Medium (MEM; Sigma, St. Lois, USA) 298 

supplemented with 10% FBS, 2 mM L-glutamine, and antibiotics (50 units mL-1 penicillin 299 

and 50 g mL-1 streptomycin) and cytotoxicity assays were performed as previously 300 

described 10a. NCTC clone 929 cells were plated in 96-microtiter plates at 3 × 104 301 

cells/well in 100 μL of growth medium and were grown overnight at 37 °C, 5% CO2. 302 

Afterwards, the medium was removed and the serially diluted two-fold formulations were 303 

added in 200 μL of medium for 24 h, after which time resazurin solution (20 μL, 2 mM) 304 

was added to each well. The plates were incubated for a further 3 h and the absorbance 305 

was read at 570 and 595 nm on a microplate reader (Sinergy, Biotek, Vermont, USA). 306 

The cytotoxicity of the formulations was measured in terms of the concentration that was 307 

able to reduce the viability of treated cells in culture by 50% compared to untreated cells 308 

in culture (CC50). 309 

2.5. Statistics 310 

SPSS 22 (IBM Corporation, New York, USA) software was used to perform Probit 311 

multilineal analysis to determine the parasite efficacy in terms of IC50 and cytotoxicity 312 
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(CC50). Tukey’s HSD post-hoc test and Mann-Whitney U test were used to analyse all 313 

the in vitro and in vivo test data respectively. Statistical significance was considered at p 314 

< 0.05 using Minitab 16 software (Minneapolis, USA). Statistical analysis of survival 315 

data were performed using SPSS 22 (IBM Corporation, New York, US). The Log Rank 316 

(Mantel-Cox) test was used to test whether differences in survival times between groups 317 

are statistically different. 318 

3. Results  319 

3.1. Preparation and characterization of AmB formulations 320 

AmB-NaDC spectra showed a broad intense band at 328-340 nm, characteristic of 321 

dimeric AmB, while poly-aggregated AmB and AmB-AME displayed characteristic 322 

bands of smaller intensity at 360–363, 383–385 and 406–420 nm (Figure 1a) 8. This 323 

difference lies on the fact that AmB contains conjugated pi-electrons in its structure. In 324 

the AmB-NaDC, the AmB molecules are solubilised and the conjugated pi bond system 325 

act as cromophores resulting in a strong UV absorbance. Poly-aggregated AmB has a 326 

lower UV absorbance due to intermolecular interactions reducing electron movement 327 

between energy levels.  328 

AmB-NaDC illustrated a mixed morphology of spherical micelles and fibrils 329 

(approximately 30 nm in length) (Figure 2b). After lyophilisation, thin sheets exhibiting 330 

a smooth surface were observed (Figure 2c). A good yield was obtained for AmB-AME 331 

(73.4 ± 4.3%) after spray-drying, with high AmB encapsulation efficiency (82.1 ± 6.5%) 332 

and a hollow quasi-spherical particle morphology of between 1 and 10 µm in diameter 333 

(Figure 2g). Networks of long axial fibrils were observed for AmB-AME after 334 

reconstitution in de-ionised water. In contrast, poly-aggregated AmB appeared as needle-335 

like crystals (100 - 3,500 nm, Figure 2d), a morphology that remained unaltered post 336 

lyophilisation (Figure 2e). See Table S1 in Supplementary material for further details. 337 
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 338 

Figure 1. AmB aggregation state and morphology of AmB formulations. Key: a) 339 
AmB aggregation state of poly-aggregated AmB, dimeric AmB-NaDC and AmB-AME; 340 
b) TEM of dimeric AmB-NaDC, Bar: 100 nm; c) SEM of freeze-dried dimeric AmB-341 
NaDC, Bar: 10 μm; d) TEM of  poly-aggregated AmB, Bar: 2 µm; e) SEM of freeze dried 342 
poly-aggregated AmB, Bar: 1 μm; f) TEM of AmB-AME, Bar: 200 nm; g) SEM of spray-343 
dried AmB-AME, Bar: 5 μm. Samples were negatively stained with 1% w/v aqueous 344 
uranyl acetate solution for TEM images. Inserts in images a, c, and e illustrate the 345 
appearance of the formulation.   346 

