
IEEE CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING 1

Breakdown Voltage Prediction for Sphere and
Semispheroid Geometries With Gaussian Process
Regression-Based Model Under the Application

of Lightning Impulses of Both Polarities
Prévision de la tension de claquage pour les

géométries sphérique et semi-sphéroïde avec un
modèle basé sur la régression du processus

Gaussien sous l’application d’impulsions d’éclair
des deux polarités

Vidya M. S. , Graduate Student Member, IEEE, Sunitha K., Member, IEEE,
Deepa S. Kumar, Senior Member, IEEE, Deepak Mishra, Senior Member, IEEE,

and Ashok S., Senior Member, IEEE
1

2

3

4

5

6

7

8

9

10

11

Abstract— The design of high-voltage (HV) systems is principally dependent on the discharge voltage of their
insulation. Sphere geometry and semispheroid geometry are extremely important in HV systems, such as ground
rods and gas-insulated substations (GISs). Hence, in this work, a machine learning algorithm is proposed to
develop a model to predict the discharge characteristics of air for sphere and semispheroid geometries. Finite
element method (FEM) simulations have been performed to extract different electric fields and energy features of
air gaps in the range of 5–40 mm under lightning impulses of both polarities. While developing the model, these
features along with gap lengths are considered. The features have been used for training a machine learning
algorithm based on the Gaussian process regression (GPR) to develop the model. The outcomes received from
the model are ratified with measured experimental data. A good comparison between the two establishes the
fidelity of the novel model. The proposed methodology is also compared with the other state-of-the-art techniques
and found good. Remarkable performance has been acquired for other gap geometries as well.
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Résumé— La conception des systèmes haute tension (HT) dépend principalement de la tension de décharge de
leur isolation. La géométrie des sphères et des demi-sphéroïdes est extrêmement importante dans les systèmes
HT, tels que les tiges de terre et les sous-stations à isolation gazeuse (GIS). Par conséquent, dans ce travail,
un algorithme d’apprentissage automatique est proposé pour développer un modèle permettant de prédire les
caractéristiques de décharge de l’air pour les géométries sphérique et semi-sphéroïde. Des simulations par
la méthode des éléments finis (FEM) ont été réalisées pour extraire les différents champs électriques et les
caractéristiques d’énergie des fentes d’air dans la gamme de 5 à 40 mm sous des impulsions d’éclair des deux
polarités. Lors de l’élaboration du modèle, ces caractéristiques ainsi que les longueurs d’entrefer sont prises en
compte. Les caractéristiques ont été utilisées pour entraîner un algorithme d’apprentissage automatique basé
sur la régression du processus Gaussien (GPR) pour développer le modèle. Les résultats obtenus à partir du
modèle sont ratifiés avec les données expérimentales mesurées. Une bonne comparaison entre les deux établit la
fidélité du nouveau modèle. La méthodologie proposée est également comparée à d’autres techniques de pointe
et s’avère bonne. Des performances remarquables ont été obtenues pour d’autres géométries d’interstices.

25 Index Terms— Gaussian processes (GPs), high-voltage (HV) techniques, insulation, lightning.
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I. INTRODUCTION 26

THE role of dielectric insulation is important in modern 27

power systems. It is reported that most of the failures 28

occurring in the power system are due to insulation failures [1]. 29

The insulation system is always subjected to different kinds 30

of stresses; the most important among them is due to over- 31

voltages.Various kinds of overvoltages strike the insulation of 32

power apparatus during their operation, the significant among 33

them being lightning and switching overvoltages. Employment 34

of air as insulation is dominant in many areas of the power 35

system. When air insulation is subjected to different kinds 36

of overvoltages, discharge occurs, and this may give rise to 37
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effects such as corona and short circuits. The phenomena38

