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Abstract: This work proposes a distribution-free stochastic model updating framework to calibrate 11 
the joint probabilistic distribution of the multivariate correlated parameters. In this framework, the 12 
marginal distributions are defined as the staircase density functions and the correlation structure is 13 
described by the Gaussian copula function. The first four moments of the staircase density functions 14 
and the correlation coefficients are updated by an approximate Bayesian computation, in which the 15 
Bhattacharyya distance-based metric is proposed to define an approximate likelihood that is capable 16 
of quantifying the discrepancy between model outputs and measurement data. The feasibility of the 17 
framework is demonstrated on two illustrative examples and a followed real-world application to 18 
a nonlinear dynamic system updating problem based on measured time signals. The results indicate 19 
the importance of considering the parameter dependencies in stochastic model updating.  20 
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1. Introduction25 

The model updating has been developed as a fascinating technique to mitigate the discrepancy 26 
between model outputs and experimental measurements [1,2]. The causes of the discrepancy during 27 
the model updating can be generally classified into following three categories: 28 

• Parameter uncertainty. Model parameters, e.g., geometry dimensions, boundary conditions,29 
and material properties, often cannot be exactly determined;30 

• Modelling uncertainty. Simplifications or approximations, e.g., linearization and frictionless31 
mechanical joints, have to be made to numerically represent the physical system;32 

• Measurement uncertainty. Measured quantities are inevitably contaminated by the hard-to-33 
control randomnesses, e.g., environmental noises and measurement system errors.34 

The deterministic model updating, especially for the sensitivity method [1], might be one of the 35 
most successful model updating techniques. It aims at calibrating the model parameters to find their 36 
optimal values from a single set of measurements. It has been employed in a wide range of practical 37 
applications, including the correction of large-scale finite element (FE) models [3,4]. Nevertheless, it 38 
accounts for measurement data as an exactly determined values/signals, with no consideration of the 39 
measurement uncertainty. 40 

Comparatively, the stochastic model updating, including the perturbation method [5,6], Monte 41 
Carlo method [7,8], and Bayesian method [2,9], can be interpreted as the techniques to calibrate not 42 
the parameters themselves but the uncertainty characteristics, i.e., probabilistic distributions, so that 43 
the model outputs are committed not to the maximum fidelity to a single set of measurements but to 44 
the uncertainty characteristics of the multiple sets of measurements. In the stochastic model updating, 45 
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uncertainty quantification (UQ) metrics play a key role to quantify the statistical discrepancy between 46 
the model outputs and measurements because of the above three sources of uncertainty. A series of 47 
distances, such as the Euclidian distance, Mahalanobis distance, and Bhattacharyya distance has been 48 
successfully proposed to define the UQ metrics in the stochastic model updating [8]. In addition, the 49 
Frobenius norm has been also utilized to define the UQ metric to quantify the difference between the 50 
covariance matrices of the model outputs and measurements [10]. Bi et al. [11] has recently developed 51 
a Bayesian updating framework employing the approximate Bayesian computation (ABC) technique 52 
[12,13], where the Bhattacharyya distance-based approximate likelihood is used. This framework has 53 
been demonstrated to be capable to calibrate numerical models such that the model outputs recreate 54 
wholly the uncertainty characteristics of target measurements. The framework has been furthermore 55 
extended to the calibration of dynamic systems, so that the procedure enables to quantify wholly the 56 
uncertainty characteristics of the measured time signals [14]. 57 

In the stochastic model updating, distribution families of the parameters commonly need to be 58 
assigned a priori, then the prior distribution of the hyper-parameters such as means and variances is 59 
updated to the posterior distribution using the measurement data. The distribution families, however, 60 
are often unknown beforehand due to the scarce and/or incomplete available data for the parameters. 61 
The newly released NASA UQ challenge problem 2019 [15], for instance, requires a model calibration 62 
task in an extremely challenging condition that no distribution information of the aleatory parameters 63 
is provided other than a common bounded support domain. In such situation, the assumption on the 64 
distribution formats might significantly affect the model updating results. Therefore, Kitahara et al. 65 
[16] has recently developed a distribution-free Bayesian updating framework, where staircase density66 
functions [17] are assigned to the underlying distribution families of the parameters. Staircase density67 
functions enable to flexibly approximate a broad range of distributions arbitrary close, such as highly68 
skewed and/or multi-modal distributions, and are hence particularly appropriate to characterize the69 
parameters whose density formats cannot be specified. The framework has been demonstrated to be70 
capable to calibrate the probabilistic distribution of the parameters without limiting hypotheses upon71 
the distribution families.72 

Nevertheless, the aforementioned distribution-free updating framework still has open questions. 73 
Firstly, the framework has been currently only demonstrated on the updating by scalar-valued modal 74 
responses. Hence, in this study, it is extended to the updating of dynamic systems by measured time 75 
signals. Secondly, staircase density functions are provided for univariate random variables, and thus 76 
cannot consider the parameter dependencies, which might lead to inaccurate updating results in the 77 
presence of strong correlation among parameters. Copula functions are well-known to be capable to 78 
provide an effective way to characterize the dependence structure among parameters, and have been 79 
widely applied to reliability problems [18-20]. Among various types of copula functions, the Gaussian 80 
copula function is most widely used because it can be easily generalized to the multivariate case, and 81 
this property is particularly attractive for the stochastic model updating problem, in which very large 82 
number of parameters is considered as random variables.  83 

The objective of this work is consequently to develop a stochastic model updating framework to 84 
calibrate the joint probability distribution of the correlated parameters without prior knowledge on 85 
the distribution families of the marginal distributions. In order to achieve this task, it is assumed that 86 
the joint probability distribution of the parameters is characterized by a combination of the Gaussian 87 
copula function and staircase density functions. Moment constraints for the existence of the staircase 88 
density functions and the correlation coefficient constraint for the existence of the copula function are 89 
then derived. Furthermore, the Bhattacharyya distance is utilized to define an approximate likelihood 90 
function quantifying the stochastic discrepancy between the model outputs and measurements, such 91 
that the hyper-parameters of the staircase density functions as well as the correlation coefficients of 92 
the copula function are calibrated through an ABC updating approach. The proposed framework is 93 
first demonstrated on both bi-variate and multi-variate cases using two simple illustrative examples, 94 
and then applied to a model updating problem of a seismic-isolated bridge pier model based on the 95 
simulated seismic response data, so as to demonstrate the feasibility of the framework in the updating 96 
of nonlinear dynamic systems.  97 
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The structure of this paper is as follows. Section 2 first describes theoretical and methodological 98 
bases of the three key ingredients of the proposed framework, i.e., the Bhattacharyya distance-based 99 
UQ metrics, staircase density functions, and Gaussian copula function. Then, in Section 3, we outline 100 
the formulation of the Bayesian updating with the combination of the Gaussian copula function and 101 
staircase density functions, and the proposed ABC updating framework. Illustrative applications are 102 
provided in Section 4, employing a simple shear building model and a spring-mass system, and the 103 
feasibility of the proposed framework in the updating of nonlinear dynamic systems by the measured 104 
time signals is further demonstrated in Section 5. Finally, Section 6 gives conclusions to this paper. 105 

2. Theories and methodologies 106 

2.1. Bhattacharyya distance-based UQ metrics 107 

The system under investigation in the stochastic model updating is described as: 108 

𝒚 = ℎ(𝒙) (1) 

where 𝒙 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑛] denotes a row vector of 𝑛 input parameters; 𝒚 = [𝑦1, 𝑦2, ⋯ , 𝑦𝑚] means a row 109 
vector of 𝑚 output features; ℎ(∙) means the simulator. The output features herein can be either scalar-110 
valued modal responses or time signals. In the latter case, 𝒚 is replaced to be 𝐲 = [𝒚1, 𝒚2, ⋯ , 𝒚𝑚], with 111 
𝒚𝑖 = [𝑦𝑖(0), 𝑦𝑖(1),⋯ , 𝑦𝑖(𝑡)]

𝑇, ∀𝑖 = 1, 2,⋯ ,𝑚, where 𝑡 indicates the time parameter. The simulator ℎ(∙) 112 
can be either high-fidelity models, e.g., FE models, or approximated surrogate models.  113 

Uncertainties involved in the system are first characterized by representing the input parameters 114 
as random variables, and are then propagated through the simulator to the output features. This can 115 
be typically achieved by randomly generating the multiple sets of the parameters and corresponding 116 
output features. Let the sample size be 𝑁sim, the simulator ℎ is evaluated 𝑁sim times for obtaining the 117 
sample set of the simulated features 𝐘sim ∈ ℝ𝑁sim×𝑚: 118 