 347 

FT-IR spectra indicate amorphization of AmB in both AmB-NaDC and AmB-AME 348 

formulations (Figure 2). The spectrum obtained for AmB was similar to previously 349 

published reports 24, while  AmB-NaDC was characterized by broader bands attributed to 350 

AmB amorphization as a result of lyophilisation. The absence of a peak at 1691 cm-1 351 

assigned to the carboxylate group of AmB (C=O stretching) in the AmB-NaDC (Figure 352 

2A iii) compared to the physical mixture (Figure 2A iv) indicates an electrostatic 353 

interaction between AmB and NaDC 6b. AmB-AME also illustrated broader bands 354 

probably due to amorphization as a result of spray drying 25. The disappearance of the 355 

carboxylate group peak at 1691 cm-1 ν (C=O stretching) and the amine peak of the AmB 356 

at 1552 cm-1 δ (N-H bending) can be attributed to electrostatic interactions with the AME. 357 

 358 
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 359 

Figure 2. FTIR spectra and PXRD pattern of AmB formulations. A) FTIR spectra of 360 
dimeric AmB-NaDC formulation and starting materials: i) AmB starting material; ii) 361 
NaDC starting material; iii) lyophilised dimeric AmB-NaDC; iv) physical mixture 362 
containing all starting materials of the dimeric AmB formulation; v) Monobasic sodium 363 
phosphate starting material; vi) Dibasic sodium phosphate starting material. Key: δ, 364 
bending vibrations; ν, stretching vibrations. B) FTIR spectra of AmB-AME formulation 365 
and starting materials: i) AmB; ii) Physical mixture of AmB and blank spray dried 366 
albumin microspheres; iii) spray dried AmB-AME and iv) blank spray dried albumin 367 
microspheres (AME). Key: δ, bending vibrations; ν, stretching vibrations. C) PXRD 368 
patterns of dimeric AmB-NaDC and poly-aggregated AMB-AME formulations. Key: i) 369 
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AmB starting material; ii) Na2HPO4 starting material; iii) NaH2PO4 starting material; iv) 370 
NaDC starting material; v) AmB-NaDC lyophilized; vi) Physical mixture of AmB and 371 
NaDC starting materials; vii) Spray dried AmB-AME; viii) AME; ix) Physical mixture 372 
of AmB and AME starting materials. 373 

The signal corresponding to polyenic double bonds (=C-H trans bending at 1007 cm-1) of 374 

AmB was present in the spectrum of the physical mixture but not in that of the AmB-375 

AME, which is indicative of drug entrapment within the microparticles. 376 

PXRD analysis confirmed the crystalline nature of the AmB (Figure 2C) and the rest of 377 

the excipients (NaDC, Na2HPO4, NaH2PO4), except for the blank spray dried albumin 378 

microspheres (AME) (Figures 2C ii-iv, viii). AmB-AME showed a characteristic 379 

amorphous halo (Figure 2C vii) whereas the physical mixture of AmB and AME starting 380 

materials revealed the presence of crystalline drug even at low concentration (4 % w/w) 381 

and also crystalline NaDC and phosphate salts (Figure 2C viii). Several Bragg peaks were 382 

observed in the dimeric AmB-NaDC formulation (Figure 2C v); however, they are related 383 

to phosphate salts and no indication of characteristic peaks of crystalline AmB (2θ, 14.15, 384 

17.35 and 21.8) were detected in the lyophilised formulation, unlike the physical mixture 385 

of AmB and NaDC, where AmB and other excipient peaks were clearly observed (Figure 386 

2C vi). 387 

The water sorption kinetic profiles of the lyophilised AmB-NaDC formulation, the spray 388 

dried AmB-AME and AmB (crystalline) are shown in Figures 3a-c. AmB showed an 389 

increase in mass of approximately 8% at 90% relative humidity (RH), whereas 390 

lyophilised AmB-NaDC and AmB-AME showed a mass increase of 60% and 40% 391 

respectively at the same RH. AmB-NaDC exhibited a mass loss at 70% RH in the first 392 

sorption cycle and above 30% RH in the second sorption cycle. However, AmB within 393 

the AmB-NaDC sample remained amorphous after DVS analysis and the mass loss is 394 

attributed to crystallization of the phosphate salts, which was verified by PXRD (Figure 395 