being random, it is difficult to predict the voltage at which39

it happens, principally for nonuniform gaps. Usually, a power40

system has an extensive range of air gaps from short to long,41

which may be uniform or nonuniform. Hence, for the efficient42

design of insulation, it is indispensable to predict the discharge43

characteristics precisely.44

Prebreakdown phenomena in short rod–plane gaps under45

lightning voltages of positive and negative polarities have46

been explained in [2]. The negative discharge characteristics47

of air under lightning impulses are well explained in [3] by48

considering the discharge as an RLC network. Modeling and49

computation of discharge parameters of discharges propagat-50

ing in the air have been done in [4]. The streamer development51

under impulse voltages for nonuniform air gaps is studied,52

and its classification has been done in [5] and [6]. One of53

the early models developed in the field of air breakdown,54

namely, the disruptive effect model, which is popularly known55

as the generalized integration method, predicts time to break56

down and not breakdown voltage (BDV). This method for57

modeling and prediction of impulse volt–time characteris-58

tics has been discussed by Darveniza and Vlastos [7] and59

Ancajima et al. [8]. A feedforward network-based model had60

been developed for the partial discharges in solid insulating61

materials in [9]. These models are based on real physical62

phenomena, and more simplified models have been developed63

based on machine learning methods. For such models, data64

collected experimentally from some known gap lengths are65

employed to predict the flashover voltage for the unknown gap66

lengths. The prediction of transformer oil BDV has been done67

in [10] using the artificial neural network (ANN). A support68

vector machine (SVM)-based model for power frequency BDV69

has been developed in [11]. Considering the energy-storage70

features, the switching impulse breakdown characteristics have71

been obtained for long air gaps by Qiu et al. [12]. In [13],72

a support vector regression (SVR)-based model has been73

developed for power frequency BDV for rod–plane air gaps.74

The above literature review reveals that many of the75

researchers have developed predictive models of the break-76

down of short and long air gaps under power frequency and77

switching voltages. However, it is important to mention here78

that a model for the prediction of discharge characteristics79

of 5–40-mm air gap under lightning impulses for sphere80

and semispheroid geometry has not been developed so far.81

Sphere–sphere geometries are found in protective devices, and82

semispheroid geometries are found in ground rods of power83

systems. In addition to that, conducting particles, which take84

the shape of spheroid geometry, are important in gas-insulated85

substations (GISs) as they may cause partial discharge break-86

down in the gaseous dielectrics [14]. These electrodes are87

often subjected to overvoltages of different types. Because of88

these facts, an attempt has been made in our work to predict89

the discharge characteristics of air under lightning impulses90

of positive polarity and negative polarity for sphere–sphere91

geometry, and the work has been extended to semispheroid92

geometry. We have used a semiempirical approach mentioned93

in [12]. Different methods of prediction are based on fitting a94

regression model to experimental data and finding a relation95

between output and input variables. This method introduces 96

much error as fitting a predefined relationship may not be 97

accurate, particularly when the phenomena are mostly sto- 98

chastic. Hence, a probabilistic prediction method based on 99

a predictive distribution has gained much attention in many 100

engineering applications. The fundamental principles of air 101

discharge are well explained by Townsend’s theory and the 102

streamer theory [15]. Accordingly, the basic air discharge is 103

explained by the presence of primary electrons, secondary 104

electrons, ionization, excitation, electron attachment, and sev- 105

eral other electron processes. The accumulative effect of all 106

these processes along with other atmospheric conditions makes 107

air discharge under different geometries and gap lengths pos- 108

sess a stochastic character, and it would be suitable to predict 109

the discharge characteristics based on predictive distribution. 110

The most recent development in predictive distribution is 111

a Gaussian process (GP) distribution. Hence, in this work, 112

a machine learning algorithm based on GP regression (GPR) 113

is made use of. GPR-based models work as the Bayesian 114

estimation, where a prior distribution is assumed, and observed 115

data are relocated based on Baye’s rule [16]. 116

The proposed model is robust and pliable based on the 117

following grounds. 118

1) The number of assumptions made about the shape of 119

the estimator functions is less. Hence, the relationship 120

between the known variables and unknown variables can 121

be easily visualized. 122

2) As GPR is based on the dependencies between the 123

features, it can be appropriate to datasets with a small 124

number of features. 125

3) GPR is inherently probabilistic and is useful for pre- 126

dictions in phenomena such as discharge characteristics 127

of air. 128

The main contributions of our work are the following: devel- 129

opment of an effective model for predicting the breakdown 130

between electrodes of the sphere and semispheroid geome- 131

try for medium-length air gaps under lightning impulses of 132

positive polarity. The model possesses high accuracy with the 133

reasonable number of input features: extending the work to 134

negative polarity impulses and experimental validation of the 135

model. 136

II. PREDICTION METHODOLOGY 137

The prediction of air flashover with the help of machine 138

learning algorithms can be found in [11]–[13]. The method 139

utilized in these papers is primarily based on feature extraction 140

using the finite element method (FEM), and the same is 141

employed to develop a novel model for the required geometric 142

configurations of medium gap lengths in our work. However, 143

it is to be noted that the number of input features required 144

has been found only six to develop an efficient model. The 145

effective employment of this method necessitates four steps. 146

Initially, the computation of field and energy features through- 147

out the length of the air gap needs to be carried out. Second, 148

the values of the BDV of these gap lengths are collected 149

experimentally. A consolidated dataset that comprises all the 150

features and BDV magnitudes of gap distances is to be 151

prepared next. The last step involves the development of the 152

model using the prepared dataset. 153
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A. Application of Finite Element Method to the Feature154

