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Abstract 

The study aims to correlate the mean gap voltage variation and wire breakage occurrences 

during the wire EDM of Inconel 718. A novel approach to predict the wire breakage is 

introduced by considering the mean gap voltage variation (ΔVm) as an indicator of the 

instabilities in the spark gap. Such instabilities are regarded as the primary reason for wire 

breakages and inferior part quality of wire electric discharge machined components. The 

parameter ΔVm is a process data obtained as the difference between servo voltage and mean 

gap voltage (Vm). It was found experimentally that if the value of ΔVm crosses a threshold 

limit, the process interruptions through wire breakages were observed. In order to predict the 

wire breakage situations, the study models ΔVm using adaptive neuro fuzzy inference system 

(ANFIS). Based on central composite design (CCD) of response surface methodology 

(RSM), 31 experiments were conducted and ΔVm is recorded as the response. The input 

parameters considered were pulse on time, pulse off time, servo voltage and wire feed rate. 

The ANFIS model was found very accurate in predicting ΔVm, based on which wire breakage 

alerts can be given. The capability of the model is further confirmed by verification 

experiments. EDS and microstructural analysis further revealed the effect of ΔVm on wire 

wear and part quality. Higher value of ΔVm resulted in greater wire wear and inferior part 

quality. The surface finish and flatness error of machined parts were measured to compare 

the part quality. 

Keywords Wire electric discharge machining. ANFIS. Mean gap voltage. Wire breakage. 

Inconel 718  

ANFIS modelling of mean gap voltage variation to predict wire breakages during wire EDM of Inconel 718

This is a peer-reviewed, accepted author manuscript of the following article: P.M., A., & Chakradhar, D. (2020). ANFIS modelling of mean gap voltage variation to 
predict wire breakages during wire EDM of Inconel 718. CIRP Journal of Manufacturing Science and Technology, 31, 153-164. https://doi.org/10.1016/
j.cirpj.2020.10.007

mailto:abhilashpm184@gmail.com


2 
 

Nomenclature 

Vm Mean gap voltage 
WEDM Wire electric discharge machining 
ΔVm Mean gap voltage variation 
ΔVm,lim Mean gap voltage variation limit 
CCD Central composite design 
RSM Response surface methodology 
ANFIS Adaptive neuro fuzzy inference system 
SV Servo voltage 
WF Wire feed rate 
SEM Scanning electron microscopy 
EDS Energy dispersive X-ray spectroscopy 

1. Introduction 

Wire electric discharge machining (WEDM) is a non-traditional manufacturing process which 

uses controlled and repetitive sparks for material removal [1]. The process is capable of machining 

any electrically conductive material with great accuracy. Since the tool, which is an electrically 

conductive wire, does not come into contact with the workpiece, the hardness of the workpiece 

does not limit the machinability. Therefore, the process is able to machine the hardest of the 

materials like superalloys and Ti alloys with ease [2]. However, the process is really stochastic 

since the sparks are generated between workpiece and wire at various random locations. Various 

process instabilities arise due to such stochastic nature of the process leading to surface defects 

and wire breakages. Debris accumulation, debris removal, dielectric flushing and many other 

factors contributes to the machining instabilities. Process interruptions by wire breakages makes 

the process unsustainable by increasing the machining time, energy utilization and material 

consumption. Even though it is relevant to study the process interruptions associated with the 

WEDM process to make the process sustainable, it is still not completely explored by the 

researchers.  
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Wire breakage detection due to instability was attempted by a few researchers in the past. 

Cabanes et al. [3] had attempted to detect wire breakages due to instability by setting up an 

acquisition system. The wire breakage scenarios were found to be depended on ignition delay time, 

peak current and pulse energy. Caggiano et al. [4] proposed feature extraction methods for various 

quality features which can determine the quality of machining process. The methodology involved 

getting the critical features from current and voltage sensor data by setting thresholds or by 

defining algorithms. Klocke et al. [5] researched on the relation between inter electrode gap and 

the machined surface quality. The voltage between the electrode was found to be an indicator of 

the spark gap which in turn effects the surface roughness. For controlling the surface roughness, 

they found that it is good enough to control the mean gap voltage.  Tosun et al. [6] investigated 

the effects of process parameters on the crater sizes in wire electrode. The investigation was 

performed considering the crater diameter and depth as responses.  