3d). AmB-AME showed no mass loss in any sorption cycle and the PXRD pattern 396 

exhibited an amorphous halo after the DVS analysis.  397 
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 398 

Figure 3. Water sorption kinetics profiles for: a) Dimeric lyophilized AmB-NaDC, b) 399 
Spray dried AmB-AME; c) AmB (crystalline); d) PXRD patterns after DVS 400 
experiments: Key: a) NaH2PO4; b) Na2HPO4; c) NaDC; d) Spray dried AmB-AME; e) 401 
AmB-NaDC lyophilised and f) AmB. 402 

Thermal analysis illustrated that AmB exhibited a characteristic endothermic peak at 96.5 403 

⁰C which is attributed to water loss 26, as verified by thermogravimetric analysis (6.2% 404 

loss of water) (Figure 4), and started to decompose above 160 ⁰C which obscured the 405 

endothermic peak corresponding to the melting of the drug at approximately 169 ⁰C 26a. 406 

MTDSC analysis confirmed a second endothermic event for the drug at 170 ⁰C in the 407 

reversing heat flow signal (Figure S1, see SI.4. Results). The AmB-AME formulation 408 

showed a dehydration peak corresponding to 2.4% water loss followed by a broad melting 409 

peak at 200.3 ⁰C (ΔHf = 41.1 ± 1.2 J g -1). Decomposition of AmB-AME occurred at higher 410 

temperatures compared to the drug alone (> 220 ⁰C). Both the AME and the physical 411 

mixture of AmB with AME showed a similar DSC profile as the AmB-AME formulation; 412 

however, the TGA curve of the physical mixture components showed a higher weight 413 

loss (9.6 %) in the temperature range of 25 – 100 ⁰C. Anhydrous NaH2PO4 was 414 

transformed to pyrophosphate at 210 ⁰C 27, which corresponds to the weight loss at this 415 

temperature in the TGA curve. NaDC (dihydrate) was converted to the amorphous 416 

anhydrous form (dehydrated NaDC) by drying above 60 ⁰C corresponding with 10.4%  417 
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 418 

Figure 4.  Thermal analysis of dimeric AmB-NaDC and poly-aggregated AmB-AME 419 
formulations.  A) DSC thermograms; Key: a- AME; b-  Physical mixture of AmB and 420 
AME; c- Spray dried AmB-AME; d– sodium dihydrogen phosphate (NaH2PO4); e– 421 
Disodium hydrogen phosphate (Na2HPO4);  f– lyophilized AmB-NaDC; g- NaDC;  h- 422 
Physical mixture of AmB and NaDC; i- AmB. B) TGA curves; Key: a- Spray dried AmB-423 
AME; b- Blank AME; c– AmB;  d-  Physical mixture of AmB and AME; C) TGA curves. 424 
Key: a– Disodium hydrogen phosphate (Na2HPO4); b– sodium dihydrogen phosphate 425 
(NaH2PO4); c- NaDC; d- Physical mixture of AmB and NaDC; e- AmB;  f– lyophilized 426 
AmB-NaDC. 427 

weight loss in the temperature range of 25-100 ⁰C. The amorphous anhydrous form of 428 

NaDC exhibited an exothermic event at 197.9 ⁰C (ΔHc= 35.7 ± 2.3 J g -1) crystallizing to 429 

anhydrous crystalline NaDC. Similar results were reported by other authors 28. The 430 

physical mixture of AmB and NaDC exhibited a double endothermic peak below 100 ⁰C 431 

related to water loss from both AmB and NaDC. The exothermic event related to the 432 

crystallization of the amorphous anhydrous NaDC was shifted to a lower temperature 433 
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(164.2 ⁰C). No thermal events were observed in the lyophilised AmB-NaDC formulation; 434 

however, an earlier decomposition was observed at above 125 ⁰C. 435 

 436 

Figure 5. In vitro stability in simulated gastrointestinal and intestinal fluids of AmB-437 
NaDC. A) AmB content; B) AmB aggregation state in SGF; C) AmB aggregation state 438 
in SIF. The initial aggregation state (t0) and the aggregation state at the end of the 439 
experiment (210 min in SGF and 1440 min in SIF) are indicated in figures B and C. 440 

