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ABSTRACT
Connected robots play a key role in automating industrialworkflows.
Robots canexpose sensitiveoperational information to remote adver-
saries. Despite the use of end-to-end encryption, a passive adversary
could fingerprint and reconstruct the entire workflows being carried
out anddevelopingadetailedunderstandingofhow facilities operate.
In this paper, we investigate whether a remote passive attacker can
accurately fingerprint robotmovements and reconstruct operational
workflows. Using a neural network-based traffic analysis approach,
we found that attackers can predict TLS-encrypted robotmovements
with around ~60% accuracy, increasing to near perfect accuracy in
realistic settings. Ultimately, simply adopting best cybersecurity
practices is not enough to stop even weak (passive) adversaries.

CCS CONCEPTS
• Security and privacy→ Systems security; Side-channel anal-
ysis and countermeasures.
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1 INTRODUCTION
Prior to the realisation of Industry 4.0, many organisations relied
on various rigid models for end-to-end supply chains to meet con-
sumer demand. The nature of these workflows progressively re-
quired higher levels of responsiveness, flexibility and efficiency [10].
A shift to meet these new demands in order to remain relevant led
to digitising supply chains, logistics and asset management, and
ensuring end-to-end visibility. It is under this push into the realm of
Industry4.0where connected robotics systemsplayapivotal role. For
example, inmanufacturing facilities and productwarehouses, robots
are used to transform logistics management and meet increasing de-
mandsbyworkingalongsideexistinghumanoperators.This includes
the likes of automated cross-docking and product stocking [17].

While previous robotic implementations made use of configured,
pre-planned operations [2, 18], many industrial robotics systems use

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WiSec ’22, May 16–19, 2022, San Antonio, TX, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9216-7/22/05.
https://doi.org/10.1145/3507657.3529659

a teleoperated architecture [5, 13, 16, 19] (Figure 1). In such systems,
a teach pendant (controller) is operated by a humanwhich translates
commands or movements into instructions the system can under-
stand. A set of input devices (i.e. sensors, buttons on controller, etc.)
and output devices (i.e. actuators) are linked together via a control
system and a network in which the robot operates [14].
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Figure 1: Typical Robot SystemArchitecture
Prior art has demonstrated a number of different attacks on ro-

botics systems, ranging from active targeted attacks such as mod-
ifying/dropping commands in-flight and modifying feedback to
operators [1, 3, 6, 13]. However, there is little focus on reconnais-
sance aspects. Although attacks that fall under this umbrella, such
as eavesdropping and device fingerprinting, are considered passive,
the resulting compromise can still lead to severe consequences. In
healthcare domains, for example, legislation mandates the use of
TLS as a protective measure for confidential information [11, 12].
However, in industrial settings clear govern is lacking.
In this work, we investigate whether passive attackers can fin-

gerprint industrial robot movements even when channel security
measures are in place. Further, we also investigate whether this at-
tack can also be used to accurately reconstruct operations typically
carried out by industrial robots. By doing this, it could be possible
to identify potentially confidential supply chain workflows which,
for example, could be leaked to competitors. Employing a neural
network to classifymovements fromcollected trafficflows,we found
that individual movements can be fingerprinted with at least 60%
accuracy, increasing to near perfect accuracy under simulated net-
work conditions. In terms of operation reconstruction, we observe
average success rates also around 60%.

2 SYSTEMDESIGNANDTRAFFIC ANALYSIS
Wemade use of uFactory’s uARM Swift Pro [20], which is operated
by an ArduinoMega 2560 runningMicroPython. The robot is con-
nected to a teleoperated teach pendant (controller) running on a
Windows 10 laptop using the uARM Python SDK. We route TLS-
encrypted traffic through a software-defined network (SDN) using
Mininet 2.3.0 for simulating realistic network conditions. Wireshark
was used to capture traffic flows of movement operations along per-
mutations of X, Y and Z movements for varying distances (1-50mm)
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Movement Precision Recall

X 70% 85%
Y 69% 54%
Z 80% 63%
XY 21% 60%
XZ 68% 92%
YZ 81% 31%
XYZ 72% 97%

Table 1: Baseline Classification Results

and speeds (12.5-100mm/s). Further, we also captured traffic flows
under varying network conditions (packet loss and link delay) to
observe the impact of the attack in realistic settings. Within our
dataset of around 150k traffic samples, we collected the prominent
features for analysis, including: packet times, frame lengths, header
lengths (IP/TCP/TLS), bytes-in-flight, and round trip times. Traffic
samples were normalised using a min-max scaler and stratified to
ensure even distribution of samples across each of the movements.
From a preliminary analysis, we found simple traffic analysis ap-

proaches (i.e. basic frequency analysis) do not provide enough in-
terpretable information for accurate fingerprinting. Because of this,
we employed a shallow neural network. This consisted of an input
layer with one neuron for each of our collected features, one dense
hidden layer of 108 neurons and an output layer with 7 neurons cor-
responding to our movement classes. The dense layer used the ReLU
activation function and output layer used softmax with categorical
cross-entropy as the loss function. For our dataset, we randomly
split the traffic samples in a 60/20/20 split for training, testing and
validation respectively.