Bufardi et al. [7] had come up with an online fuzzy logic model to detect surface defects and 

recast layer during the wire electric discharge machining process. This is combined with an offline 

fuzzy logic model to handle surface roughness and recast layer thickness. The offline model aids 

in the initial input parameter settings and online model detects the defects in real time. Yan and 

Liao [8] developed a fuzzy logic-based model to prevent wire ruptures during wire-EDM. The 

model detects the sparking frequency in real-time and adjusts the pulse off time to reduce the 

frequency to safe limits. Lin et al. [9] had come up with a fuzzy logic-based control strategy to 

improve machining accuracy at corners. The model improved the corner machining accuracy by 

50% by consuming only 10% extra machining time. Liao and Woo [10] developed a fuzzy based 

adaptive control system for the wire EDM process. The power consumption and short circuit ratio 

is monitored in real time. If the power consumption is more than a threshold value, the feed is 
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adjusted and if short circuit ratio is more pulse off time is increased to keep the machining stable. 

The feed and pulse off time are further fine-tuned according to ignition delay time. 

Modelling the wire EDM responses using ANFIS was attempted by a few researchers in the 

past. Caydas et al., [11] developed an ANFIS model to predict white layer thickness and surface 

roughness. The model predictions were reported to be accurate when compared with experimental 

results. Azhiri et al. [12] modelled cutting seed and surface roughness by ANFIS for dry machining 

of Al/SiC metal matrix composite. Kumar et al. [13] applied ANFIS to model surface roughness 

and MRR during wire EDM of Ti- 6Al- 4V. Thee predicted responses showed good agreement 

with the experimental values with a minimum mean percentage error.  

From the literature survey, it was understood that even though many Artificial Intelligence (A 

I) based soft computing tools were used to predict response characteristics, a wire breakage 

prediction system based on the mean gap voltage variation is yet to be attempted by the researchers. 

Such a model is of high significance to ensure the uninterrupted machining with high part accuracy. 

The current study sets a threshold limit for ΔVm experimentally. An ANFIS model is trained using 

the RSM based experimental data considering ΔVm as the response. The trained model predicts 

ΔVm for any given input parameter settings, based on which wire breakages are forecasted.   

1.1 Mean gap voltage variation 

Mean gap voltage variation (ΔVm) is the difference between the set value of gap voltage and 

the actual mean gap voltage during the process. When the machining conditions are optimal, the 

mean gap voltage (Vm) is expected to be stable with little variations [5]. However, due to the 

process mechanism which involves spark erosions and debris production, dielectric conductivity 

in the spark gap changes continuously and therefore Vm is observed to deviate from the set value. 

Varying amounts of suspended debris in the spark gap is the chief cause of the gap voltage 
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fluctuations. Higher variations imply a higher accumulation of debris and this can eventually result 

in wire breakages by spark gap bridging.   

 

 

 

 

 

 

Fig. 1 (a) Machine tool (b) Integrated computer displaying mean gap voltage  

 

 

 

 

 

 

Fig. 2 Method of determining mean gap voltage variation 

 

 

 

 

 

 

 

 

Fig. 3 Real-time gap voltage reading for a set voltage of 50 V 
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Fig. 4 Approach for predicting wire breakage 

2. Materials and Methods 

Experiments were conducted in a CNC controlled electronica ECOCUT wire electric discharge 

machine having a resolution of 1 µm. The profile was designed using ELCAM software which 

also generates the NC codes for the profile. Dielectric medium used was de-ionized water having 

a conductivity of 20 µS/cm. The wire electrode chosen was hard zinc coated brass wire of 0.25 

mm diameter. Field emission scanning electron microscope (FESEM) Zeiss GeminiSEM 300 was 

used to analyze worn wire samples. The mean gap voltage (Vm) readings is displayed in the 

integrated computer as shown in Fig. 1. Fig. 2 shows the method of determining ΔVm. The real-

time reading of the gap voltage for a set voltage value of 50V is recorded using a Tektronix 

DAQ6510 digital multimeter and is shown in Fig. 3. The approach for predicting wire breakage 

occurrences are given in Fig. 4. Accurate Tutor 5.5.4 coordinate measuring machine (CMM) with 

a 3 mm diameter ruby probe was used to measure the flatness error. Zeiss Surfcom Flex 35-B 

contact type surface profilometer was used to measure the average surface roughness value. Cutoff 

length (Lc) and evaluation length was chosen as 0.8 mm and 4 mm respectively.   

