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Abstract: Fuse deposition modelling (FDM) has emerged as a novel technology for manufactur-
ing 3D printed medicines. However, it is a two-step process requiring the fabrication of filaments
using a hot melt extruder with suitable properties prior to printing taking place, which can be a
rate-limiting step in its application into clinical practice. Direct powder extrusion can overcome the
difficulties encountered with fabrication of pharmaceutical-quality filaments for FDM, allowing the
manufacturing, in a single step, of 3D printed solid dosage forms. In this study, we demonstrate
the manufacturing of small-weight (<100 mg) solid dosage forms with high drug loading (25%)
that can be easily undertaken by healthcare professionals to treat hypertension. 3D printed nifedip-
ine minitablets containing 20 mg were manufactured by direct powder extrusion combining 15%
polyethylene glycol 4000 Da, 40% hydroxypropyl cellulose, 19% hydroxy propyl methyl cellulose
acetate succinate, and 1% magnesium stearate. The fabricated 3D printed minitablets of small overall
weight did not disintegrate during dissolution and allowed for controlled drug release over 24 h,
based on erosion. This release profile of the printed minitablets is more suitable for hypertensive
patients than immediate-release tablets that can lead to a marked burst effect, triggering hypotension.
The small size of the minitablet allows it to fit inside of a 0-size capsule and be combined with other
minitablets, of other API, for the treatment of complex diseases requiring polypharmacy within a
single dosage form.

Keywords: 3D printing; fused-deposition modelling (FDM); hot-melt extrusion; HME; direct powder
extrusion; minitablets; nifedipine; cardiovascular diseases

1. Introduction

Since the FDA approval of Spritam®, there has been a growing interest in the applica-
tion of 3D printing in pharmaceutical sciences [1]. 3D printing is an innovative technology
that allows the fabrication of personalised medicines to enable a tailored pharmacotherapy
instead of a “one size fits all” approach [2–4]. 3D printing allows for tailoring of dosage
forms to patients’ and disease needs such as age, dose, release profile, colour, texture,
taste, and size [5]. Their ability to allow for dose individualisation enables 3D printed
dosage forms to ensure efficacy combined with minimal side effects [6]. 3D printing makes
feasible the incorporation of multiple active pharmaceutical ingredients (API) into one
dosage form that can result in enhanced adherence and better and safer pharmacotherapy
in polymedicated patients [7].

Based on WHO statistics, cardiovascular diseases (CVDs) are the leading cause of
death globally, taking an estimated 17.9 million lives each year, which represents 31%
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of all deaths worldwide. CVDs are a group of disorders of the heart and blood vessels
and include coronary heart disease, cerebrovascular disease, rheumatic heart disease, and
other conditions. Four out of five CVD deaths are due to heart attacks and strokes, and
one-third of these deaths occur prematurely, in people under 70 years of age [8]. Although
medications for CVDs are effective and can yield very substantial health and economic
benefits, these advantages are often not realised, as approximately 50% of patients do
not take their medications as prescribed [9]. The annual cost of non-compliance due to
medication-related hospital visits may be as high as $100 billion [10]. Lack of adherence
can be overcome by combining complex treatments within the same solid dosage form.

There are several types of 3D printing technologies which, according to the 3D print-
ing classification of the American Society for Testing and Materials (ASTM) [11], can be
classified into seven categories: vat photopolymerisation, material jetting, binder jetting,
material extrusion, powder bed fusion, sheet lamination, and directed energy deposition.
Among these 3D printing technologies, material extrusion (in particular, fused deposition
modelling (FDM)) is the most commonly used in pharmaceutical sciences due to the wide
availability and low cost of printers [12]. However, before printing by FDM is materialised,
the manufacture of a drug-loaded filament by holt-melt extrusion (HME) is necessary [13].
HME can increase the likelihood of drug degradation due to high temperatures applied
during the process. Also, there is a limitation on the number of excipients and drugs
capable of resulting in filaments with mechanical and physical properties suitable for
FDM. Furthermore, the batch sizes for extrusion are relatively large, while the optimi-
sation of the formulation is complex, which hinders its translation for precious APIs in
clinical practice [12].