We first experimented with a baseline set of samples (distance
of 1mm and speed 12.5mm/s). As seen in Table 1, we observe an
average of ~60% accuracy and found Y-basedmovements show lower
success, possibly due to lower variance in traffic features. Next, we
investigated the impact of our distance and speed parameters on
classification. For distance, we found that an increase in distance
leads to slightly lowered accuracy among most movements. This is
potentially due to changes in the payload lowering variance among
movement classes. For speed, we found that increasing movement
speeds improves the classification accuracy, specifically at 50mm/s.
Given that our traffic flows are TLS encrypted, simulating real-

istic network conditions is crucial to our analysis for teleoperated
environments using WAN networks [9, 14]. By introducing even
a low link delay we see significant improvement in classification
accuracy (near pefect). This may be due to increased variations in
round-trip and packet interarrival times leading to higher accuracy,
unlike distance and speed which primarily impact the traffic pay-
load characteristics. As well as delay, we experimented with various
packet losses. In realistic settings, failuresor inefficienciesofnetwork
components can lead to packet loss. In comparison with delay, we
also observe a significant increase in classification accuracy among
all movements, potentially due to drops in packet arrivals resulting
in increased interarrival times.

2.1 Operation Reconstruction
A further extension to our attack evaluation aimed at investigating
whether higher-level operations (such as cross-docking and stock-
ing) can be reconstructed from encrypted traffic flows. Specifically,
we evaluated pick-and-place, push, pull and packing operations. For
these operations, we took inspiration for movement trajectories

from existing industrial robot datasets, such as the Forward Dynam-
ics Dataset Using KUKA LWR and Baxter [? ] for pick and place and
the Inverse Dynamics Dataset Using KUKA [15] for push/pull. At the
heart of these workflows is the actual dynamic movements them-
selves which may be aided by additional input (i.e. from sensors).
Ultimately, given that movement patterns are the primary factor
which establishes specific workflows, it is reasonable to conduct
our experiment on reconstructing movements from traffic patterns
solely usingmovement information. In this experiment,we observed
that these operations can be reconstructed with at least an accuracy
of around 60%. This is important as continuous monitoring of move-
ment patterns can reveal potentially confidential workflows and
could be given to competing facilities, for exampl. Further, this infor-
mation can even combinedwith other side channels such as acoustic
or EMF which may provide another level of information leakage
(i.e. identifying the weight of products via EMF being cross-docked
could leak information about contents).

3 COUNTERMEASURES
In this work, we examine Tor as a primary countermeasure to miti-
gate against our traffic analysis attack. Given its success as a defence
in other areas (i.e. website fingerprinting), it is sensible to examine
its efficacy in the face of our attack. We setup a Tor hidden service
which receives control commands sent byour controller overHTTPS
and monitored the incoming traffic on the hidden service host. The
traffic was routed through multiple ASes over ~20 different circuits.
In comparison with our baseline, we found that Tor leads to around
a 20% decrease in accuracy across movements. In the context of
operation reconstruction, we find significant decreases in recovery
rate with drops of at least 30% present among the operations.
Examining the Tor traffic features shows that latency does not

(overall) present a big problem formany cases. However, multiple ro-
botics systems operating in a single space may leave such wait times
undesirable at scale. Thus, other countermeasures can be considered
as a point of futurework. This includes padding robot traffic andmix-
ing in background traffic. In the case of padding, techniques such as
constant-rate andVIT-based approaches [4, 7] have shownsuccess in
various applications. These can be evaluated as countermeasures for
future work to mitigate downsides (i.e. delays) associated with Tor.
With regard to mixing, regularizing traffic (padding) may impose
larger overheads, and thus amore light-weight approachwhich does
not require additional infrastructure (i.e. adding dummy traces) [8]
may prove more successful as a defence.

4 CONCLUSION
In conclusion, we present a case for evaluating whether a passive
adversary can still identify robot movements, even when the traffic
between a robot and controller (in a teleoperated architecture) is en-
crypted under TLS. We propose a shallow learning approach, which
shows that it is possible for an adversary to successfully classify our
robot’s movements when protected by TLS with around 60% accu-
racy. Furthermore, we demonstrate that taking into account more
fine-grained movement details such as distance of movement the ac-
curacy increases, and when factors that impact network traffic, such
as packet loss and link delay, are taken into account, we can achieve
perfect accuracy (100%) for classifying our robot’s movements.
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