 

2.1 Workpiece material 

Inconel 718 is chosen as the workpiece material due to its significance in high temperature 

applications. It is one of the Ni based superalloys which are prominently used for making turbine 
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components because of its ability to maintain the mechanical properties even at high temperatures. 

Since the material is considered difficult to machine conventionally, non-traditional machining 

processes like WEDM are relevant. The mechanical properties of Inconel 718 are given in           

Table 1. Table 2 shows the elemental composition for this material. The workpiece thickness was 

10 mm and the machined profiles are all straight cuts.  

Table 1 Properties of Inconel 718 

Property Value 
Density 8.19 g/cm3 
Melting Point 1260 – 1336 oC 
Specific Heat 435 J/kg K 
Average Coefficient of thermal expansion 13 μm/m K 
Thermal Conductivity 11.4 W/m K 
Ultimate Tensile strength 1240 MPa 

Table 2 Chemical composition of Inconel 718 

Element Ni Fe Cr Nb Mn C Co Al Si Ti Mo Others 
Weight 

(%) 51.05 19.43 18.70 5.7 0.07 0.04 0.2 0.56 0.08 1.01 3.1 0.06 

 

2.2 Experimental plan  

The input parameters considered for the experimental analysis are pulse on time (Ton), Pulse 

off time (Toff), servo voltage (V) and wire feed rate (WF). In this work, wire tension and discharge 

current were kept constant due to WED machine constraints. The responses measured are the 

occurrence of wire breakages and mean gap voltage variation (ΔVm). The experiments were 

conducted according to central composite design (CCD) of response surface methodology (RSM). 

The range of process parameters were selected based on pilot experiments and the machine 

specifications. The extreme ranges were selected purposely since the objective is to study and 

predict the wire breakages. Overall, thirty-one experiments were conducted and each experimental 
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run was repeated thrice. The ranges and levels for input parameters are given in Table 3. The 

parameters which are kept constant is given in Table 4.   

Table 3 RSM input parameters and levels 

Process parameters 

Level 1 Level 2 Level 3 Level 4 Level 5 
Axial 
point 

(High) 

Cube 
point  

(High) 

Centre 
point 

Cube 
point  
(Low) 

Axial 
point 
(Low) 

Pulse on Time (µs) 120 115 110 105 100 

Pulse off Time (µs) 70 60 50 40 30 

Servo voltage (V) 70 60 50 40 30 
Wire feed rate (m/min) 10 8 6 4 2 

 

Table 4. Constant machining parameters 

Parameter  Value 

Wire electrode diameter 0.25 mm 

Discharge current 11 A 

Discharge voltage  12 V 

Flushing pressure  1.96 bar 

Wire Tension 10 N 

Dielectric fluid Deionized water 
 

3. Adaptive Neuro Fuzzy Inference System (ANFIS) 

The adaptive neuro fuzzy inference system (ANFIS), proposed by Jang [14] combines the 

reasoning of artificial neural networks and fuzzy system. The system is computationally efficient 

and is suitable for modelling non-linear systems. ANFIS finds the optimum distribution of 

membership functions by a hybrid learning approach. The framework combining fuzzy and ANN 

makes the model more methodical and less dependent on expert knowledge. The architecture of 
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ANFIS has five layers as shown in Fig. 5. Each layer has several nodes defined by the node 

function. ANFIS uses a Takaki- sugeno type if-then rules to represent input output relationships.  

 

 

 

 

 

 

 

 

Fig. 5 ANFIS structure  

The various steps in ANFIS are: 

• Layer 1: The node function of first layer is defined as  

𝑂1,𝑖 = µ𝐴𝑖(𝑥) 𝑓𝑜𝑟 𝑖 = 1, 2      (1) 

𝑂1,𝑖 = µ𝐵𝑖−2(𝑦) 𝑓𝑜𝑟 𝑖 = 3, 4      (2) 

where x and y are input parameters, A and B are linguistic labels of each input parameters. µ(x) 

and µ(y) are membership functions which are commonly triangular or bell shaped. In case of a 

triangular membership function, the function equation is  

µ(𝑥) =

{
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Otherwise, if the membership function is bell shaped (gaussian), the equation is  
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where 𝑎𝑖, 𝑏𝑖 𝑎𝑛𝑑 𝑐𝑖 are the parameters, based on which the shape of the respective membership 

function vary.  