𝐘sim = [𝐲(1), 𝐲(2),⋯ , 𝐲(𝑁sim)]
𝑇
, with 𝐲(𝑘) = [𝑦1

(𝑘)
, 𝑦2

(𝑘)
, ⋯ , 𝑦𝑚

(𝑘)
], ∀𝑘 = 1, 2,⋯ ,𝑁sim (2) 

in the case that the output features are given as the modal responses. 𝐘sim can be simply extended to 119 
𝐘sim ∈ ℝ𝑁sim×𝑚×(𝑡+1) for the time signals case. 120 

In addition to the simulated features, corresponding observed features are also necessary in the 121 
model updating. Let the number of observations be 𝑁obs, the sample set of the observed features 𝐘obs 122 
possesses a same structure as Eq. (2), but only the number of rows is changed from 𝑁sim to 𝑁obs. The 123 
stochastic model updating is then aimed at minimizing the stochastic discrepancy between 𝐘sim and 124 
𝐘obs by calibrating the joint probability distribution of the parameters.  125 

To quantify the discrepancy between 𝐘sim and 𝐘obs, the Bhattacharyya distance-based UQ metric 126 
is employed in this study. The original definition of the Bhattacharyya distance is given as [21]: 127 

𝑑𝐵(𝐘sim, 𝐘obs) = − log [∫ √𝑓𝐘sim
(𝒚)𝑓𝐘obs

(𝒚)
𝕪

d𝒚] (3) 

where 𝑓(∙)(𝒚) means the probability density function (PDF) of the output features 𝒚; 𝕪 is the support 128 
domain of the output features which comprises 𝑚-dimensional space for the modal responses but the 129 
{𝑚 × (𝑡 + 1)}-dimensional space for the time signals. Eq. (3) indicates the Bhattacharyya distance is a 130 
measure of the overlap between the two probability distributions. Hence, it is capable to consider not 131 
only mean information but whole statistical information of two different sample sets. However, the 132 
direct evaluation of Eq. (3) is usually impractical since precisely estimating the joint PDF of the output 133 
features is non-trivial due to the necessity of time-consuming repeated model evaluations or the very 134 
limited number of available measurement data. To overcome this issue, Bi et al. [11] proposes the so-135 
called binning algorithm to evaluate the probability mass function (PMF) of the given sample sets, so 136 
that the discrete Bhattacharyya distance is utilized instead [22]: 137 

𝑑𝐵(𝐘sim, 𝐘obs) = − log {∑ √𝑃𝐘sim

(𝑗)
𝑃𝐘obs

(𝑗)

𝑁bin

𝑗=1

} (4) 
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where 𝑁bin denotes the total number of bins; 𝑃(∙)
(𝑗)

 denotes the PMF value of the output features at the 138 
𝑗th bin. In the binning algorithm, a grid is created in the whole support domain of the output features, 139 
and thus the total number of bins would be 𝑁bin = 𝑛bin

𝑚  for the modal responses and 𝑁bin = 𝑛bin
𝑚×(𝑡+1)140 

for the time signals, where 𝑛bin indicates the number of bins for each output feature. One can refer to 141 
Ref. [11] for the detailed procedure of the binning algorithm. The discrete Bhattacharyya distance has 142 
been demonstrated to be effective in relatively low-dimensional problems (e.g., the dimension is less 143 
than six). 144 

On the other hand, even the evaluation of Eq. (4) is still impractical for the very high-dimensional 145 
problems where the output features comprise time signals, since the number of bins is exponentially 146 
increasing with the number of dimensions because of the so-called curse of dimensionality. To tackle 147 
this issue, Kitahara et al. [14] proposes a dimension reduction procedure to employ the Bhattacharyya 148 
distance for the comparison of two different time signals, consisting of the following steps: 149 

1) Define the common window length L for 𝐘sim and 𝐘obs. Divide them into three-dimensional150 
sub-arrays 𝐘sim

𝑠 ∈ ℝ𝑁sim×𝑚× L and 𝐘obs
𝑠 ∈ ℝ𝑁obs×𝑚× L, ∀𝑠 = 1,⋯ , ⌊(𝑡 + 1) L⁄ ⌋, where ⌊∙⌋ denotes 151 

the lower integer of the investigated values; 152 
2) Compute the root mean square (RMS) matrices 𝐑𝐘sim

𝑠 ∈ ℝ𝑁sim×𝑚 of each sub-array 𝐘sim
𝑠  along153 

its third dimension and obtain the sample set of the RMS values 𝐑𝐘sim
∈ ℝ𝑁sim×𝑚×⌊(𝑡+1) L⁄ ⌋. Do154 

similar procedure for the observed features and obtain 𝐑𝐘obs
∈ ℝ𝑁obs×𝑚×⌊(𝑡+1) L⁄ ⌋;155 

3) Evaluate in total ⌊(𝑡 + 1) L⁄ ⌋ Bhattacharyya distances 𝑑𝐵
𝑠  between two sample sets 𝐑𝐘sim

𝑠  and 156 
𝐑𝐘obs

𝑠  using Eq. (4); 157 
4) Employ the RMS value of the set of the Bhattacharyya distances, 𝑅𝑑𝐵

, as the UQ metric. 158 

The authors’ experience shows that L = (0.02~0.03) ∙ 𝑡 is the reasonable choice for the window length 159 
L, and such choice indicates that each window contains 2~3 % of the time signals. As such, the time 160 
signals are degraded to a series of RMS values, the above defined Bhattacharyya distance-based UQ 161 
metric has been demonstrated to be able to quantify the uncertainty characteristics of the entire time 162 
signals [14]. 163 

2.2. Staircase density functions 164 

Let the input parameter 𝑥𝑖, ∀𝑖 = 1,⋯ , 𝑛, be a random variable having the support domain [𝑥𝑖 , 𝑥𝑖] 165 
and a quadruple of the hyper-parameters 𝜽𝑥𝑖

= [𝜇𝑖 , 𝑚2𝑖 , 𝑚̃3𝑖 , 𝑚̃4𝑖] consisting of the mean 𝜇𝑖, variance166 
𝑚2𝑖, skewness 𝑚̃3𝑖, and kurtosis 𝑚̃4𝑖. The skewness 𝑚̃3𝑖 and kurtosis 𝑚̃4𝑖 are defined as ratios of the 167 
variance to the third and fourth central moments by 𝑚̃3𝑖 = 𝑚3𝑖 𝑚2𝑖

3 2⁄⁄  and 𝑚̃4𝑖 = 𝑚4𝑖 𝑚2𝑖
2⁄ , respectively.168 

The feasibility condition for the existence of 𝑥𝑖 can be defined as moment constraints given by a series 169 
of inequalities Θ𝑖 = {𝜽𝑥𝑖

: 𝑔(𝜽𝑥𝑖
) ≤ 0}, and their components are summarized in Table 1 [23,24].170 

Table 1. Moment constraints for the existence of staircase density functions. 171 
Hyper-parameters Moment constraints 

Mean 𝜇𝑖 𝑔1 = 𝑥
𝑖
− 𝜇𝑖

𝑔2 = 𝜇𝑖 − 𝑥𝑖 
Variance  𝑚2𝑖 𝑔3 = −𝑚2𝑖 

𝑔4 = 𝑚2𝑖 − 𝑣𝑖 
Skewness  𝑚̃3𝑖 𝑔5 = 𝑚2𝑖

2 − 𝑚2𝑖(𝜇𝑖 − 𝑥𝑖)
2
− 𝑚̃3𝑖𝑚2𝑖

3 2⁄
(𝜇𝑖 − 𝑥𝑖) 

𝑔6 = 𝑚̃3𝑖𝑚2𝑖
3 2⁄ (𝑥𝑖 − 𝜇𝑖) − 𝑚2𝑖(𝑥𝑖 − 𝜇𝑖)

2 + 𝑚2𝑖
2

𝑔7 = 4𝑚2𝑖
2 + 𝑚̃3𝑖

2 𝑚2𝑖
3 − 𝑚2𝑖

2 (𝑥𝑖 − 𝑥𝑖)
2

𝑔8 = 6√3𝑚̃3𝑖𝑚2𝑖
3 2⁄

− (𝑥𝑖 − 𝑥𝑖)
3

𝑔9 = −6√3𝑚̃3𝑖𝑚2𝑖
3 2⁄

− (𝑥𝑖 − 𝑥𝑖)
3

Kurtosis  𝑚̃4𝑖 𝑔10 = −𝑚̃4𝑖𝑚2𝑖
2

𝑔11 = 12𝑚̃4𝑖𝑚2𝑖
2 − (𝑥𝑖 − 𝑥𝑖)