Extraction of Air Gaps155

The performance of any machine learning algorithm relies156

on good features. Hence, feature extraction of the air gap of157

the required geometry is the first and an important step in158

the prediction of BDV. The distribution of different features159

across the air gap changes with the geometry, length of the gap,160

amplitude, and shape of the input voltage wave. Accuracy in161

the extracted parameters is mostly influenced by these factors,162

and hence, precision modeling of the electrode geometry is163

inevitable to get the desired results. Accordingly, modeling164

of the geometry is done by using standard dimensions of165

the electrodes available. For sphere geometry, spheres of the166

standard dimension of 100-mm diameter, and for semispher-167

oid geometry, Verband Deutscher Electrotechniker (VDE)168

electrodes have been used, and the dimensions are as per169

IEC-60156 standard.170

Computations of the field and energy features have been171

done by FEM using COMSOL Multiphysics 5.2 software. The172

geometry of the required electrode configuration is first cre-173

ated. Triangular meshing is done, and the size of the triangular174

elements is made extremely fine throughout the geometry to175

get accurate results. After grounding the bottom electrode, the176

other electrode is supplied with lightning impulses. Lightning177

impulse waveform applied is of standard 1.2/50 µs, as shown178

in the following equation (IS-20171):179

u(t) = A(e−αt − e−βt) (1)180

where u(t) represents the instantaneous value of the wave, A181

represents the magnitude, and α and β represent constants.182

In this work, positive polarity and negative polarity lightning183

impulses have been used for both experiments and simulation.184

It is worthwhile to mention that about 90% of the lightning185

strikes in power systems are of negative polarity. The simu-186

lations are carried out using an electrostatics module with a187

time-dependent study. Five features (electric field and energy)188

have been extracted for each gap length. The features extracted189

are given as follows.190

1) The electric field strength (E) characterizes the intensity191

of the field along the discharge path. The discharge192

path chosen is the shortest path between the two elec-193

trodes [11]. The variation of E over the discharge path194

between the two electrodes has been considered while195

developing the model.196

2) The electric energy density (Ewe), represents the capac-197

itive energy stored in the gap.198

3) The electric potential (V ) characterizes the potential199

distribution between the electrodes. When the lightning200

impulse voltage is applied between the electrodes, the201

potential distribution in the gap varies and is different202

for different gap lengths and geometries.203

4) The current density (J ) constitutes the electric current204

per cross-sectional area at a given point in space. After205

creating the model, lightning impulses have been given206

as the input, and a time-dependent study has been chosen207

in the simulation since lightning impulse varies with208

time. In the solution matrix, the current density also209

Fig. 1. Impulse generator circuit configuration.