• Layer 2: In layer 2, all nodes are fixed nodes, labelled Π. The output function is the product 

of input signals given by   

𝑂 ,𝑖 = 𝜔𝑖 = µ𝐴𝑖(𝑥) . µ𝐵𝑖(𝑦)      𝑓𝑜𝑟 𝑖 = 1, 2    (5) 

here the output 𝜔𝑖 denotes the rule’s firing strength. 

• Layer 3:  The nodes are fixed nodes in this layer and are labelled N. The node function is to 

normalize the input signals.  

𝑂3,𝑖 = 𝜔𝑖̅̅ ̅ =
𝜔𝑖

∑𝜔𝑖
=

𝜔𝑖

𝜔1+𝜔2
       𝑓𝑜𝑟 𝑖 = 1, 2    (6) 

• Layer 4:  The nodes of this layer are adaptive nodes with the following node function 

𝑂4,𝑖 = 𝜔𝑖̅̅ ̅ . 𝑓𝑖           𝑓𝑜𝑟 𝑖 = 1, 2      (7) 

where 𝑓1 𝑎𝑛𝑑 𝑓  are fuzzy if-then rules defined by: 

• Rule 1: if x is A1 and y is B1 then  f1 = p1x + q1y + r1 

• Rule 2: if x is A2 and y is B2 then  f2 = p2x + q2y + r2 

where pi, qi and ri are called consequent parameters 

• Layer 5:  Nodes in this layer are fixed nodes, with the node function giving the overall output 

by the following equation 

𝑂5,𝑖 = 𝑓   = ∑ 𝑤𝑖̅̅ ̅ . 𝑓𝑖𝑖         𝑓𝑜𝑟 𝑖 = 1, 2     (8) 

In ANFIS, the parameters are updated by a hybrid learning algorithm which is a combination 

of least squares and gradient descent algorithm. The parameters of the layer 4, the consequent 

parameters, are set by least squares estimate during the forward pass. On the other hand, the 

membership function parameters are set during back propagation by minimizing the error signals 

by gradient descent algorithm.    
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4. Results and Discussion 

According to CCD design of RSM, 31 experiments were conducted. The response measured 

is wire breakage occurrence and mean gap voltage variation (ΔVm) as given in Table 5. The profile 

machined was a straight rough cut of length 10 mm. To relate wire breakage occurrence with the 

mean gap voltage variation, the responses are plotted as shown in Fig. 6. Least value of ΔVm 

corresponding to the first occurrence of wire breakage is considered as the threshold. The threshold 

value, ΔVm, lim was fund to be 10.4−0. +0.4 𝑉. Every experimental run with ΔVm ≥ ΔVm, lim resulted in 

wire breakage. Every other case (ΔVm < ΔVm, lim) recorded a continuous straight rough cut. Higher 

variation in mean gap voltage implies greater instabilities in spark gap which resulted in wire 

breakage. For each wire electrode, workpiece, dielectric combinations, the threshold value will 

vary.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Determination of mean gap voltage variation limit (ΔVm, lim) 
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Table 5 Experimental readings and model predictions 

S. No. Ton 
(µs) 

Toff 
(µs) 

SV 
(V) 

WF 
(m/min) 

Experimental readings Model 
predictions Error 

Wire 
breakage 

Mean 
ΔVm(V) Std. Dev. ΔVm. (V) (V) 