4

𝑔12 = (𝑚̃4𝑖𝑚2𝑖
2 − 𝑣𝑖𝑚2𝑖 − 𝑢𝑖𝑚̃3𝑖𝑚2𝑖

3 2⁄
)(𝑣𝑖 − 𝑚2𝑖) + (𝑚̃3𝑖𝑚2𝑖

3 2⁄
− 𝜇𝑖𝑚2𝑖)

2

𝑔13 = 𝑚̃3𝑖
2 𝑚2𝑖

3 + 𝑚2𝑖
3 − 𝑚̃4𝑖𝑚2𝑖

3

  a 𝑢𝑖 = 𝑥𝑖 + 𝑥𝑖 − 2𝜇𝑖 and 𝑣𝑖 = (𝜇𝑖 − 𝑥𝑖)(𝑥𝑖 − 𝜇𝑖). 
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Let the bounded support domain [𝑥𝑖 , 𝑥𝑖] equally partitioned into 𝑛𝑏 subintervals with the length 172 
𝜅 = (𝑥𝑖 − 𝑥𝑖) 𝑛𝑏⁄ , 𝑥𝑖 can be considered as a staircase random variable, and then its PDF 𝑓𝑥𝑖

(𝑥) can be 173 
expressed as [17]:  174 

𝑓𝑥𝑖
(𝑥)  = {𝑙

𝑗    ∀𝑥 ∈ (𝑥𝑖
𝑗
, 𝑥𝑖

𝑗+1
], ∀𝑗 = 1, 2,⋯ , 𝑛𝑏

0    otherwise                                          
 (5) 

where 𝑙𝑗 is the PDF value of the 𝑗th bin; 𝑥𝑖
𝑗
= 𝑥𝑖 + (𝑗 − 1)𝜅 is the left partitioning point of the 𝑗th bin. 175 

It is noted that 𝑙𝑗 holds that 𝑙𝑗 ≥ 0 for all the bins and 𝜅 ∑ 𝑙𝑗
𝑛𝑏
𝑗=1 = 1. The PDF values 𝒍𝑖are obtained by 176 

solving the following optimization problem [17]:  177 

𝒍̂𝑖 = argmin
𝒍≥0

{𝐽(𝒍): ∑∫ 𝑥𝑙𝑗𝑑𝑥
𝑥𝑖

𝑗+1

𝑥
𝑖
𝑗

= 𝜇𝑖

𝑛𝑏

𝑗=1

,∑∫ (𝑥 − 𝜇𝑖)
𝑟𝑙𝑗𝑑𝑥

𝑥𝑖
𝑗+1

𝑥
𝑖
𝑗

= 𝑚𝑟𝑖

𝑛𝑏

𝑗=1

, 𝑟 = 2, 3, 4} (6) 

where 𝐽(∙) is an arbitrary selected cost function expressed as:  178 

𝐽(𝒍) = 𝒍𝑇𝐈𝒍 (7) 

where 𝐈 means the identity matrix. This cost function leads to the resultant staircase random variables 179 
minimizing the squared sum of the likelihood at each bin. Based on the moment matching constraints, 180 
Eq. (6) can be written as [17]: 181 

𝒍̂𝑖 = argmin
𝒍≥0

{𝐽(𝒍): 𝐀(𝜽𝑥𝑖
, 𝑛𝑏)𝒍 = 𝒃(𝜽𝑥𝑖

), 𝜽𝑥𝑖
∈ Θ𝑖} (8) 

where  182 

𝐀 =

[
 
 
 
 

𝜅𝒆
𝜅𝒄

𝜅𝒄2 + 𝜅3 12⁄

𝜅𝒄3 + 𝜅3𝒄 4⁄

𝜅𝒄4 + 𝜅3𝒄2 2⁄ + 𝜅5 80⁄ ]
 
 
 
 

, and 𝒃 =

[
 
 
 
 
 

1
𝜇𝑖

𝜇𝑖
2 + 𝑚2𝑖

𝑚̃3𝑖𝑚2𝑖
3 2⁄

+ 3𝜇𝑖𝑚2𝑖 + 𝜇𝑖
3

𝑚4𝑖𝑚2𝑖
2 + 4𝑚̃3𝑖𝑚2𝑖

3 2⁄
𝜇𝑖 + 6𝑚2𝑖𝜇𝑖

2 + 𝜇𝑖
4]
 
 
 
 
 

  

where 𝒄 means a column vector of the centre of the bin 𝑐𝑗 = (𝑥𝑖
𝑗
+ 𝑥𝑖

𝑗+1
) 2⁄ ; 𝒄𝑛 denotes the component 183 

wise 𝑛th power of 𝒄; 𝒆 refers to a vector of ones.  184 
The convexity of the optimization problem in Eq. (8) enables the fast computation of the staircase 185 

density heights. In addition, a relatively small value of 𝑛𝑏 (e.g., 𝑛𝑏 = 25~50) is enough for obtaining 186 
practically smooth distribution shapes for the PMF evaluation, which makes the computation further 187 
faster. These features are particularly appropriate for the stochastic updating, where the tremendous 188 
number of computations of the probability distributions is necessary. Furthermore, staircase density 189 
functions enable to flexibly approximate a broad range of distributions arbitrary close, such as highly 190 
skewed and/or multi-modal distributions. Therefore, they can serve as a distribution-free uncertainty 191 
characterization model of the parameters whose distribution families cannot be determined. 192 

2.3. Gaussian copula function 193 

Copula functions couple the multivariate joint cumulative distribution function (CDF) with its 194 
one-dimensional marginal CDFs. Conversely, copula functions are also seen as the multivariate joint 195 
CDFs whose one-dimensional marginal CDFs follow a uniform distribution on the interval of [0, 1]. 196 
According to Sklar’s theorem [25], the bivariate joint CDF of two random variables 𝑥1 and 𝑥2 can be 197 
expressed as: 198 

𝐹𝐱(𝑥1, 𝑥2) = 𝐶 (𝐹𝑥1
(𝑥1), 𝐹𝑥2

(𝑥2)) (9) 

where 𝐹𝑥1
(𝑥1) and 𝐹𝑥2

(𝑥2) are the marginal CDFs of 𝑥1 and 𝑥2, respectively; 𝐶 (𝐹𝑥1
(𝑥1), 𝐹𝑥2

(𝑥2)) is the 199 
copula function. From Eq. (9), the bivariate joint PDF of 𝑥1 and 𝑥2 is then written as: 200 

𝑓𝐱(𝑥1, 𝑥2) = 𝑐 (𝐹𝑥1
(𝑥1), 𝐹𝑥2

(𝑥2)) 𝑓𝑥1
(𝑥1)𝑓𝑥2

(𝑥2) (10) 

where 𝑐 (𝐹𝑥1
(𝑥1), 𝐹𝑥2

(𝑥2)) denotes the copula density function given as: 201 
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𝑐 (𝐹𝑥1
(𝑥1), 𝐹𝑥2

(𝑥2)) = 𝑐(𝑢1, 𝑢2) =
𝜕2𝑐(𝑢1, 𝑢2)

𝜕𝑢1𝜕𝑢2

(11) 

Theoretically, the joint distribution of 𝑥1 and 𝑥2 can be fully and uniquely represented by Eqs. (9) and 202 
(10) if the marginal distributions of 𝑥1 and 𝑥2, and the copula function are given.203 

There are many copula function types in the literature, including the Gaussian, t, Frank, Gumbel,204 
and Clayton copula functions. They are characterized by their own dependence structures. The latter 205 
three types of copula function can be referred to as Archimedean copulas. The Archimedean copulas 206 
have only a single parameter, and thus cannot provide the general dependence structure among more 207 
than two random variables. Alternatively, the general dependence structure is often modeled by the 208 
pair-copula decomposition introduced as a canonical vine copula [26]. Conversely, the Gaussian and 209 
t copulas, which belong to elliptical copulas, can be straightforwardly generalized to the multivariate 210 
case. Particularly, the Gaussian copula function is most widely used since it only needs the correlation 211 
matrix to determine the dependence structure. 212 

In this study, the joint probability distribution of the input parameters 𝒙 is finally characterized 213 
by the combination of the Gaussian copula function and staircase density functions as: 214 

𝐹𝐱(𝒙) = 𝐶𝐺(𝐹𝑥1
(𝑥1), 𝐹𝑥2

(𝑥2),⋯ , 𝐹𝑥𝑛
(𝑥𝑛);  𝝆)