Direct powder extrusion involves the feeding of a powder mixture into the printer,
heating, and extrusion of the API-excipient mixture, and printing by deposition according
to the designed geometry. The need for the manufacturing of drug-loaded filaments
by HME with the appropriate mechanical and physical properties can be omitted by
employing 3D printers that allow direct powder extrusion of the API mixture. Additionally,
direct powder extrusion overcomes limitations around drug loading that usually occur
with conventional HME, as the latter requires a larger amount of excipients to avoid
fabricating too-brittle or too-flexible filaments that cannot be loaded into an FDM printer.
Therefore, this strategy can be of immense value in clinical settings with less manufacturing
expertise, and it can simplify the 3D printing process, transforming the current two-step
process (HME followed by FDM) into an innovative and more cost-and-time-effective
single-step 3D printing manufacturing process [12]. However, direct powder extrusion of
pharmaceuticals has not been widely explored to provide necessary understanding as a
basis for uptake of the technology in manufacturing of 3D printed dosage forms.

The combination of API with suitable excipients and direct extrusion can also enhance
the dissolution profile of poorly water-soluble BCS Class II drugs such as nifedipine (NFD).
NFD is currently commercialised as modified and extended-release tablets, and as an oral
solution with a wide range of doses, which indicates the need for dose personalisation [14].
We have previously shown that spherical minitablets of NFD have been successfully
manufactured using FDM coupled with HME, and demonstrated NFD controlled release in
simulated gastrointestinal fluids from these 3D printed dosage forms [13]. The hypothesis
underpinning this work is that direct powder extrusion can more successfully be applied
in the development of personalised medicines to treat CVDs in a single-step process than
HME followed by FDM. This study demonstrates the design and manufacture of NFD
minitablets by a direct powder extrusion technique that can be easily adjusted to the
patient’s dose needs by just adjusting the tablet height. A quality by design approach
was followed to find the optimal formulation and understand the direct powder extrusion
process. Minitablets of NFD were fully characterised and compared with commercially
available formulations in terms of their in vitro dissolution profile.
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2. Materials and Methods
2.1. Materials

NFD was purchased from Industria Chimica Italiana (>95%, Bergamo, Italy). Hypromel-
lose acetate succinate (HPMCAS) (AQOAT® LG grade) was a gift from Shin-Etsu (Tokyo, Japan).
PEG 4000 and magnesium stearate were purchased from Sigma-Aldrich (Madrid, Spain).
Kollidon VA 64 (KVA64) was a gift from BASF (Ludwigshafen, Germany). Klucel hydrox-
ypropyl cellulose (HPC, 95 kDa) LF grade was kindly donated by Ashland (Madrid, Spain).
Solvents were HPLC grade and were purchased from Proquinorte (Madrid, Spain). Any
other reagents were used without further purification and were of analytical grade.

2.2. Methods
2.2.1. Quality by Design: Formulation Optimisation

A quality by design approach was used to find the optimal ratio between excipients
and APIs. A 23 simple factorial design was performed using Design-Expert 10 software
(Stat-Ease Inc., Minneapolis, USA). The target of this DoE was to optimise the composition
of a minitablet containing NFD with controlled drug release. The impact of different
excipients employed in the manufacture of 3D printed tablets (PEG 4000, HPC, HPMCAS,
KVA64) on the percentage of drug released at 6 h and content uniformity were evaluated.