AmB-NaDC and AmB-AME were more stable in SIF than SGF, with 10-15% of the drug 441 

degrading/precipitating in 30 min in SGF, while more than 80% remained after 8 hours 442 

of incubation in SIF (Fig. 5A and Figure S2A). These results are in agreement with other 443 

authors who suggested that the stability of the drug in aqueous media at pH below 4 or 444 

higher than 10 was poor 29. AmB-NaDC illustrated similar absorbance at 328 and 407 nm 445 

(ratio 328/407 ≈ 1) in SGF indicating the presence of both AmB dimeric and monomeric 446 

aggregation states in equilibrium at early time points (Figure 5B). After 10 min in SGF, 447 

the absorbance at 328 nm decreased and the ratio 328/407 was shifted to values of 0.6 448 

indicating degradation and a conversion of dimeric aggregates at acid pH towards the 449 

monomeric state, as AmB has higher solubility at acidic pH. The transformation from 450 

dimer to monomer also explains the faster degradation of the drug in SGF compare to 451 
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SIF. In SIF, up until 8 hours, AmB is present predominantly as a dimer (Abs328 > Abs407), 452 

which is the more stable form, as indicated by the >80% AmB remaining at this time 453 

point. At time 0, the ratio 328/407 was 2.8 which was slowly decreasing. After 8 h, the ratio 454 

328/407 ≈ 1. Although AmB-AME were designed for parenteral administration, we also 455 

decided to compare their stability in SGF and SIF. AmB-AME showed an immediate 456 

transformation to a monomeric form in acid media probably indicating a dissociation 457 

from the albumin that led to a faster degradation (Figure 2SB). In SIF, AmB remained as 458 

a poly-aggregate due to its low solubility at this pH, which would likely hamper its oral 459 

absorption. For this reason, only the efficacy of AmB-NaDC after oral administration was 460 

tested in vivo.  461 

 462 

AmB aqueous suspension showed a limited release in PBS (pH 7.4) due to the low 463 

aqueous solubility at physiological pH (<50 µg mL-1). AmB-AME showed an initial burst 464 

release in PBS at pH 7.4 (25% within 15 minutes), after which the levels remain stable 465 

throughout the duration of the experiment indicating an equilibrium between the drug 466 

bound to albumin and the free drug in solution (poly-aggregate) (Figure 6, Figure S3).  467 

At 24 h a decrease in the AmB levels was observed which could be probably explained 468 

by the degradation of the drug in aqueous media at 37oC.  469 

 470 

Figure 6. In vitro drug relelease (%) profile for AmB-AME compared to AmB 471 
suspension. Key: AmB-AME diluted to 1 mg mL-1 in a mixture of physiological sterile 472 
0.9% saline and 5% glucose solutions (1:9 v/v) (brown circle); AmB suspension prepared 473 
after dilution of the drug to 1 mg mL-1 in the same mixture (black square). 474 
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 475 

3.2. In vitro activity against T. cruzi and cytotoxicity assay 476 

All formulations displayed promising IC50 values against T. cruzi against both 477 

epimastigotes and amastigotes (Table 1). Good selectivity index against epimastigotes 478 

(CC50/IC50) were obtained resulting in 280, 175 and 236 higher selectivity for AmB-479 

NaDC, poly-aggregated AmB and AmB-AME respectively. Also, AmB formulations 480 

exhibited much greater activity against epimastigotes than the existing approved drugs to 481 

treat trypanosomiasis (18-30-fold higher than benznidazole and between 7-12 fold higher 482 

than nifurtimox, depending on the parasite strain). Lower cytotoxicity against fibroblasts 483 

was observed when poly-aggregated AmB was encapsulated in AME resulting in a 484 

promising therapeutic formulation with a 1.4 and 1.7-fold higher selectivity index. 485 

However, the greatest activity and selectivity index against amastigotes was observed for 486 

AmB-NaDC (8.6 and 11.5-fold higher than nifurtimox and benznidazole respectively) 487 

while moderate selectivity index was shown for poly-aggregated AmB and AmB-AME 488 

respectively, possibly due to the inability of larger poly-aggregated AmB and AmB-AME 489 

particles to permeate across cellular membranes. 490 

 491 
Table 1. Trypanocidal activity of AmB formulations on extracellular and intracellular 492 
T.cruzi forms and cytotoxicity on NCTC929 fibroblasts. 493 
 494 