= Φ𝜌 (Φ−1 (𝐹𝑥1
(𝑥1)) ,Φ−1 (𝐹𝑥2

(𝑥2)) ,⋯ ,Φ−1 (𝐹𝑥𝑛
(𝑥𝑛)))

(12) 

where 𝐶𝐺 indicates the Gaussian copula function; 𝝆 indicates the correlation matrix; Φ𝜌 indicates the 215 
multivariate standard normal CDF with 𝝆; Φ−1 indicates the inverse function of the standard normal 216 
CDF. It is noted that each marginal CDF 𝐹𝑥𝑖

(𝑥𝑖) can be described by the empirical CDF of the staircase217 
density function 𝑓𝑥𝑖

(∙), for 𝑖 = 1,2,⋯ , 𝑛. The correlation matrix 𝝆 can be expressed as:218 

𝝆 =

[

1 𝜌12 𝜌13 ⋯ 𝜌1𝑛

𝜌12 1 𝜌23 ⋯ 𝜌2𝑛

𝜌13 𝜌23 ⋱ ⋯ ⋮
⋮ ⋮ ⋮ 1 𝜌𝑛−1𝑛

𝜌1𝑛 𝜌2𝑛 ⋯ 𝜌𝑛−1𝑛 1 ]

(13) 

where 𝜌𝑖𝑗, for 𝑖 = 1,2,⋯ , 𝑛 − 1 and 𝑗 = 𝑖 + 1,⋯ , 𝑛, means the correlation coefficient. The range of each 219 
correlation coefficient can reach [-1, 1]. The correlation matrix 𝝆 should be the symmetric and positive 220 
semi-definite matrix. Hence, the feasibility condition for the existence of the Gaussian copula function 221 
can be defined by the correlation coefficient constraint 𝒫 = {𝝆: chol(𝝆) ≠ ∅}, where chol(∙) means the 222 
Cholesky factorization. 223 

3. Distribution-free stochastic model updating224 

3.1. Bayesian model updating of the joint probabilistic distribution 225 

In the proposed stochastic updating framework, the well-known Bayesian inference is utilized. 226 
It is based on the Bayes’ theorem [27]: 227 

𝑃(𝝑|𝐘obs) =
𝑃𝐿(𝐘obs|𝝑)𝑃(𝝑)

𝑃(𝐘obs)
(14) 

where 𝑃(𝝑) denotes the prior PDF of the parameters to be inferred 𝝑 that is determined by the initial 228 
knowledge of the system and expert judgement; 𝑃(𝝑|𝐘obs) means the posterior PDF of 𝝑 conditional 229 
to the measurements, representing the updated knowledge of 𝝑; 𝑃(𝐘obs) indicates the normalization 230 
factor (evidence) ensuring the integral of the posterior distribution equal to one; 𝑃𝐿(𝐘obs|𝛉) indicates 231 
the likelihood function of 𝐘obs that is defined as the PDF values of the measurements conditional to 232 
each instance of 𝝑. 233 

To calibrate the joint probabilistic distribution of the parameters 𝒙 given by Eq. (13), the hyper-234 
parameters of the staircase density functions 𝜽𝑥𝑖

, for 𝑖 = 1,⋯ , 𝑛, and the correlation coefficients of the235 
Gaussian copula function 𝜌𝑖𝑗, for 𝑖 = 1,⋯ , 𝑛 − 1 and 𝑗 = 𝑖 + 1,⋯ , 𝑛, are considered to be the inferred 236 
parameters 𝝑. Based on the moment constraints Θ𝑖, the support domains of 𝜽𝑥𝑖

 can be determined as:237 
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𝜇𝑖 ∈ [𝑥𝑖 , 𝑥𝑖],𝑚2𝑖 ∈ [0,
(𝑥𝑖 − 𝑥𝑖)

2

4
] ,𝑚3𝑖 ∈ [−

(𝑥𝑖 − 𝑥𝑖)
3

6√3
,
(𝑥𝑖 − 𝑥𝑖)

3

6√3
] ,𝑚4𝑖 ∈ [0,

(𝑥𝑖 − 𝑥𝑖)
4

12
] (15) 

It is noted that the support domains are defined not for the skewness and kurtosis but the third and 238 
fourth central moments, since the skewness and kurtosis are conditional on the variance. On the other 239 
hand, the support domain of 𝜌𝑖𝑗 is simply defined as [-1, 1]. In this study, it is assumed all parameters 240 
to be inferred are independent. Based on these support domains with the moment constraints Θ𝑖 and 241 
correlation coefficient constraint Ρ, the prior PDF 𝑃(𝝑) can be expressed as: 242 

𝑃(𝝑) = ∏𝑃(𝜽𝑥𝑖
)𝐼Θ𝑖

(𝜽𝑥𝑖
)

𝑛

𝑖=1

∙ ∏ ∏ 𝑃(𝜌𝑖𝑗)𝐼𝒫(𝜌𝑖𝑗)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 (16) 

where 𝑃(𝜽𝑥𝑖
) and 𝑃(𝜌𝑖𝑗) indicate the prior PDFs of the hyper-parameters and correlation coefficients 243 

that are chosen as the uniform distributions on their respective support domains; 𝐼Θ𝑖
(𝜽𝑥𝑖

) denotes the 244 
indicator function of 𝜽𝑥𝑖

, which equals to one if Θ𝑖 is satisfied and otherwise equals to zero; 𝐼𝒫(𝜌𝑖𝑗) is 245 
similarly the indicator function of 𝜌𝑖𝑗. As such, the proposed stochastic updating framework requires 246 
only assumptions on the support domains of the input parameters 𝒙. 247 

This brings totally 4𝑛 + 𝑛(𝑛 − 1) 2⁄  inferred parameters. However, it is widely recognized that 248 
the direct evaluation of the posterior PDF over such a high-dimensional parameter space is not trivial 249 
[28]. Hence, the well-known advanced sampling technique, termed transitional Markov chain Monte 250 
Carlo (TMCMC) [29], is employed in this study. TMCMC is a sequential procedure sampling from a 251 
series of transitional PDFs that will gradually converge to the actual posterior PDF, thus it enables to 252 
generate samples from the very complex posterior PDF. One can refer to Refs. [29,30] for more details 253 
of the TMCMC algorithm. 254 

3.2. Approximate Bayesian computation 255 

The likelihood function plays a key role in the Bayesian model updating. Utilizing the Bayesian 256 
inference in the stochastic updating results in the following theoretical likelihood function: 257 

𝑃𝐿(𝐘obs|𝝑) = ∏ 𝑃(𝐘obs
(𝑘)

|𝝑)

𝑁obs

𝑘=1

 (17) 

where 𝑃(𝐘obs
(𝑘)

|𝝑) means the PDF value of the 𝑘th observations 𝐘obs
(𝑘)

 conditional to each instance of the 258 
inferred parameters 𝝑. The direct evaluation of Eq. (17), however, is often impractical since it requires 259 
the significant number of model evaluations so as to precisely estimate the PDFs of the corresponding 260 
model outputs. 261 

The ABC method [12,13] has been successfully employed to overcome this obstacle by replacing 262 
the above full likelihood function with an approximate but efficient likelihood function that contains 263 
information of both the measurements and inferred parameters 𝝑. Various forms of the approximate 264 
likelihood functions have been investigated in the literature, such as the Gaussian [31], Epanechnikov 265 
[32], and inverse squared error [33] functions. Regardless of the function form, it is essential to utilize 266 
the comprehensive UQ metric which can serve as an effective connection between the measurements 267 
and inferred parameters. In this study, an approximate likelihood function by the Gaussian function 268 
is defined by utilizing the Bhattacharyya distance-based UQ metric as: 269 

𝑃𝐿(𝐘obs|𝝑) ∝ 𝑒𝑥𝑝 {−
𝑑𝐵

2

𝜀2
} (18) 

where 𝜀 is the pre-defined width factor, which controls the centralization degree of the posterior PDF. 270 
A smaller 𝜀 provides a more peaked posterior PDF, which is more likely to converge to its true value 271 
but needs more computation cost for convergence. Hence, its choice is based on specific applications, 272 
while it is recommended to be within the interval of [10−3, 10−1] [31]. By utilizing the Bhattacharyya 273 
distance (or the RMS value 𝑅𝑑𝐵

 for the time signals case), the proposed likelihood enables to quantify 274 
the comprehensive uncertainty characteristics of the model outputs and measurements.  275 

Distribution-free stochastic model updating of dynamic systems with parameter dependencies



 8 of 22 

 