1 115 40 60 4 0 9.56 0.2 9.56 0 

2 110 50 50 6 0 4.9 0.4 4.67 0.23 

3 105 60 60 4 0 1.63 0.6 1.63 0 

4 110 50 50 6 0 4.6 0.4 4.67 -0.07 

5 110 50 50 2 0 4.62 0.7 4.62 0 

6 105 40 40 8 0 3.7 0.4 3.7 0 

7 120 50 50 6 1 14.96 0.5 15 -0.04 

8 110 50 50 10 0 5.4 0.4 5.4 0 

9 100 50 50 6 0 1.63 0.5 1.63 0 

10 110 50 50 6 0 5.2 0.5 4.67 0.53 

11 105 60 60 8 0 1.63 0.1 1.63 0 

12 105 60 40 8 0 1.63 0.1 1.63 0 

13 115 40 40 4 1 11.74 0.4 11.7 0.04 

14 115 40 60 8 0 8.54 0.2 8.54 0 

15 110 50 50 6 0 3.5 0.3 4.67 -1.17 

16 110 50 50 6 0 3.9 0.5 4.67 -0.77 

17 105 40 60 8 0 1.63 0.1 1.63 0 

18 110 50 70 6 0 2.08 0.5 2.08 0 

19 110 70 50 6 0 2.08 0.1 2.08 0 

20 105 60 40 4 0 1.63 0.1 1.63 0 

21 115 40 40 8 1 11.74 0.2 11.7 0.04 

22 115 60 60 4 0 9.88 0.2 9.88 0 

23 105 40 60 4 0 1.63 0.1 1.63 0 

24 115 60 40 4 1 11.4 0.6 11.4 0 

25 110 50 50 6 0 4.55 0.6 4.67 -0.12 

26 110 30 50 6 1 12.3 0.3 12.3 0 

27 105 40 40 4 0 3.7 0.2 3.7 0 

28 110 50 30 6 0 7.5 0.6 7.5 0 

29 115 60 40 8 0 8.48 0.6 8.48 0 

30 110 50 50 6 0 6.01 0.2 4.67 1.34 

31 115 60 60 8 1 10.41 0.3 10.4 0.01 

 

4.1 ANFIS model results 

The experimental data is used to develop an ANFIS model. Table 5 compares the ANFIS model 

predictions with the experimental values of responses. Table 6 gives the model training parameters. 

Training input data set is a 31 x 4 matrix containing 31 combinations (according to CCD of RSM) 
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of four input parameters (Ton, Toff, SV and WF). Input membership function is gaussian in shape 

with a constant output function. Learning algorithm is hybrid combining both least squares and 

gradient descent algorithm. Table 7 shows the input Gaussian membership function parameters 

specified in equation (4). Similarly, Table 8 shows the consequent parameters of output 

membership function.  

Table 6 ANFIS training parameters  

Layers 5 
Data set  31 x 4 
Responses 1 
Membership function Gaussian  
Learning algorithm Least squares, gradient descent  
Number of epochs  300 
Output function  Constant  

Table 7 Parameters of gaussian membership function 

Factors 
Low Med High 

a c a c a c 
Ton 4.25 100 4.25 110 4.25 120 
Toff 8.5 30 8.5 50 8.5 70 
SV 8.5 30 8.5 50 8.5 70 
WF 1.7 2 1.7 6 1.7 10 

Table 8 Consequent parameters of output membership function 

Exp. No. 
Consequent 
parameters Exp. No. 

Consequent 
parameters 

ri ri 
1 9.56 17 1.63 
2 4.67 18 2.08 
3 1.63 19 2.08 
4 4.67 20 1.63 
5 4.62 21 11.7 
6 3.7 22 9.88 
7 15 23 1.63 
8 5.4 24 11.4 
9 1.63 25 4.67 
10 4.67 26 12.3 
11 1.63 27 3.7 
12 1.63 28 7.5 
13 11.7 29 8.48 
14 8.54 30 4.67 
15 4.67 31 10.4 
16 4.67   
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Fig. 7 Surface plots showing the influence of process parameters on ΔVm 
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Fig. 8 Comparison of predicted values with actual values for ΔVm 

Fig. 7 shows the surface plots of ΔVm obtained through ANFIS. Fig. 8 shows the comparison 

between the ANFIS predictions and experimental values for ΔVm. The comparison with 

experimental values shows that the model gives an accurate prediction of response with only a 

marginal error. The predicted values coincide with the actual responses in most of the cases.  

4.2 Human computer interaction - Wire break alert  

A user interface is coded around the ANFIS model to interact with the operator. The interface 

gets the values of input parameter settings from the user and inputs them to the ANFIS model. The 

model processes the data and predicts the appropriate response, i.e., ΔVm value. Based on this 

value, the interface suitably intimates the user whether to continue with the selected parameters or 

not. In case of ΔVm crossing the threshold, a wire break alert is sent to the user, requesting a 

different parameter setting. The logic flow diagram of this interface is given below in Fig. 9. Table 

10 shows the user interface for two cases from confirmation tests. 
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Fig. 9 Logic flow diagram for wire break alert 