 495 

3.3. In vivo activity 496 

The parasitaemia levels after parenteral administration of AmB formulations [AmB-497 

NaDC (0.5 mg kg-1), AmB-AME (2.5 and 5 mg kg-1) or poly-aggregated AmB (2.5 and 498 

5 mg kg-1)] at days 5 and 8 post-infection were quantified during the acute infection period 499 

Formulation Epimastigotes  
IC50 (µg mL-1) 

SI against 
epimastigotes 

Amastigotes 
IC50 (µg mL-1) 

SI against 
amastigotes 

NCTC929  
Fibroblasts 

CC50 (µg mL-1) 
AmB-NaDC 0.79  280.3 0.07 3164 221.5 

Poly-
aggregated 

AmB 

0.55 175.4 10.6 9.1 96.5 

AmB-AME 0.47 236.4 7.04 15.8 111.1 
Benznidazole 14.2 11.7 0.6  275.8 165.5 
Nifurtimox 5.5 16 <0.25 >353 88.3 

 
 
Key: IC50, AmB concentration that produced a 50% reduction in parasites; CC50, AmB concentration that 
produced a 50% reduction of cell viability in treated culture cells with respect to untreated ones; SI, 
selectivity index calculated as the ratio between the CC50 and the IC50. 
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at days 7, 9 and 12 post-infection (Figure 7, Figure S4). Dimeric AmB-NaDC did not 500 

significantly reduce the number of trypomastigotes per mL at any time compared to the 501 

control group due to the low AmB tolerated dose, but was, however, able to increase the 502 

median survival time compared to the control group (Figure 7b from 23 days for control 503 

group to 26 days for AmB-NaDC ). Higher doses of AmB-NaDC were not tested as they 504 

have been shown to lead to high animal mortality mainly due to arrhythmia and 505 

bronchospasm 5, 7. Poly-aggregated AmB and poly-aggregated AmB encapsulated in 506 

AME allowed administration of higher doses and significantly reduced the parasitaemia 507 

levels by 2 and 3.6 fold respectively compared to the control group at day 7 post-infection. 508 

Nevertheless, an increase in parasitaemia was observed after the second dose of both 509 

formulations which could be related to a lack of activity of this low AmB dose compared 510 

to previously published reports which utilised either 5-fold higher intravenous 11a or 511 

intraperitoneal doses (leading to slower clearance) and longer treatment regimens 11b.  512 

Poly-aggregated AmB formulations have a higher tissue distribution (180-fold higher 513 

than AmBisome®) 8, which to an extent explains their low activity against the level of 514 

parasites present in the blood 8. Survival was prolonged compared to the control group 515 

only when AmB, either in the poly-aggregated form (AmB-NaDC) or encapsulated in 516 

albumin (AmB-AME), was administered at doses of 5 mg k6g-1 (Median survival time 517 

for the control group 23 days was raised to 25 days with AmB-AME and 26 with poly-518 

aggregated AmB).  519 

 520 
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 521 

Figure 7. a) Parasitaemia levels during the acute infection period (days 7 and 12 522 
post-infection) in BALB/c male mice infected with 10,000 bloodstream 523 
trypomastigotes of T. cruzi. Mice were randomly split into groups of twelve to ensure 524 
that a 50% difference in parasitic load can be detected with 95% confidence. Mice 525 
received two doses of AmB at days 5 and 8 post-infection. Parasitaemia was determined 526 
by counting the number of trypomastigotes in 5 μL of fresh blood collected from the tail 527 
(means ± SEMs). Reference group treated with benznidazole (100 mg/kg/day) reduced 528 
100% the parasitaemia at day 8 post-infection. Key: *p < 0.05 versus control. Bar labels 529 
(left to right): dimeric AmB-NaDC (0.5 mg kg-1), poly-aggregated AmB (2.5 mg kg-1), 530 
poly-aggregated AmB (5 mg kg-1), AmB-AME (2.5 mg kg-1), AmB-AME (5 mg kg-1) 531 
and control. b) Kaplan-Meier survival plot comparing the control versus parenteral 532 
administration of AmB formulations. AmB-AME and poly-aggregated AmB at 2.5 mg 533 
kg-1 did not improve survival more than the control group and have not been represented 534 
in the graph. No statistical differences in between parenteral formulations were observed 535 
(Log-Rank test, p>0.05). 536 