The schematic in Fig. 1 illustrates overall framework of the proposed distribution-free stochastic 276 
updating procedure. As already mentioned, only the support domains of the parameters are required 277 
to perform this framework. Sampling from the prior PDF in Eq. (16) can be achieved by the rejection 278 
sampling. TMCMC is then utilized to update the inferred parameters to the posterior PDF using the 279 
Bhattacharyya distance-based approximate likelihood. By assigning most probable values (MPVs) of 280 
the posterior PDF, the joint probabilistic distribution of the input parameters is finally calibrated such 281 
that the stochastic model outputs generated from the joint distribution is capable to recreate wholly 282 
the uncertainty characteristics of the target measurements. It is important to note that, the calibrated 283 
distribution of the parameters is not necessarily applicable to the reliability analysis so as to estimate 284 
the probabilities of rare events, since the parameters are finitely bounded due to the definition of the 285 
staircase density functions and a domain where the rare event happens might be excluded.    286 

 287 
Fig. 1. Schematic of the proposed stochastic model updating framework. 288 

4. Principle and illustrative applications 289 

4.1. Case study I: The two degree of freedom shear building model 290 

The first case study is performed on a two degree of freedom (DOF) shear building model given 291 
in Fig. 2(a). This case study aims at demonstrating the feasibility of the proposed updating procedure 292 
for illustrative bivariate case, and how the stochastic model updating fails by ignoring the parameter 293 
dependency. This model has been initially introduced by Ref. [28], where the first and second story 294 
masses are considered as the fixed values with 𝑚1 = 16.531 × 103 kg and 𝑚2 = 16.131 × 103 kg. On 295 
the other hand, the first and second interstory stiffnesses are characterized as 𝑘1 = 𝑘𝑥1 and 𝑘2 = 𝑘𝑥2, 296 
where 𝒙 = [𝑥1, 𝑥2] indicates the inferred parameters, and 𝑘 = 29.7 × 106  N m⁄  is the nominal value. 297 
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In Ref. [28], the prior PDF 𝑃(𝒙) is determined by the pair of uncorrelated lognormal distributions 298 
with the MPVs 1.3 and 0.8 for 𝑥1 and 𝑥2, respectively, and the unit standard deviations. By employing 299 
the first two natural frequencies 𝑓1 = 4.31 Hz and 𝑓2 = 9.83 Hz as the observed features, the posterior 300 
PDF 𝑃(𝒙|𝐘obs) is expressed as: 301 

𝑃(𝒙|[𝑓1, 𝑓2]) ∝ 𝑒𝑥𝑝 [−
𝑀(𝒙)

2𝜎2
] 𝑃(𝒙) (19) 

where 𝜎 = 1 16⁄  indicates the standard deviation of the prediction error; 𝑀(∙) is the modal measure-302 
of-fit function expressed as: 303 

𝑀(𝒙) = ∑𝜆2

2

𝑗=1

[
𝑓𝑗

2(𝒙)

𝑓𝑗
2

− 1]

2

 (20) 

where 𝜆 = 1 is the weight; 𝑓𝑗(𝒙) denotes the 𝑗th natural frequency obtained as the model output. Fig. 304 
2(b) illustrates the posterior distribution in Eq. (19). It can be seen that the posterior distribution has 305 
a clear negative correlation. 306 

 307 
Fig. 2. (a) 2-DOF shear building model; (b) Posterior distribution in Eq. (19). 308 

The aforementioned original problem can be interpreted to aim at estimating the set of plausible 309 
values of the input parameters 𝒙 using the single set of observed features [𝑓1, 𝑓2] through the Bayesian 310 
scheme. Comparatively, the uncertainty characteristics of the input parameters and observed features 311 
are altered hereafter to perform the stochastic updating where the joint probability distribution of the 312 
input parameters, 𝐹𝐱(𝒙), is calibrated using the multiple sets of the observed features. The target joint 313 
distribution is defined to be identical to the posterior distribution in Eq. (19). The number of observed 314 
features is set to be 𝑁obs = 100; thus, 𝑁obs sample sets of the input parameters are generated from the 315 
target distribution 𝑃(𝒙|[𝑓1, 𝑓2]) utilizing TMCMC, and the corresponding observed features 𝐘obs are 316 
collected by evaluating the model with these sample sets. Note that the target distribution of the input 317 
parameters is unknown beforehand in actual. As such, the altered problem is aimed at calibrating the 318 
joint distribution of the input parameters to recreate wholly the uncertainty characteristics of 𝐘obs by 319 
the model outputs generated from the joint distribution. 320 

The bounded support domains of 𝑥1 and 𝑥2 are determined as provided in Table 2.  The support 321 
domain of the hyper-parameters 𝜽𝑥1

 and 𝜽𝑥2
 can be computed using Eq. (15). Let the sample size be 322 

𝑁MC = 1000, 𝑁MC sets of the initial values of 𝜽𝑥1
 and 𝜽𝑥2

, maintaining the moment constraints Θ1 and 323 
Θ2, are generated by the rejection sampling while 𝑁MC initial values of the correlation coefficient 𝜌12 324 
are arbitrary generated from its support of [-1, 1]. For each set of [𝜽𝑥1

, 𝜽𝑥2
, 𝜌12], the joint probability 325 

distribution of the input parameters 𝒙 described by the Gaussian copula function with the marginal 326 
staircase density functions is determined. The number of bins in staircase density estimation is chosen 327 
as 𝑛𝑏 = 25. At the same time, the number of simulated features is set to be 𝑁sim = 1000; hence, 𝑁sim 328 
sample sets of the input parameters 𝒙 are generated from each joint distribution {𝐹𝐱

(𝑘)
: 𝑘 = 1,⋯ ,𝑁MC}. 329 
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The corresponding initial simulated features 𝐘sim
(𝑘)

 are then collected by evaluating the model for each 330 
sample sets of the input parameters. Arbitrary selected initial simulated features are plotted in Fig. 3, 331 
together with the target observed features. The figure clearly demonstrates the presence of significant 332 
discrepancy between the simulated and observed features, implying the necessity of stochastic model 333 
updating for better representation of the uncertainty characteristics of the observed features by means 334 
of the model outputs.  335 

Table 2. Uncertainty characteristics of the 2-DOF model. 336 
Parameter Support domain Target distribution 

𝑥1 𝑥1 ∈ [0, 3.0] The marginal distribution of Eq. (19) 
𝑥2 𝑥2 ∈ [0, 1.5] The marginal distribution of Eq. (19) 

 337 
Fig. 3. Observed and initial simulated features. 338 

The Bhattacharyya distance is estimated for each set of the simulated features 𝐘sim
(𝑘)

. The number 339 
of bins in the binning algorithm is chosen to be 𝑛bin = 5. Then, the Bayesian model updating of totally 340 
nine inferred parameters (i.e., the hyper-parameters 𝜽𝑥𝑖

= {𝜇𝑖, 𝑚2𝑖 , 𝑚̃3𝑖 , 𝑚̃4𝑖}, for 𝑖 = 1, 2, as well as the 341 
correlation coefficient 𝜌12) is performed using the Bhattacharyya distance-based likelihood function. 342 
The width factor in the likelihood function is set to be 𝜀 = 0.02. 343 

Fig. 4 shows the posterior PDFs of all the inferred parameters obtained after totally ten TMCMC 344 
iterations, together with their target and calibrated values. The target values are estimated based on 345 
samples generated from the target joint distribution, while the calibrated values are estimated as the 346 
MPVs of the posterior PDFs. These values are summarized in Table 3. It can be seen that the posterior 347 
PDFs of all the inferred parameters are significantly updated compared with their uniform priors that 348 
are identical to ranges of the horizontal axes of Fig. 4. The posterior supports of the skewnesses and 349 
kurtoses are, however, not reduced much from their prior supports, compared with the means and 350 
variances, fulfilling the general experience that the higher order moments are difficult to be precisely 351 
updated compared with the means [34,35]. Nevertheless, the calibrated values including the kurtoses 352 
and the correlation coefficient are in good agreement with their target values with the largest relative 353 
error less than 6 %, except for the variance 𝑚21 and two skewnesses 𝑚̃31 and 𝑚̃32. The relative errors 354 
are shown as percentages in the parentheses after the calibrated values in Table 3. It is noted that, the 355 
large relative error in 𝑚21 can be explained to be caused by its quite small target value, and the error 356 
is acceptable to obtain the staircase density function approximating the target distribution as shown 357 
in Fig. 5. Meanwhile, the large errors in 𝑚̃31 and 𝑚̃32 are apparently caused by the wrongly identified 358 
signs, whereas their absolute values are close to those of the targets. It should be noted that, the signs 359 
of the skewnesses do not strongly affect the uncertainty characteristics of the output features as long 360 
as their absolute values are small such that the resultant distributions are almost symmetric. To this 361 
end, it is demonstrated that the Bhattacharyya distance can quantify not only mean information but 362 
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also higher statistical information, i.e., the variances, skewnesses, and kurtoses as well as correlation 363 
coefficient.  364 