shows a small value and, hence, has been considered 210

as a parameter in the training set. 211

5) The total electric energy (Etwe) is the total energy due 212

to electric and magnetic fields. 213

The analysis is based on solving a set of equations in 214

between the electrodes subjected to the following boundary 215

conditions. i.e., the potential distribution is obtained by solving 216

the Laplace equation at each node, i.e., ∇2V = 0. Under the 217

zero charge boundary condition, the equation ∇.V = 0 is 218

solved. Initial values are assumed as V = 0, where V is 219

the applied potential. The ground boundary condition applied 220

refers to V = 0. In the FEM, the potential distribution is 221

obtained by considering the minimum energy criteria between 222

different elements. For this, the entire solution space is divided 223

into small elements, and (2) is solved as follows 224

W = 1

2
εE2. (2) 225

Equation (2) is written in Cartesian coordinates as follows: 226

W = 1

2
ε

∫ ∫ ∫ [(
∂V

∂x

)2

+
(

∂V

∂y

)2

+
(

∂V

∂z

)2
]
. (3) 227

Since the model is created in 2-D, the change in potential along 228

the z-direction is zero, and hence, the equation becomes 229

W = 1

2
ε

∫ ∫ ∫ [(
∂V

∂x

)2

+
(

∂V

∂y

)2
]
. (4) 230

B. Experimental Setup 231

The training dataset required to train the machine learning 232

model is obtained by conducting experiments on the prede- 233

fined configurations of electrode geometries. Marx’s single- 234

stage impulse generator of rating 140 kV has been used 235

to generate the standard lightning impulse waveform for 236

conducting the experiments. 237

The circuit for the generation of impulses is shown in 238

Fig. 1, and Fig. 2 shows the experimental setup. C1 represents 239

previously charged capacitor, and S represents the sphere gap. 240

When the desired voltage is applied, the sphere gap breaks 241

down, and the required voltage is applied across the test cell. 242

C2 is the load capacitor, and R1 and R2 determine the wave 243

shape characteristics of the impulse waveform generated. 244
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Fig. 2. Test setup.

1) Experimental Procedure: Experiments have been con-245

ducted as per IEC standards. Great care has been taken to246

ensure that the surfaces of the electrodes are clean, free247

from dust or deposited moisture. Also, the gap between the248

electrodes is kept free from floating dust particles, fibers,249

and so on. The up and down method has been used to250

find out the BDV. During this procedure, an approximate251

initial voltage (V ) is selected. (�V ) constitutes equally spaced252

voltage levels above and below the starting voltage. After253

applying the first shot at V , if a breakdown occurred, V −�V254

is chosen for the next shot. The value of voltage is increased255

to V + �V otherwise. An identical procedure is repeated for256

negative polarity impulses. As per standards, V50 voltage is257

established after a minimum of 20 applications of voltages258

for self-restoring insulation [15], [17]. Atmospheric correction259

factors are applied accordingly to the experimental data [18].260

A consolidated set consisting of all the five features extracted261

by simulation and the corresponding gap lengths constitute the262

six input parameters of the training data. The BDVs obtained263

experimentally for each gap length are chosen as the output of264

the training data given to the model. The dataset is normalized265

and shuffled before being input into the model.266

C. Gaussian Process Regression Model267

The regression analysis has been proven as an efficient268

tool for addressing many engineering problems. Most of the269

physical phenomena occurring in nature can be described270

by a model, in which the dependent variables are related to271

independent variables by some relation that can be represented272

by a mathematical equation. In our study, the extracted features273

of the geometry considered as independent variables include274

gap length (G), E , Ewe, V , J , and Etwe. The target variable275

considered as a dependent variable is the BDV. With all276

variables being real-valued, a regression model based on277

predictive distribution can be used. It is to be noted here that278

discharge of air is a probabilistic phenomenon that follows a 279

Gaussian distribution. Based on the literature survey, the GPR 280

model is observed to solve complicated nonlinear problems 281

even for a small sample space. Furthermore, it has a strong 282

theoretical basis in statistical learning. Hence the model is 283

selected for prediction in this work. 284

GPs have been considered as an infinite extension of a 285

multivariate normal distribution. The correlation between the 286

input variable and the output variable can be written as 287

follows: 288

yi = f (xi) + ε (5) 289

where f (xi) is the function representing the independent 290

variable for the i th observation and ε is the additive noise. 291

For a zero mean value 292

ε ∼ N (
0, σ 2

n

)
(6) 293

where σ 2
n represents the variance of noise and n is the number 294

of observations. The prior distribution of the training sample 295

is represented by the following equation: 296

y = N (
0, K + σ 2

n I
)

(7) 297

where I is the nth-order unit matrix. 298

The best estimate of the dependent variable f∗ of a new 299

test dataset is found out for a training dataset Ds = {X, y}. 300

A Gaussian function is completely described by mx and 301

k(x, x ′), where mx is the mean and k(x, x ′) is the covariance 302

function or kernel. 303

For any x, x ′
304

mx = E( f (x)) (8) 305

k(x, x ′) = Cov( f (x), f (x ′)). (9) 306

In our work, a zero mean is assumed, and a squared exponen- 307

tial kernel function given by (10) is used. The choice of this 308

squared exponential kernel is very useful for smooth functions 309

k
(
x, x ′) = σ 2

f exp

(
−1

2

(
x − x ′)T M(

x − x ′)) (10) 310

where σ 2
f represents the signal variance, M = diag(l)−2, where 311

l = {lk |k = 1, 2, . . . , d} represents characteristic length scale 312

for each input dimension, and M forms a d × d matrix with 313

its diagonal consisting of (1/l2
k ) and zero elsewhere. l, σ f , σn 314

are called hyperparameters and are found out by the Markov 315

chain Monte Carlo method [16]. For the training dataset Ds , 316

the set of test input vector X , and a new set of inputs X∗, the 317

joint distribution of y and f∗ is formed as a matrix as 318(
y

f∗

)
∼ N

(
0

0

)
,

[
K (X, X) K (X∗, X)
K (X, X∗) K (X∗, X∗)