 537 
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 538 

Figure 8. a) In vivo efficacy after parenteral administration of AmB-AME at 539 
different doses expressed as percentage of parasitaemia reduction. Mice were 540 
randomly split into groups of twelve to ensure that a 50% difference in parasitic load can 541 
be detected with 95% confidence. Key: *p< 0.05 at 7 days post-infection. B) Kaplan-542 
Meier survival plot comparing the control versus parenteral administration of 543 
AmB-AME at 20 mg kg-1. No statistical differences in between parenteral formulations 544 
were observed (Log-Rank test, p>0.05). 545 

Administration of higher doses (3 doses of 5 and 10 mg kg-1) of AmB-AME compared to 546 

two doses of 2.5 and 5 mg kg-1, that reduced the parasitaemia levels only at 7 days post-547 

infection, was more effective and decreased the trypanomastigotes mL-1 not only at day 548 

7 post-infection, but also at days 9 and 12 (Figure 8a, Figure S5). However, the 549 

administration of a single dose of AmB-AME at 20 mg kg-1 was not tolerated, as observed 550 

in the Kaplan-Meier survival plot (Figure 8b). However, it increased median survival time 551 

from 13 days (control) to 15 days. Fifty percent of the animals died after the first day 552 

post-treatment. Nevertheless, those animals that survived (n=5) after the first 553 

administration survived longer (2-fold increase in survival) compared to the control 554 

group. As formulations were administered intracardiacally, further experiments are 555 

needed with these formulations to assess the LD50 after intravenous administration, which 556 
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can potentially minimize infusion-related side effects as a consequence of pro-557 

inflammatory cytokine production 30. 558 

Oral administration of the micellar AmB dispersion (AmB-NaDC) enabled a higher dose 559 

to be administered. Doses of 5, 10 and 15 mg kg-1 were administered with no clinical 560 

evidence of toxicity such as gross weight loss in any of the animals at the end of the 561 

experiment (Figure 9, Figure S6).  Oral administration of AmB-NaDC at 5 mg kg-1 for 10 562 

consecutive days resulted in a moderate reduction in parasitaemia levels (in the range of 563 

20-30 %) whereas higher doses led to a greater parasitaemia reduction (> 75%) at day 17 564 

post-infection. The administration of 10 mg kg-1 resulted in a higher reduction in 565 

parasitaemia earlier and was well tolerated (p< 0.05). At all doses, the survival rates were 566 

100% (Figure 9b). 567 

 568 

Figure 9. a) Efficacy of oral dimeric AmB-NaDC formulation administered at the 569 
following doses of 5, 10 and 15 mg/kg for 10 consecutive days. Mice were randomly 570 
split into groups of twelve to ensure that a 50% difference in parasitic load can be detected 571 
with 95% confidence. Key: *p< 0.05. B) Kaplan-Meier survival plot comparing the 572 
control untreated versus different doses of dimeric AmB-NaDC. All treatments 573 
consisting on dimeric AmB-NaDC led to 100% survival at the end of the acute infection 574 
period. AmB-NaDC is superior in prolonging survival versus control even at low oral 575 
doses (5mg/kg) (Log-Rank test, p<0.0001).  576 
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4. Discussion 577 

AmB is a broad-spectrum antifungal and antiprotozoal drug with a low incidence of 578 

clinical resistance, however its use is limited by its high toxicity, especially 579 

nephrotoxicity, infusion-related side effects such as thrombophlebitis, fever, vomiting, 580 

headache and haemolysis, and its poor aqueous solubility, permeability and oral 581 

bioavailability. In order to overcome these issues, amorphous amphotericin B delivery 582 

systems were prepared by two different processes: i) spray-drying allowing the 583 

encapsulation of  poly-aggregated AmB into albumin microspheres and ii) entrapment at 584 

the molecular level within NaDC micelles followed by lyophilisation. The amorphous 585 

nature of both formulations (AmB-NaDC and AmB-AME) was confirmed by the absence 586 

of the characteristic Bragg peaks of the drug in the PXRD patterns, the absence of 587 