 365 
Fig. 4. Posterior PDFs of the inferred parameters. 366 

Table 3. Calibrated parameters of the 2-DOF model. 367 
Parameter Target value Calibrated value Calibrated value without correlation 

𝜇1 1.3007 1.3000 (-0.05 %) 1.1214 (-13.78 %) 

𝑚21 0.0348 0.0550 (48.85 %) 0.0157 (-54.89 %) 

𝑚̃31 0.3102 -0.3200 (-203.16 %) 0.0022 (-99.29 %) 

𝑚̃41 2.7503 2.8300 (2.90 %) 2.2912 (-16.69 %) 

𝜇2 0.6568 0.6540 (-0.43 %) 0.7474 (13.79 %) 

𝑚22 0.0085 0.0090 (5.88 %) 0.0031 (63.53 %) 

𝑚̃32 0.1866 -0.1780 (-195.39 %) -0.0849 (-145.50 %) 

𝑚̃42 2.6679 2.7000 (1.20 %) 2.4355 (-8.71 %) 

𝜌12 -0.7858 -0.8172 (-4.00 %) – 

To further demonstrate the results, the sample sets of the input parameters 𝒙 are generated from 368 
the calibrated joint distribution (i.e., the Gaussian copula function with the marginal staircase density 369 
functions) and are illustrated in Fig. 5. It can be seen that the samples generated from the calibrated 370 
distribution shows good agreement with the target distribution. Meanwhile, the Bayesian updating 371 
of only the marginal staircase density functions is also performed to demonstrate how the stochastic 372 
model updating fails by ignoring the parameter dependency. The calibrated values of all the hyper-373 
parameters are listed in the last column of Table 3. Most of the parameters denote quite large relative 374 
errors compared with those estimated with considering the parameter dependency. The sample sets 375 
of the input parameters 𝒙 generated from the calibrated uncorrelated staircase density functions are 376 
also plotted in the figure, which are only distributed in a part of the target distribution, implying the 377 
importance of considering the parameter dependency in stochastic model updating.  378 

Finally, Fig. 6 illustrates the updated simulated features of 𝑓1 and 𝑓2 that is obtained by assigning 379 
the calibrated joint distribution to 𝒙, together with the initial simulated and target observed features. 380 
Moreover, the simulated features are also computed for the case ignoring the parameter dependency, 381 
and are provided in the figure. It can be seen that the updated simulated features show a distribution 382 
equivalent to the observed features for both cases with and without the parameter dependency, while 383 
the former provides better results. It implies that the Bhattacharyya distance metric has a potential to 384 
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recreate wholly the distribution of the target observed features regardless of the consideration of the 385 
parameter dependency. Nonetheless, these results emphasize the importance of consideration of the 386 
parameter dependency in the stochastic model updating, because even though the observed features 387 
can be ideally quantified, the incompletely calibrated joint distribution of the input parameters could 388 
result in an inaccurate prediction of other quantity of interests, which might be important for the risk 389 
assessment or design optimization of the target structure.  390 

 391 
Fig. 5. Updated samples of the input parameters. 392 

 393 
Fig. 6. Updated simulated features. 394 

4.2. Case study II: The three degree of freedom spring-mass system  395 

The next case study is performed on a 3-DOF spring-mass system illustrated in Fig. 7. This case 396 
study aims at demonstrating the capability of the proposed updating procedure for multivariate case. 397 
This numerical system has been employed for demonstrating various stochastic updating techniques 398 
[5,11], however, the uncertainty characteristics of the system are changed in this study to demonstrate 399 
the proposed approach. The stiffness coefficients 𝑘1, 𝑘2, and 𝑘3 are considered as the uncertain input 400 
parameters to be calibrated, whereas the remaining parameters (i.e. 𝑘4 to 𝑘6 and the three masses 𝑚1 401 
to 𝑚3) are treated to be the deterministic values: 𝑘4−6 = 5.0 N m⁄ , 𝑚1 = 0.7 kg, 𝑚2 = 0.5 kg, and 𝑚3 =402 
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0.3 kg. The first three natural frequencies 𝑓1, 𝑓2, and 𝑓3 are employed as the target output features the 403 
uncertainty characteristics of which are driven by the joint probabilistic distribution of 𝑘1, 𝑘2, and 𝑘3 404 
that is assumed to be a correlated tri-variate Gaussian distribution. The given support domains of 𝑘1, 405 
𝑘2, and 𝑘3 and the target values of both the hyper-parameters and correlation coefficients are shown 406 
in Table 4. It is noted that the support domains are set to cover more than 99.99 % confidence intervals 407 
of the target marginal distributions. Such notification is important because the support domain of the 408 
target joint distribution is not bounded, differently from the initial case study. 409 

 410 
Fig. 7. 3-DOF spring-mass system. 411 

Table 4. Uncertainty characteristics of the 3-DOF system. 412 
Parameter Support domain Target distribution 

𝑘1, 𝑘2, 𝑘3 𝑘1 ∈ [2.5, 5.5], 𝑘2 ∈ [4.5, 5.5],  
𝑘3 ∈ [5, 7] 

Gaussian, 𝜇1 = 4.0, 𝜇2 = 5.0, 𝜇3 = 6.0, 𝑚21 = 0.09,  

𝑚22 = 0.01, 𝑚23 = 0.04, 𝜌12 = 0, 𝜌13 = −0.6, 𝜌23 = 0.6 

𝑘4–𝑘6, 𝑚1–𝑚3 Deterministic – 

Consider the number of observed features be 𝑁obs = 500, 𝑁obs sample sets of 𝑘1, 𝑘2, and 𝑘3 are 413 
generated from the target joint distribution and then the corresponding observed features 𝐘obs, which 414 
comprise 𝑓1, 𝑓2, and 𝑓3, are collected by evaluating the model with these sample sets.  415 

On the other hand, let the sample size be 𝑁MC = 1000, 𝑁MC sets of the initial values of the hyper-416 
parameters 𝜽𝑘1

, 𝜽𝑘2
, and 𝜽𝑘3

 and the correlation coefficients 𝜌12, 𝜌13, and 𝜌23, satisfying the moment 417 
constraints Θ1, Θ2, and Θ3 and the correlation coefficient constraint 𝒫, are generated by the rejection 418 
sampling in the support domains. For each set of the hyper-parameters and correlation coefficients, 419 
the joint distribution of the three stiffness parameters described by the Gaussian copula function with 420 
the marginal staircase density functions is determined. The number of bins 𝑛𝑏 is set as the same value 421 
as that in the first case study. The number of simulated features is set to be 𝑁sim = 1000, so that totally 422 
𝑁sim sample sets of 𝑘1, 𝑘2, and 𝑘3 are generated from each joint distribution. Then, the corresponding 423 
initial simulated features are collected by evaluating the model for each sample sets. Fig. 8 compares 424 
the histograms and scatters between the observed features and arbitrary chosen simulated features.  425 

 426 
Fig. 8. Observed features in blue and initial simulated features in green, with the unit in Hz. 427 
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The Bhattacharyya distance is estimated for each set of the initial simulated features. The number 428 
of bins 𝑛bin is chosen as the same value as that in the first case study. Then, the Bayesian updating of 429 
in total 15 inferred parameters, i.e., 𝜽𝑘𝑖

= {𝜇𝑖 , 𝑚2𝑖 , 𝑚̃3𝑖 , 𝑚̃4𝑖}, for 𝑖 = 1, 2, 3, and 𝜌𝑖𝑗, for 𝑖 = 1, 2 and 𝑗 =430 
𝑖 + 1, 3, is performed using the Bhattacharyya distance-based likelihood function. The width factor 𝜀 431 
is set to be 𝜀 = 0.01. 432 