]
(11) 319

where K (X, X∗) describes the matrix of co variances com- 320

puted at all pairs of training and test samples. Similarly, the 321

other K (, ) expressions denote the matrix of covariances. Now, 322

for X and y, the outputs f∗ can be estimated from new sets 323

of inputs X∗ by modeling the function y as a GP. i.e., if the 324

observed data are y and the unobserved data are f∗, coming 325

from a GP, concatenating y and f∗ results in a multivariate 326

normal distribution with the mean and covariance structure 327
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Fig. 3. Sphere–sphere geometry.

Fig. 4. Semispheroid–plane geometry.

Fig. 5. Potential distribution (volts) of the sphere–sphere electrode configu-
ration. The potential is decreasing toward the bottom electrode.

given by (8) and (9) [16], [19]. Now, because y is observed, f∗328

can be modeled as the conditional distribution of a multivariate329

normal using (12)330

p( f∗|X∗, X, y) ∼ N (K (X∗, X)K (X, X)−1y (12)331

K (X∗, X∗) − K (X∗, X)K (X, X)−1K (X, X∗)). (13)332

In this study, f∗ represents the discharge voltage of the333

unknown gap distance.334

III. RESULTS AND DISCUSSION335

To study the effect of various gap lengths on BDVs, the336

geometry of the two specific electrode configurations had337

been created as 2-D models in COMSOL software. Fig. 3338

represents a sphere–sphere electrode configuration designed339

with the standard diameter of 100 mm, and Fig. 4 represents340

a semispheroid shape electrode designed with dimensions as341

per standards mentioned in Section II-A. Lightning impulses342

of unit magnitude have been applied to the top electrode, and343

with the other electrode grounded, the field and energy features344

along the length between the electrodes are extracted. Fig. 5345

shows a sample plot of potential distribution for 40-mm gap346

sphere–sphere configuration. The potential is higher toward the347

two end electrodes. The sample plot of E for sphere–sphere348

geometry is shown in Fig. 6. From the figure, it is implied349

that the distribution of features varies widely in a nonlin-350

ear manner. The gap between sphere–sphere geometries is351

considered uniform when the distance between the spheres352

Fig. 6. Field distribution sample plot for the sphere–sphere geometry. The
gap distance is 40 mm.

is sufficiently larger than the sphere diameter. In this work, 353

as the selected gap lengths are less than sphere diameter, the 354

field distribution obtained is mostly nonuniform for all the 355

gap lengths. Similarly, the other features are also extracted by 356

simulation. The proposed GPR model effectively takes care 357

of the nonlinear variation in the features. Table I shows the 358

gap distances and BDVs chosen for extracting the features 359

for the preparation of the training dataset. The actual dataset 360

includes hundreds of samples of the extracted features taken 361

along the discharge path for each of the gap distances. The 362

generation of the training dataset has been done by considering 363

a total of 191 samples (total number of extracted original 364

data for the sphere–sphere geometry) and 677 samples (total 365

number of extracted original data for semispheroid–plane 366

geometry) under impulses of either polarity. Known discharge 367

voltages that have been generated for these gap distances 368

experimentally are used as the target variable. A consolidated 369

training dataset with gap distance as the sixth parameter 370

is then prepared. For the sphere–sphere configuration, four 371

different gap lengths (5, 15, 30, and 40 mm) and, for the 372

semispheroid–plane configuration, three different gap lengths 373

(5, 15, and 25 mm), which is shown in Table I, have been 374

chosen for generating the training data. From the training data 375

collected from experiments, it is observed that the discharge 376

voltage of gaps for both the geometries is more for negative 377

polarity impulses. The experimental results reveal that the 378

discharge voltage of air is greatly influenced by the changes 379

in the geometry and polarity of the waveform applied. The 380

GPR model is trained with the prepared dataset for creating 381

the model. For the prediction of the BDVs, features of the 382

unknown gap geometries are extracted, a consolidated dataset 383

is prepared and is given as the input to the model, and the 384

results are obtained. Computations have been done using a 385

regression learner in the MATLAB version R2018a. 386

A. Assessment of the Model 387

Cross-validation of a machine learning model has been 388

adopted to estimate the effectiveness of the model in making 389

predictions with the new dataset while developing the model. 390

This is done by partitioning the dataset into training and test 391

sets. k-fold cross-validation is done by dividing the dataset into 392
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TABLE I