4.3 Confirmation experiments 

Table 9 shows the results of the confirmation experiments. Whenever the predicted response 

was greater than ΔVm, lim, the wire breakages were observed. Also, the model predicted the 

response ΔVm accurately with minimum errors. Fig. 10 shows the comparison between the 

experimental values and ANFIS predictions of ΔVm for confirmation experiments.  
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Table 9 Confirmation experiments 

S. No. Ton 
(µs) 

Toff 
(µs) 

SV 
(V) 

WF 
(m/min) 

ANFIS 
ΔVm 

Exp. 
ΔVm  

Model 
prediction 

Experimental 
observation 

1 115 40 30 3 9.79 8.8 CM  CM  

2 115 30 40 3 8.57 8.4 CM  CM  

3 120 30 30 7 14.5 15.2 WB WB 

4 120 30 40 4 12 10.8 WB WB 

5 105 45 40 5 3.28 3.5 CM  CM  

6 110 35 40 10 7.91 8.05 CM  CM  

7 118 33 39 4 11.8 12 WB WB 

8 112 43 49 9 7.33 7.25 CM  CM  

9 103 33 31 5 2.77 2.5 CM  CM  

CM – Continuous machining, WB – wire breakage 

 

Table 10. Wire break intimation based on ANFIS model predictions 

Experiment 
number Model input Model output - wire breakage 

prediction 

Experiment 
number 03 

Pulse on time = 120 µs 
Pulse off time = 30 µs 
Servo voltage = 30 V 
Wire feed rate = 7 m/min 

Mean gap voltage variation = 14.5 V 
‘Gap voltage variation will lead to wire 
breakages. Kindly select different input 
parameter settings’ 

Experiment 
number 05 

Pulse on time = 105 µs 
Pulse off time = 45 µs 
Servo voltage = 40 V 
Wire feed rate = 5 m/min 

Mean gap voltage variation = 3.28 V 
‘Selected input parameter settings will 
result in uninterrupted machining’ 

 

 

ANFIS modelling of mean gap voltage variation to predict wire breakages during wire EDM of Inconel 718



18 
 

 

 

 

 

 

 

 

 

 

Fig. 10 Confirmation tests comparison of ANFIS responses with experimental readings 

4.4 Surface Integrity Analysis  

4.4.1 Microstructural Examination 

The model predictions were categorised into low, medium and high as shown in Table 11. The 

worn wire samples belonging to each of the three categories were analysed under SEM. As shown 

in Fig. 11, SEM images of wire surface shows that the wire wear increases as ΔVm increases, 

ultimately leading to the wire rupture. This is because, high ΔVm implies a greater gap instability 

resulting in debris accumulation and short circuit discharges. These higher discharge energy sparks 

are considered unwanted/ harmful sparks and thus can lead to excessive wire wear. When the zinc 

coatings are worn off the inner brass core is exposed leading to wire breakage. Limit at which the 

wire is unable to withstand the gap instabilities is given by ΔVm, lim value. Fig. 11 (c to e) shows 

broken wire tip images of all the wire breakage cases during confirmation tests.  

Apart from causing higher wire wear, gap instabilities deteriorate part quality too. This is 

studied by considering SEM images of machined surfaces at each of the above three categories. 

Fig. 12 shows the SEM images of machined parts at different predicted ΔVm values. Also surface 
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roughness, and flatness error were compared to understand part quality differences at different 

levels of ΔVm.  

Table 11 Classification of mean gap voltage variation  

Predicted ΔVm Category 
< 5 Low 

5 to 10 Medium 
>10 High 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 SEM images of wire surfaces with (a) low ΔVm (b) medium ΔVm (c) broken wire tip at 

high ΔVm (Exp. No. 3) (d) broken wire tip (Exp. No. 4) (e) broken wire tip (Exp. No. 7) 

a) b)

c)

Broken wire tip Broken wire tip

Broken wire tip

d)

e)

Melt pool

Debris 
impinged to 
the surface
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Table 12 shows the comparison of part quality for confirmation experiments. It is observed 

that the experimental runs with higher ΔVm predictions produced surfaces with greater roughness 

and flatness deviations. Flatness error was measured using acute tutor make coordinate measuring 

machine (CMM). The flatness error helps to learn the effect of ΔVm on the geometric errors. 