endothermic events corresponding to the melting of crystalline drug in the DSC 588 

thermograms and no loss of mass associated with drug crystallization even at high relative 589 

humidities in DVS analysis. 590 

No oral AmB dosage form is currently marketed, although many research efforts are 591 

focused on developing novel oral formulations to treat fungal diseases such as candidiasis 592 

and aspergillosis or leishmaniasis 6b, 31. However, this is the first time that the oral efficacy 593 

of AmB against trypanosomiasis has been reported. This formulation may prove to be 594 

very beneficial, as the gastrointestinal lesions, such as mega-oesophagus and mega-colon, 595 

that have been described as the primary manifestations during the digestive form of the 596 

disease, can be directly targeted with an oral treatment 32. Additionally, NaDC micelles 597 

facilitate the drug solubilisation and stability in the intestinal tract which is necessary to 598 

ensure AmB is available for absorption and to elicit its effect on the parasite membrane 599 

through pore formation after interaction with ergosterol 6a. AmB-NaDC showed a high SI 600 

(>3000) in vitro compared to benznidazole and nifurtimox, both of which demonstrated 601 

activities in agreement with values previously reported 2, 33. Although parenterally only 602 

low doses of 0.5 mg kg-1 of AmB-NaDC were tolerated, with limited ability to control 603 

parasitaemia in the acute phase, higher doses of up to 15 mg kg-1 were administered orally 604 

with no clinical evidence of toxicity (Figure 9, Figure S6). In previous pharmacokinetic 605 

studies 6b, the oral administration of AmB-NaDC (5 mg kg-1) led to Cmax of 0.25 µg mL-1 606 

in plasma and 0.9, 0.8 and 0.75 µg g-1 in liver, spleen and lung respectively, which are well 607 

above the in vitro IC50 against amastigotes. To achieve the highest reduction in parasitaemia 608 
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level, a dose of 10 mg kg-1 of AmB-NaDC is required, making this formulation a promising 609 

cost-effective oral strategy to treat trypanosomiasis. 610 

As a safer alternative to AmB-NaDC for parenteral administration, poly-aggregated AmB 611 

formulations, containing the least toxic aggregation state of the drug 5, have been 612 

proposed, either as free poly-aggregates or bound to albumin microspheres, resulting in 613 

formulations with higher volume of distribution for AmB and reducing its renal excretion 614 

and nephrotoxicity 8, 15, 34. For this reason, parenterally administered poly-aggregated 615 

AmB formulations were better tolerated compared to AmB-NaDC micelles (0.5 mg kg-616 
1). Both poly-aggregates and AmB-AME displayed similar IC50 values in the nanomolar 617 

range with higher SI against epimastigotes than benznidazole and nifurtimox (used only 618 

for screening purposes) and a moderate SI against amastigotes. However, toxicity 619 

associated with parenteral administration was also observed with AmB-AME, which can 620 

be attributed to CD cardiomyopathy 14 making them more susceptible to AmB infusion-621 

related side effects 30. Survival was prolonged compared to control groups only when 622 

poly-aggregated AmB was administered at doses of 5 mg kg-1. 623 

 624 

5. Conclusions 625 

CD affects more than 10 million people necessitating the emergence of safer, cost-626 

effective and short duration oral treatments. Based on the in vitro and in vivo studies 627 

presented in the current work, the oral administration of an amorphous AmB-NaDC 628 

micellar dispersion (10-15 mg kg-1 day-1 for 10 days) represents a cost-effective, well 629 

tolerated therapy for trypanosomiasis, resulting in a 75% reduction of the parasitaemia 630 

levels and prolonging survival in the acute phase of the disease. Further studies are 631 

planned to assess the effects in the chronic phase of the disease. The use of the least toxic 632 

aggregation state of AmB in the treatment of CD was studied after parenteral 633 

administration, and poly-aggregated AmB-AME formulations (at a dose of 5mg kg-1) 634 

were able to increase survival and reduce the parasitaemia levels by 3.6 fold at day 7 post-635 

infection in the acute phase, compared to the dimeric form of AmB (AmB-NaDC). 636 

Pharmacokinetic studies of the AmB-NaDC are under way in order to support the clinical 637 

development of a cost-effective and orally bioavailable AmB treatment for CD 638 

worldwide.  639 
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