GAP LENGTH AND BDV VALUES USED FOR

GENERATING THE TRAINING DATASET

TABLE II

GAP LENGTH VALUES USED FOR GENERATING

THE VALIDATION TEST DATASET

TABLE III

PERFORMANCE METRIC OF THE TRAINING DATA

k partitions. In the first run, the first partition is taken as test393

data, and k−1 partitioned sets are used to train. In the next run,394

the second partition is taken as the test data, and with the other395

partitioned sets, training is done. This procedure is repeated for396

all the k partitions. The performance indices in terms of errors397

of the developed model are obtained by taking the average of398

cross-validation errors computed in all the iterations. In our399

work, the performance of the model has been assessed by400

fivefold cross-validation between the samples. i.e., the dataset401

is arbitrarily partitioned into five sets, and the training is done402

by using four out of five sets (80%) keeping one (20%) of the403

five partitioned sets as the test data. The model is obtained by404

storing all the results in a 4×1 cell array. The cross-validation405

errors computed are mean square error (MSE), mean absolute406

error (MAE), and root mean square error (RMSE). The errors407

of the prediction model are described by (13)–(15)408

MSE = 1

N

N∑
i=1

(yi − ŷ)2 (14)409

RMSE =
√√√√ 1

N

N∑
i=1

(yi − ŷ)2 (15)410

MAE = 1

N

N∑
i=1

| yi − ŷ | (16)411

where yi represents the actual output and ŷi represents the412

predicted value. A detailed description is given in [20]. Table II413

shows the gap length values used for generating the validation414

test dataset. The comparison of the performance indices of415

the developed model for the two geometries is shown in416

Table III for both polarities. Data given in the table indicate417

TABLE IV

PERFORMANCE METRIC OF THE VALIDATION TEST DATA

Fig. 7. Flowchart. (a) Training phase. (b) Validation phase.

the comparison of the model errors with training samples. The 418

closeness of fit is evident from the table, which shows very 419

less values of MSE, MAE, and RMSE. It may be noted that the 420

absolute values are less than 1 in all the cases for training data. 421

B. Validation of Results 422

The consistency of the model is established through exper- 423

imental validation. Simulations have been done with the 424

geometries separately for the required gap distances, and 425

new validation test datasets have been prepared. The datasets 426

include the five electric field and energy features given in 427

Section II-A. The input to the model includes these datasets 428

along with the gap length. However, the dataset does not 429
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Fig. 8. Comparison between experimental and predicted BDVs. (a) For
sphere–sphere positive polarity. (b) For sphere–sphere negative polarity.
(c) For semispheroid–plane positive polarity. (d) For semispheroid–plane
negative polarity.

include the target variable. BDV has been predicted for430

sphere–sphere configuration (10, 20, 25, and 35 mm) and431

semispheroid–plane configuration (10 and 20 mm) using the432

developed model. These gap lengths had been used to generate433

the validation test dataset. Table II shows the gap lengths434

Fig. 9. Comparison of error indices. The GPR models show
the least error. (a) Sphere–sphere positive. (b) Sphere–sphere negative.
(c) Semispheroid–plane positive. (d) Semispheroid–plane negative.

chosen for generating the validation test dataset, and the 435

experimental and predicted values of BDVs. It may be noted 436

that the test data mentioned in this section are different from 437

the test dataset considered while developing the model. For 438

the validation of the results, gap lengths that have not been 439

considered for training are taken. That is, it is the unknown 440

gap lengths for the model. The values of the predicted BDVs 441

have been compared with the data obtained from actual exper- 442

iments. Table IV indicates the performance metric computed 443

from the predicted results of the validation test dataset shown 444

in Table II. From the table, it can be observed that the deviation 445

in the predicted value and the actual data is very small. The 446

predictions are in concurrence with the experimental data. 447

The flowcharts representing the training phase and valida- 448

tion phase are shown in Fig. 7. Necessary data for generating 449
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TABLE V