By employing in total 17 TMCMC iterations, all the inferred parameters are well updated to the 433 
posterior PDFs. The calibrated values (i.e., the MPVs of the posterior PDFs) of all inferred parameters 434 
are presented in Table 5, together with the corresponding target values. The relative estimation errors 435 
are also provided in the parentheses after the calibrated values. Note that the errors are not provided 436 
for the skewnesses and the correlation coefficient 𝜌12 because their true values are zero. It can be seen 437 
that the calibrated values of the mean and variance parameters are in good agreement with the target 438 
values with the largest relative error less than 5 %. On the contrary, the skewness parameters exhibit 439 
differences compared with their target values, especially for 𝑚̃31. However, the calibrated values are 440 
small enough for resulting in almost symmetric distributions as similar as the target distributions, as 441 
depicted in Fig. 9. The kurtosis parameters also exhibit large errors compared with their target values, 442 
whereas these errors are also permissible to obtain reasonable distributions compared with the target 443 
distributions as illustrated in Fig. 9. As such, both the skewness and kurtosis parameters are relatively 444 
insensitive to the uncertainty characteristics of the target output features, compared with the means 445 
and variances. Note that, it does not, however, mean that such higher order moment parameters are 446 
always insensitive to the results. As a matter of fact, in the previous example, the kurtosis parameters 447 
are precisely updated, implying they are sensitive to the target output features in that example. More 448 
importantly, all correlation coefficients are in good agreement with their target values with the largest 449 
relative error around 10 %, implying that the proposed procedure is capable to properly capture the 450 
correlation structure regardless of no, negative, and positive correlations.  451 

Table 5. Calibrated parameters of the 3-DOF system. 452 
Parameter Target value Calibrated value 

𝜇1 4.0 4.0286 (0.72 %) 

𝑚21 0.09 0.0890 (-1.11 %)  

𝑚̃31 0 0.2220 

𝑚̃41 3.0 4.4400 (48.00 %) 

𝜇2 5.0 5.0035 (0.07 %) 

𝑚22 0.01 0.0104 (4.00 %) 

𝑚̃32 0 -0.0500  

𝑚̃42 3.0 3.8100 (27.00 %) 

𝜇3 6.0 6.0030 (0.05 %) 

𝑚23 0.04 0.0410 (2.50 %) 

𝑚̃33 0 -0.0214 

𝑚̃43 3.0 3.9400 (31.33 %) 

𝜌12 0 -0.0058 

𝜌13 -0.6 -0.5728 (4.53 %) 

𝜌23 0.6 0.5398 (10.03 %) 

The joint distribution of 𝑘1, 𝑘2, and 𝑘3 is then obtained as the Gaussian copula function having 453 
the marginal staircase density functions, assigned the calibrated values of the hyper-parameters and 454 
correlation coefficients. Fig. 9 shows the marginal CDF of each stiffness, along with the corresponding 455 
target marginal distribution. It is noted that, since the marginal distributions are obtained as staircase 456 
(i.e., discrete) density functions, the CDFs are estimated from the samples generated according to the 457 
staircase density functions, via the kernel density estimation. As can be seen, the estimated staircase 458 
density functions are in good agreement with their target marginal distribution, which supports that 459 
the aforementioned estimate errors in the skewness and kurtosis parameters are within an allowance 460 
for calibrating the joint distribution of the parameters. Nevertheless, it is noted that, in the tail regions, 461 
the calibrated distributions, in particular for 𝑘1, remain discrepancy from the target distribution due 462 
to the estimate errors in the kurtosis parameters, while the discrepancy in the tail regions do not affect 463 
much the model outputs as illustrated in Fig. 10. Moreover, the obtained distributions have bounded 464 
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support domains which are identical to ranges of the horizontal axes of Fig. 9 because of the definition 465 
of the staircase density functions, whereas the target Gaussian distributions do not have the bounded 466 
supports. It implies that the proposed procedure does not limit its applicability to the case where the 467 
investigated parameters have bounded supports, however, at the same time, it also indicates that the 468 
calibrated joint distribution cannot be employed for reliability analysis, where the target is estimating 469 
the probabilities of rare events that can be occurred out of the support domains. It is noted that, this 470 
limitation does not prevent the use of the proposed procedure in the stochastic model updating, since 471 
the main motivation of the stochastic model updating is to obtain the model that is capable to describe 472 
the system of interest conditioned on the observed data whereas reliability analysis is only one of the 473 
potential usages of the calibrated model. 474 

 475 
Fig. 9. Calibrated marginal distributions of the input parameters. 476 

 477 
Fig. 10. Observed features in blue and updated simulated features in green, with the unit in Hz. 478 
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Finally, Fig. 10 compares the histograms and scatters between the target and updated simulated 479 
features. Compared with the initial simulated features in Fig. 8, It can be seen that the uncertainties 480 
in the three stiffness parameters are correctly calibrated by the proposed procedure and the calibrated 481 
model is capable to recreate wholly the uncertainty characteristics of the observed features. As such, 482 
the relatively large estimate errors in the higher order moment parameters are permissible, since the 483 
objective of the proposed method is not to estimate the individual moment parameters precisely but 484 
rather to obtain model outputs that are identical to the observed data, to which some higher moment 485 
parameters could be insensitive. 486 

5. Nonlinear dynamic system updating 487 

5.1. Problem description 488 

The proposed approach is further demonstrated on the updating of nonlinear dynamic systems 489 
using the measured time signals. For this purpose, a model updating problem of a reinforced concrete 490 
(RC) bridge pier using simulated seismic response data is investigated. The target bridge is a seismic-491 
isolated bridge with lead rubber bearings, designed based on the specifications for highway bridges 492 
in Japan [36]. Its structural descriptions are detailed in Table 6. Fig. 11 shows the 2-DOF lumped mass 493 
model as the numerical model of the target structure, in which the two lumped masses represent the 494 
superstructure and RC pier, and the two horizontal springs denote the rubber bearings and RC pier. 495 
The boundary condition at the surface is assumed to be fixed. The nonlinearity of the rubber bearings 496 
is characterized by a bilinear model with the ratio of the yield stiffness 𝐾𝐵1 to the post-yield stiffness 497 
𝐾𝐵2 of 6.5:1 based on the manual on bearings for highway bridges in Japan [37]. Meanwhile, that of 498 
the RC pier is characterized by a bilinear model with the elastoplastic characteristic and the stiffness 499 
degradation model, namely Takeda model [38]. The well-known Rayleigh damping model is utilized 500 
as the damping model in which the damping ratios of the rubber bearings and RC pier are set to be 501 
0 % and 2 %, respectively. 502 

Table 6. Descriptions of the target bridge pier. 503 
 Structural parameter Nominal value 

Superstructure Mass 𝑀𝑆 (ton) 604.0 

Rubber bearings Yield strength (kN) 1118 

Yield stiffness 𝐾𝐵1 (kN/m) 40000 

Post-yield stiffness 𝐾𝐵2 (kN/m) 6000 

RC pier Mass 𝑀𝑃 (ton) 346.2 

Yield strength (kN) 3374 

Yield stiffness 𝐾𝑃 (kN/m) 110100 

Yield displacement (m) 0.0306 

 504 
Fig. 11. Numerical modeling of the target bridge pier. 505 
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The aim of this updating problem is to quantify the uncertainty characteristics of the post-yield 506 
stiffness of the rubber bearings, 𝐾𝐵2, which governs the nonlinear behaviour of the target bridge pier 507 
under strong earthquakes, as well as the remaining stiffnesses 𝐾𝐵1 and 𝐾𝑃. These three stiffnesses are 508 
parameterized as 𝐾𝐵1 = 𝐾𝐵1𝑥1, 𝐾𝐵2 = 𝐾𝐵2𝑥2, and 𝐾𝑃 = 𝐾𝑃𝑥3, where 𝒙 = [𝑥1, 𝑥2, 𝑥3] are uncertain input 509 
parameters, and 𝐾𝐵1, 𝐾𝐵2, and 𝐾𝑃 are the nominal values shown in Table 6. The other parameters are 510 
assumed to be fixed constants with the nominal values. The time-history of the acceleration response 511 
at the superstructure subjected to the level-2 type-II-II-1 earthquake introduced in Ref. [36] is used as 512 
the target output features. The duration time of the input ground motion is 40 s. Time history analysis 513 
of the 2- DOF model is performed using the Newmark 𝛽 method (𝛽 = 1 4⁄  and 𝛾 = 1 2⁄ ) with the time 514 
step ∆𝑡 = 0.001 s.  Fig. 12 illustrates the time-history of the acceleration response at the superstructure 515 
and the force-displacement responses of the rubber bearings and pier for the case when all parameters 516 
are fixed to the nominal values shown in Table 6. 517 

