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Abstract— Interfaces between solid dielectric materials may 

exhibit lower breakdown strength compared to that associated 

with bulk breakdown of solid materials. A reason for such 

reduction is the presence of gas cavities which are formed at the 

interface. When the solid-solid interface is subjected to impulsive 

electrical stress, the enhanced electric field inside cavities may 

result in the development of initial (partial) discharges. This may 

ultimately lead to breakdown across the interface, resulting in the 

catastrophic failure of the entire insulation system. Therefore, it is 

paramount to understand the field distribution and ionisation 

processes within interfacial cavities, such that the behavior and 

strength of the insulation system can be fully predicted. The 

present paper considers a gas-filled cavity formed between poorly-

conducting solids, subjected to a transient external electric field. 

The corresponding boundary value problem is defined and 

analytically solved, obtaining closed form solutions for the electric 

field distribution inside and around an isolated cavity. Results 

from model validation and intra-cavity field enhancement are 

presented, as well as brief discussion of other possible applications 

and future model extensions. 
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I.  INTRODUCTION 

In high voltage and pulsed power systems, the physical 
construction and coordination of insulation is imperative for the 
prevention of unwanted electrical breakdown. In many such 
systems, joints between solid dielectric materials may be 
unavoidable, and could pose a significant risk to the safety and 
integrity of the system. Solid-solid interfaces are known to 
exhibit lower breakdown strength compared to their bulk 
counterparts [1,2], especially in cases where the field 
component parallel to the interface is significant. Yet, the 
reasons for a reduced breakdown strength and the factors 
affecting the evolution of interfacial discharges have not yet 
been fully established. 

Several studies, including [3,4], have provided evidence 
that solid-solid interfacial breakdown is linked to the 
breakdown of gas cavities formed between the two dielectrics 
in contact (illustrated in Fig. 1). The unavoidable surface 
roughness of each material leads to the creation of microscale 
voids at the interface. This type of solid-solid interface is 

typically found in dry-mate connectors, and the interfacial voids 
are thus gas-filled. Field enhancement caused by the mismatch 
of permittivity, or possibly by space charge accumulation [5], 
may induce a gaseous discharge through the string of voids, and 
this has been identified as one of the causes of reduced 
interfacial strength. Subsequently, this theory formed the basis 
of investigations for more recent works, such as in a series of 
linked studies by Hasheminezhad et al. [3,4] and Kantar et al. 
[6-8]. These works focused on the mechanical parameters of an 
interface that may influence the cavity size and/or distribution. 
A comprehensive model in [6,7] summarises these findings by 
blending approaches from the fields of tribology and high 
voltage engineering. Through this model, clear links between 
surface roughness parameters, composite elastic modulus, 
interfacial contact pressure and the reduced breakdown strength 
of solid interfaces were established. 

It is notable, however, that the majority of studies conducted 
to date on the subject are performed under steady-state AC or 
DC conditions, generally focusing their efforts on mechanical 
parameters and its effects on interfacial voids. Therefore, there 
exists a need to quantify and extend these findings to transient 
conditions, as well as to better include electrical parameters, 
particularly to meet the needs of pulsed power applications. In 
this paper, a mathematical model is presented for a single 
isolated gas-filled cavity at a solid-solid interface, under the 
application of an impulsive uniform electric field of a double-
exponential form. It is assumed that the impulsive field with 
magnitude of E0 is generated between two parallel electrodes, 
with the interface positioned perpendicular to the electrodes. 
Fully closed form solutions for the transient pre-breakdown 
electric field inside and around the gas cavity are obtained, 
under the consideration that all materials, both solid dielectrics 
and the gas, are poorly conducting, allowing an arbitrary choice 
for both the relative permittivity and the electrical conductivity 
of all components under analysis. 

 

 

 

Fig. 1. Illustration depicting cavities formed at the rough interface between 

two solid insulating materials. 



II. MATHEMATICAL MODEL 

A. Problem Geometry 

 For the model developed and presented in this work, a single 
cavity is approximated by a simple spheroidal inclusion of 
radius r1, encased in a solid bulk material and subject to an 
external time-dependent potential φ0(r, θ, t). An additional layer 
of radius r2 > r1 is included in the present model, approximating 
a layer of altered material parameters arising from, for example, 
a wet contact or carbonisation from previous repeated (partial) 
discharges. The entire geometry is assumed to be symmetrical 
about the direction of the applied field, as such, this simple 
model does not consider interfaces which are formed between 
two different materials. A diagram of the full geometry is 
shown in Fig. 2. Each poorly conducting region is defined by a 
parameter pair of relative permittivity and electrical 
conductivity in S/m, (ε, σ). These are subscripted g, l and b for 
the gas, the altered layer, and bulk, respectively. The potential 
φ0(r, θ, t) can be written in spherical coordinates as (1). 