COMPARISON OF PERFORMANCE INDICES OF GPR MODEL WITH OTHER MODELS

TABLE VI

PERFORMANCE INDICES OF THE MODEL

(ROD–ROD AND ROD–PLANE)

the training dataset have been obtained by conducting in-house450

experiments for some gap distances. The feature extraction451

has been carried out by creating the required geometries452

in COMSOL Multiphysics. This involves applying boundary453

conditions that are specified in Section II. Extra fine meshing454

has been applied to the geometry to divide the solution455

space into discrete domains accurately. By solving the field456

equations, required features have been extracted from the457

geometry. From the features extracted, the training dataset has458

been prepared to train the model. Error indices are obtained to459

evaluate the performance of the model. Now, for the validation460

phase, gap lengths have been changed to the required value461

in the geometry created. After applying boundary conditions462

to the created geometric model, meshing is done. Features463

are extracted by solving the required electric field equations,464

and a consolidated validation test dataset has been prepared465

for each of the test gap lengths selected for validation. The466

prepared dataset does not include the target variable, which467

is the value of the BDV to be predicted. After getting the468

predicted results, the error indices of the validation test data469

have been obtained. Fig. 8(a)–(d) shows the comparison plots470

of the predicted results with experimental data. The closeness471

of fit is evident from the figures.472

IV. COMPARISON WITH STATE-OF-THE-ART MODELS473

The model is compared with the GPR model of the474

exponential Kernel function and also with other models, and475

verifies the efficacy. Other models chosen for comparison are476

SVM regression–fine Gaussian (FG), medium Gaussian (MG),477

Fig. 10. Comparison of predicted and experimental results. (a) For long
air gaps with the GPR model (rod–rod). (b) For long air gaps with the GPR
model (rod–plane).

and coarse Gaussian (CG). Table V shows the performance 478

parameters of the GPR model with other models. It indicates 479

the efficacy of GPR in terms of very small error values in 480

prediction. The graphical comparison of results is shown in 481

Fig. 9(a)–(d). It can be observed that the GPR models show the 482

least error compared to other models for the chosen geometric 483

configurations. The GPR model with the squared exponential 484



vidya et al.: BDV PREDICTION FOR SPHERE AND SEMISPHEROID GEOMETRIES 9

kernel is marginally more accurate than exponential kernel485

and, hence, proves the best fit.486

The GPR model performance is evaluated for long air487

gaps [12] using rod–plane and rod–rod geometries. The488

rod–rod and rod–plane geometries are created in COMSOL489

as the first step. The training dataset is prepared from the490

extracted features of 1-, 5-, and 10-m gap lengths. The BDVs491

have been predicted with the developed GPR model as per the492

procedure discussed in Section II for gaps of lengths of 2, 4, 6,493

8, and 10 m for the rod–rod and rod–plane configurations. For494

the rod–rod geometry, 1763 samples, and rod–plane geometry,495

1545 samples had been used for training. From the various496

evaluation metric shown in Table VI, it is evident that the497

proposed model is equally pertinent to long air gaps also.498

The comparison of predicted results with experimental data499

is shown in Fig. 10.500

V. CONCLUSION501

In this work, a GPR-based machine learning model for502

the prediction of discharge voltage of air under lightning503

impulses of both polarities has been developed. Since a504

machine learning model demands a large number of inputs for505

accurate prediction, FEM-based feature extraction is adopted506

to effectively increase the input parameters of the model.507

The extracted features, namely, electric field strength (E),508

electric energy density (Ewe), electric potential (V ), current509

density (J ), and total electric energy (Etwe) of the gaps and510

corresponding gap lengths, are given as the input parameters of511

the model. From the extracted features using the FEM method,512

it is perceptible that the discharge characteristics of different513

electrode geometries with applied voltage vary in a stochastic514

manner. It is found that the proposed model effectively515

predicts the BDV of air for different gap geometries and gap516

lengths. The model is validated using experimental tests. The517

predicted results using the model show good concurrence with518

test results. Accurate predictions have been achieved with a519

reasonable number of input parameters. The effectiveness of520

the model is established by comparison with GPR models of521

different kernel functions and with the other state-of-the-art522

models. The results show the efficacy of the model with very523

small values of error indices. The GPR model when applied524

to long air gaps (rod–plane and rod–rod) is found to give525

promising results.526
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