Geometric errors are caused by wire vibrations. As mentioned in previous section ΔVm is an 

indicator of gap stability. Higher ΔVm indicates higher instability resulting in greater unbalanced 

lateral forces causing wire vibrations. Due to this effect flatness error improved at low ΔVm 

predictions. Surface roughness is higher for higher ΔVm since such machining conditions are 

associated with higher energy short circuit sparks which causes surface damages or irregularities.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 12 SEM images of machined surfaces with (a) low ΔVm (b) medium ΔVm (c) high ΔVm 
prediction 
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Table 12 Part quality comparison at different ΔVm predictions 

S. 
No. 

ΔVm (V) 
ANFIS 

ΔVm (V) 
Experimental 

Surface Roughness 
Ra (µm) 

Flatness Error 
FE (µm) 

Wire 
breakage 

1 9.79 8.8 3.54 4.75 No 
2 8.57 8.4 3.22 4.01 No 
3 14.5 15.2 - - Yes 
4 12 10.8 - - Yes 
5 3.28 3.5 1.9 1.21 No 
6 7.91 8.05 3.1 3.23 No 
7 11.8 12 - - Yes 
8 7.33 7.25 2.83 2.61 No 
9 2.77 2.5 1.4 0.9 No 

 

4.4.2 EDS of worn wire electrodes at different instabilities 

Energy dispersive spectroscopy (EDS) was performed on the worn wire samples to analyse the 

effect ΔVm on compositional differences. When the sample surface is exposed to electron beam, 

characteristic x-rays are emitted back. These x-rays are captured and measured for the elemental 

analysis. The analysis gives the weight percentage of each elements from a small area of the 

surface. Fig. 13 shows the EDS spectrum of wire surfaces under low, medium and high ΔVm 

predictions. Higher ΔVm indicates an unstable machining condition, which is primarily caused by 

debris accumulation in the spark gap. Since these accumulated debris are not effectively flushed 

away, they tend to bridge the narrow spark gap between the wire electrode and workpiece. This 

situation leads to the formation of unwanted arc or short circuit discharges between the two 

electrodes. These types of discharges are associated with extremely high discharge energies which 

results in higher wire wear. The zinc coated wire electrodes are normally preferred over uncoated 

electrodes due to its better overall performance. The coatings are reported to protect the inner wire 

core from thermal shock. This zinc coating will be rapidly removed from the wire electrode surface 

by the action of these short circuit sparks. The zinc wt. % was less in the first case due to the 
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extensive zinc coting removal. On the other hand, lower value of ΔVm indicates a stable machining 

with lesser debris accumulation. In such situations, the normal discharge sparks dominate the pulse 

cycle which has comparatively lesser discharge energy. Due to the lesser spark energy, the extend 

of zinc coating is removal is less. The EDS analysis also support this argument. From the EDS 

images it can be observed that, zinc wt. % decreases from case (a) to (c) due to greater zinc coating 

removal from the wire surface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13 EDS analysis of wire surfaces with (a) low ΔVm (b) medium ΔVm (c) high ΔVm 

prediction 
 
 
 

Element Wt. %
Cu 22.62
Zn 48.9

Element Wt. %
Cu 30.36
Zn 40.12

Element Wt. %
Cu 36.60
Zn 31.06
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5. Conclusions 

The mean gap voltage variation of wire electric discharge machining process was modelled 

using ANFIS. This model handles the uncertainties and randomness associated with the machining 

process and predict the instabilities accurately. Following are the salient conclusions from the 

study 

1. The threshold value of ΔVm, which is the upper limit for continuous and uninterrupted 

machining during the wire EDM of Inconel 718, was found experimentally. 

2. The response ΔVm was modelled using ANFIS and the model was found to be accurate in 

its wire breakages prediction. 

3. Confirmation tests proved the capacity of the model to predict ΔVm. Based on this, suitable 

alerts can be given regarding the wire breakages. Whenever the predicted ΔVm values were 

greater than the threshold limit, wire breakages were observed. 

4. Higher wire wear was observed at high ΔVm compared to low ΔVm predictions when SEM 

images of wire samples are compared. Wire breakage has occurred due to significant 

deterioration of wire surface causing catastrophic failure.  Similarly, greater surface 

damages were observed at higher ΔVm predictions. At high ΔVm, Ra and flatness errors 

were observed to be more.  

5. Elemental analysis showed lesser zinc contents at higher ΔVm proving higher degradation 

of wire coatings. 
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