 518 
Fig. 12. (a) Time-history of the acceleration response at superstructure; (b) Force-displacement response of 519 

rubber bearings; (c) Force-displacement response of RC pier. 520 

The target joint distribution of the input parameters 𝒙 is considered to be a correlated tri-variate 521 
Gaussian distribution, in which a positive correlation between 𝑥1 and 𝑥2 (i.e., between the initial and 522 
post stiffnesses of the rubber bearings) is introduced. The pre-defined support domains of 𝑥1, 𝑥2, and 523 
𝑥3 and the target values of the hyper-parameters and correlation coefficients are detailed in Table 7. 524 
Similar to the previous case study, the support domains are determined to cover more than 99.99 % 525 
confidence intervals of their target marginal distributions. Suppose the number of observed features 526 
be 𝑁obs = 100, 𝑁obs sample sets of the input parameters 𝒙 are generated according to the target joint 527 
distribution and then the corresponding observed features 𝐘obs of the time-history of the acceleration 528 
response at the superstructure, are collected by evaluating the model with these sample sets.  529 

Table 7. Uncertainty characteristics of the target bridge pier. 530 
Parameter Support set Target distribution 

𝑥1, 𝑥2, 𝑥3  𝑥1 ∈ [0.7, 1.3], 𝑥2 ∈ [0.7, 1.3], 
𝑥3 ∈ [0.7, 1.3] 

Gaussian, 𝜇1 = 1.0, 𝜇2 = 1.0, 𝜇3 = 1.0, 𝑚21 = 0.0049,  

𝑚22 = 0.0049, 𝑚23 = 0.0049, 𝜌12 = 0.8, 𝜌13 = 0, 𝜌23 = 0 

𝑀𝑆, 𝑀𝑃 Deterministic – 
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In this example, totally 13 inferred parameters, i.e., the hyper-parameters 𝜽𝑥𝑖
= {𝜇𝑖 ,𝑚2𝑖 , 𝑚3𝑖 , 𝑚4𝑖}, 531 

for 𝑖 = 1, 2, 3, and correlation coefficient 𝜌12 is taken into account. Note that the remaining correlation 532 
coefficients are assumed to be zero in advance and ignored in the updating procedure. Suppose the 533 
sample size be 𝑁MC = 100, 𝑁MC sets of the hyper-parameters maintaining the moment constraints Θ1 534 
Θ2, and Θ3, are generated by the rejection sampling whereas 𝑁MC sets of the correlation coefficient are 535 
arbitrary generated from the support of [-1, 1]. For each set of [𝜽𝑥1

, 𝜽𝑥2
, 𝜽𝑥3

, 𝜌12], the joint probability 536 
distribution of the input parameters 𝒙 is defined as the Gaussian copula function having the marginal 537 
staircase density functions. The number of bins 𝑛𝑏 is chosen to be 𝑛𝑏 = 50. The number of simulated 538 
features, on the other hand, is set as 𝑁sim = 500; hence, 𝑁sim sample sets of 𝒙 are generated from each 539 
joint distribution {𝐹𝐱

(𝑘)
: 𝑘 = 1,⋯ ,𝑁MC}, and then the corresponding initial simulated features 𝐘sim

(𝑘)
 are 540 

obtained by evaluating the model with these samples. The window length in the dimension reduction 541 
procedure introduced in Section 2.1 is set to be L = 0.025(𝑡 + 1), with 𝑡 = 40 0.001⁄ = 40000. Hence, 542 
the RMS matrices of both the simulated and observed features, 𝐑

𝐘sim
(𝑘)

𝑠  and 𝐑𝐘sim

𝑠 , for ∀𝑠 = 1,⋯ , 40, are 543 

defined. Fig. 13 compares the histograms and scatters between the observed and simulated features 544 
by employing five arbitrary selected RMS matrices of 𝑠 = 30, 7, 6, 9, 37. The figure demonstrates that 545 
the target features show strong nonlinearity, making the updating problem significantly challenging. 546 
The Bhattacharyya distance is estimated for each pair of the simulated and observed RMS matrices, 547 
and the RMS value of the Bhattacharyya distances, 𝑅𝑑𝐵

, is used as the UQ metric in the approximate 548 
likelihood. The number of bins 𝑛bin is chosen as 𝑛bin = 10 while the width factor 𝜀 is set as 𝜀 = 0.01. 549 

 550 
Fig. 13. Observed features in blue and initial simulated features in green, with the unit in m s2⁄ . 551 

5.2. Results assessment 552 

By employing totally 13 TMCMC iterations, all the inferred parameters are well updated to the 553 
posterior PDFs. The calibrated values of the inferred parameters are detailed in Table 8, together with 554 
the corresponding target values. The relative estimation errors are also shown in the parentheses after 555 
the calibrated values. The calibrated values of all mean parameters and the variance parameter 𝑚21 556 
are in good agreement with the target values, while the remaining variance parameters exhibit large 557 
estimate errors due to their quite small target values. In spite of the large relative errors, the calibrated 558 
values of the variance parameters are close to the target values compared with the prior supports and 559 
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the errors are within an allowance to achieve the model outputs close to the observations. In addition, 560 
the skewnesses and kurtoses exhibit differences compared with their target values, while these errors 561 
are also within an allowance to achieve the model outputs close to the target observations, as similar 562 
as the previous example. Moreover, the positive correlation induced is also captured by the proposed 563 
procedure though a certain error is still remained compared with the target value. By assigning these 564 
calibrated values, the joint distribution of 𝒙 is tuned identical to the target distribution. 565 

Table 8. Calibrated parameters of the target bridge pier model. 566 
Parameter Target value Calibrated value 

𝜇1 1.0 0.9958 (-0.42 %) 
𝑚21 0.0049 0.0045 (-4.44 %) 
𝑚̃31 0 -0.1688 
𝑚̃41 3.0 4.3450 (44.83 %) 
𝜇2 1.0 0.9992 (-0.08 %) 
𝑚22 0.0049 0.0065 (32.65 %) 
𝑚̃32 0 0.4050  
𝑚̃42 3.0 3.9500 (31.67 %) 
𝜇3 1.0 0.9996 (-0.04 %) 
𝑚23 0.0049 0.0068 (38.78 %) 
𝑚̃33 0 -0.3025 
𝑚̃43 3.0 4.3960 (46.53 %) 
𝜌12 0.8 0.6736 (-15.80 %) 

Finally, Fig. 14 compares the histograms and scatters between the target and simulated features 567 
for the five arbitrary selected RMS matrices of 𝑠 = 30, 7, 6, 9, 37. Compared with the initial simulated 568 
features in Fig. 13, It can be seen the updated simulated features are identical to the observed features 569 
capturing the complicated nonlinear structure. This indicates the feasibility of the proposed approach 570 
in the stochastic model updating of nonlinear dynamic systems for recreating wholly the uncertainty 571 
characteristics of the target measured time signals, even though the prior knowledge about the joint 572 
probability distribution of the model parameters is extremely limited. 573 

 574 
Fig. 14. Observed features in blue and updated simulated features in green, with the unit in m s2⁄ . 575 
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6. Conclusions 576 

This paper presents three contributions for calibrating the joint probabilistic distribution of the 577 
correlated parameters through the stochastic model updating by a limited number of measurement 578 
data. First, each marginal distribution is characterized by staircase density functions and their hyper-579 
parameters are subjected to be updated. The staircase density functions can flexibly describe a broad 580 
range of distributions; thus, no limiting hypotheses on the distribution families is required differently 581 
from the most of the stochastic model updating methods. Next, the dependence structure among the 582 
parameters are described by the Gaussian copula. The correlation coefficients are also subjected to be 583 
updated; thus, even the prior knowledge on the presence of parameter dependencies is not required. 584 
Finally, the Bhattacharyya distance-based UQ metric is proposed to define an approximate likelihood 585 
capable of quantifying the stochastic discrepancy between the model outputs and measurements. As 586 
such, the inferred parameters, i.e., the hyper-parameters and correlation coefficients are successfully 587 
updated through the Bayesian model updating. Two exemplary applications and followed nonlinear 588 
dynamic system updating problem demonstrate the feasibility of the proposed updating framework 589 
and the importance of considering the parameter dependency in the stochastic model updating. 590 

However, open problems still exist. First, the cost function in the optimization problem solved 591 
for estimating the staircase density function is solely selected in this study. The staircase density that 592 
attains other optimality criteria, such as the maximal entropy, can be similarly formulated, but further 593 
studies are necessary to investigate the most suitable choice of the cost function for model updating. 594 
Second, the Gaussian copula might not be suitable if the parameters demonstrate a strong nonlinear 595 
dependency. The assumption on the copula function type introduces another source of uncertainty, 596 
i.e., the model bias, and such uncertainty should be quantified by, for instance, the Bayesian model 597 
class selection. These two challenges will be addressed in the future work. 598 
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