                                  φ
0
(r, θ, t) = –E0(t)r cos θ                            (1) 

with E0(t) being the field magnitude in V/m, r and θ the spatial 
coordinates, and t being time. 

B. Boundary Value Problem Definition 

The solution methodology follows that of [9], with the 
exception that no assumptions are made for (ε, σ) pairs, 
allowing for a fully generalised solution. For pre-breakdown 
conditions assuming negligible space charge, the potential field 
φ(r, θ, t) must follow Laplace’s equation, which is expanded to 
spherical coordinates in (2). For the brevity of expressions, 
functional notation is omitted except where it enhances clarity. 
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 Note that there is no dependence on the azimuthal angle Φ 
due to the imposed condition of rotational symmetry. It can be 
shown that general solutions of the potential φ in each dielectric 
layer (g,l,b) from (2) take the form of the expressions in (3). 
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where A(t) and B(t) are time-dependent coefficients, once again 
carrying subscripts identifying their respective layer. To arrive 
at a particular solution, appropriate boundary conditions must 
be applied. In this case, one must firstly ensure continuity of the 
electric potential across dielectric layers; and secondly, that 
current continuity is also satisfied. Mathematically, the 
boundary conditions are written as (4) and (5), respectively. 

φ
g
(r1) = φ

l
(r1) 

                                            φ
l
(r2) = φ

b
(r2)                                      (4) 

Jg ∙ n̂ + ∂t(Dg ∙ n̂)|
r1

= Jl ∙ n̂ + ∂t(Dl ∙ n̂)|r1
 

                   Jl ∙ n̂ + ∂t(Dl ∙ n̂)|r2
= Jb ∙ n̂ + ∂t(Db ∙ n̂)|r2

               (5) 

 Here, J = σE is the current density in A/m², D = εE is the 
electric flux density in C/m² and n̂ is the unit normal. To reach 
a self-consistent solution in presence of the external field, a 
final boundary condition prescribing the field as r becomes 
much larger than that of the cavity dimensions must be applied, 
as in (6). 

                                                 lim
r→∞

φ
b
 = φ

0
                                     (6) 

 

 

 

 

 

 

 

 

Fig. 2. Diagram of spheroidal cavity geometry. Each layer considers arbitrary 

(ε, σ) pairs, and is rotationally symmetric about the x axis (y = 0). E0(t) is the 

external electric field. 

C. Boundary Value Problem Solution Method 

The solutions for the coefficients of (3) are found by 
prescribing the boundary conditions of (4), (5) and (6). To 
facilitate this process, all associated equations are transformed 
into the complex frequency domain by application of the 
Laplace transform. In the context of the present boundary value 
problem, this requires solely the transformation of the time 
dependent functions f(t) and their first derivatives, such that f(t) 
→ f(s) and ∂t f(t) → sf(s). The resulting set of equations are 
solved algebraically to yield s-domain solutions for the 
coefficients A(s) and B(s) as a function of the s-transformed 
external field E0(s) for each layer. A time-domain solution is 
reconstructed by choice of E0(s) and application of the inverse 
transform. This is demonstrated for the case of a 1.2/50 μs 
lightning impulse in section III. 

III. MODEL RESULTS AND VALIDATION 

A. Double-exponential Response 

For the purposes of model validation, an applied impulsive 
field generated from a pair of plane-parallel electrodes is 
considered. Analytically, the double-exponential representation 
is assumed for the applied field following (7). 

                                  E0(t) = 
A0U0

d
(e– αt – e– βt)                           (7) 

where U0 is the peak voltage in V, d is the gap separation in m 
and A0, α, β are wave-shaping parameters. Following the 
solution process outlined in section II, closed-form time-
domain expressions are obtained for all coefficients and, 
consequently, for all fields. Due to the extent of the 
mathematical forms, this brief paper only presents the final 
time-domain expressions. It is shown that the coefficients 
exhibit a complex quad-exponential form, following (8) to (12). 
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whereby the relaxation time constants are given by (13). 
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And the constants δ, γ and m follow the expressions of (14). 
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Finally, the constants η, λ, κ and 𝜉 relate to the time constants 
as shown in (15). 
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The electric field is found by taking the gradient of (3), to yield 
(16). It can therefore be shown that the field inside the cavity is 
also uniform in nature. 

                           Eg = –Ag(t) cos θ r̂ + Ag(t) sin θ θ̂                  (16) 

B. Comparison to Simulation 

 To validate the developed analytical model, a direct 
comparison of the calculated field magnitude to that found 
through electrostatic simulation software was performed. For 
the purposes of demonstration, a 5 kV peak, 1.2/50 μs lightning 
impulse, following the IEC 60060 standard was chosen as the 
input voltage. Wave-shaping parameters for the analytical 
double-exponential waveform were computed using a particle-
swarm like technique, resulting in values of A0 ~ 1.03, α ~ 
1.47×104 and β ~ 2.47×106. These agree well with reported 
parameters computed in [10]. System geometrical and material 
properties were chosen to reflect the values of common 
insulators, while the cavity dimensions were based 
approximately on the known range of voids formed between 
engineering surfaces from contact studies [8]. The additional 
layer described in section II-A was set to possess slightly higher 
values for both (ε, σ) and was thin compared to the cavity 
length, while the gas cavity was set to (ε, σ) = (1,0). The full set 
of parameters are tabulated in Table 1. 

Using the finite element field solver QuickField [11], an 
axisymmetric, transient electric model with geometry identical 
to that of Fig. 1 is simulated up to 20 μs with a time step of 
0.1 μs. The resulting comparison between the intra-cavity field 
magnitude between computational and analytical models are 
presented in Fig. 3, for which excellent agreement is found. 

TABLE I.  MODEL PARAMETERS FOR VALIDATION 

Param. Value Param. Value Param. Value 

U0 5 kV r1 14 µm σg 0 S/m 

A0 1.03 r2 15 µm σl 10-9 S/m 

α 1.47×104 εg 1 σb 10-12 S/m 

β 2.47×106 εl 4.5   

d 4 mm εb 3.2   



C. Field Enhancement 

The fully closed form nature of the expressions obtained in 

this paper enables full visualisation of the complete spatially-

varying electric field in the vicinity of the cavity. Fig. 4 plots 

the field enhancement factor in the axisymmetric space, defined 

as the field magnitude normalised by the magnitude of the 

uniform external field, E0(t), at time t. The parameters are the 

same as those tabulated in Table 1, and the image was taken at 

the time at which the cavity field reaches its maximum, tpeak. 

Two limiting cases were additionally considered, both 

analytically and by numerical substitution. The first replaced 

the gaseous cavity with a highly conducting (metallic) sphere. 

In this case, a maximal field enhancement of 3 was found 

around the extremes of the inclusion surface in the direction of 

the applied field. In the second case, for a conducting bulk 

encasing a gaseous inclusion, the maximum field enhancement 

was found to occur internal to the cavity, with a value of 3/2. 

Both cases align with well-established factors for the field 

enhancement due to spherical dielectric inclusions. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 3. Comparison of the cavity field strength given by (15) (solid line: ––) 

and QuickField simulation output (open circles: o) 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Colour plot of the peak field enhancement factor, E(tpeak)/E0(tpeak), in 

the axisymmetric space (around y = 0), for the parameters given in Table 1. 

Under these conditions, maximum enhancement was found inside the cavity 

and normal to the applied field outside of the cavity. 

IV. CONCLUSION 

In the present study, an analytical approach has been applied 
to the practical problem of cavities formed between rough, 
poorly-conducting solid surfaces. A spheroidal cavity with a 
thin layer of higher conductivity and permittivity on the cavity 
wall was considered,  subjected to a transient uniform field. The 
corresponding boundary value problem was defined and solved. 
Closed form solutions for the electric field in space and time 
have been demonstrated for impulsive energisation of a double-
exponential form. The model was validated against simulations 
using the QuickField finite element solver, showing excellent 
agreement between computational and analytical results. The 
closed form nature of the present model, however, is able to 
produce transient field responses from arbitrary impulses at a 
fraction of the time compared to finite element methods. A 
similar model of an ellipsoidal cavity has also been successfully 
demonstrated and will be presented in future work. The model 
here is expected to become a part of larger study on solid-solid 
interfacial discharge under impulsive regimes, where it will be 
coupled with surface contact theory and ionisation processes. 
We remark, however, at the generality of the model, which may 
be of significant interest to several other fields including pulsed 
electric field (PEF) for biological applications, liquid dielectric 
breakdown involving gas-filled cavities or analysis of the 
influence of impulsive fields on complex particulates for 
decontamination studies. 
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