The amount of API per tablet was kept constant at 25% w/w. Magnesium stearate (1%)
was added to all the tablets to ensure adequate powder flow. The effect of the following
three different factors was investigated: (i) the amount of plasticiser (PEG 4000), ranging
between 5–15% w/w, (ii) the amount of hydrophilic excipient (HPC), ranging between
20–40%, and (iii) the type of modified-release polymer, HPMCAS or KVA64. The percentage
of the modified-release polymer was varied accordingly, up to 100% of the dosage form
weight. Once the polynomial regression models were calculated, the optimisation of the
formulation was performed, targeting the greatest content uniformity and the lowest drug
release at 6 h, to ensure a 24 h release profile.

2.2.2. Direct Powder Extrusion 3D Printing
Preparation of the Formulations

Mixtures of NFD, PEG 4000, HPC, KVA64 or HPMCAS, and magnesium stearate
were used as formulations for subsequent 3D printing with direct powder extrusion. Each
formulation was prepared at a 20 g batch size and was printed at 165 ◦C to avoid the
melting of NFD (which melts above 170 ◦C), which can result in degradation, but allows
the achievement of a mixture with adequate fluidity to be printed. KVA64 or HPMCAS
were used to create a modified release polymeric matrix. PEG 4000 was included as a
plasticiser, and magnesium stearate as a lubricant to promote the homogenous transit of
the powder mixture for printing. Ball milling (IKA Ultra-Turrax® Tube Drive Disperser)
was used to blend the feed powder mixture for 2 min at 6000 rpm after which the mixture
was sieved through a 12-US mesh (1.68 mm) screen, before 3D printing. Formulations were
protected from light with foil under desiccated conditions, to avoid drug degradation until
further analysis was performed.

Geometry Design and 3D Printing Settings

The minitablet geometry was designed using a computer-aided design (CAD) software
(Tinkercad software v.1, Autodesk 2019, Barcelona, Spain) to create a .stl file compatible
with the Repetrel v. 4.101 Software (Norcross, GA, USA). The tablets were designed with a
cylindrical shape of 7 mm in width and with a defined height of 2.38 mm. The minitablets
were designed to contain 20 mg of the active ingredient (NFD). The total surface area of
each minitablet was calculated using Autodesk 3ds Max 2021 (Autodesk, Inc., San Rafael,
CA, USA) to be 108.7 mm2 [13].

An Engine SR Hyrel FDM 3D printer (Norcross, GA, USA) was used to print the
tablets. The powder was filled in a TAM-15® extruder with a 1 mm extrusion nozzle
aperture. The platform temperature was set at 70 ◦C and the printing temperature was set
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at 165 ◦C. The print and travel speed were both set at 10 mm/s. The first layer height was
set to 0.23 mm and the other layers to 0.12 mm of height. Lastly, the infill percentage of the
shape designed was set at 100%.

2.2.3. Content Uniformity and Mass Uniformity

Minitablets (n = 3) obtained by direct powder extrusion were weighed and dissolved
in a volume of ethanol: water (9:1 v/v). Absorbance was measured at 240 nm (λmax)
by ultraviolet spectroscopy (V-730, Jasco, Tokyo, Japan). A calibration curve between
5–50 µg/mL was performed under the same conditions. A good correlation between drug
concentration and absorbance was obtained within this range (R2 = 0.9999). Minitablets
(n = 10) were weighed in an analytical balance to compare the mass deviation of the printed
dosage forms to achieve the dose required (20 mg NFD).

2.2.4. Imaging

To assess the dimensions, shape, and surface morphology of the 3D printed minitablets,
a digital microscope (U500X, CoolingTech, Shenzhen, China) was used, and images were
processed by ImageJ v1.46 image analysis software (University of Wisconsin, Madison,
WI, USA). Also, dimensions were measured with a calliper (Cole Parmer, Fisher Scientific,
Madrid, Spain). To gather a more in-depth analysis of the morphology of the 3D printed
minitablets, a scanning electron microscope (JSM 6335F JEOL, Tokyo, Japan) was used at
15.0 kV; the samples were sputter-coated with gold without previous treatment (Q150RS
Metalizador QUORUM, Madrid, Spain) for 180 s under vacuum.

2.2.5. Solid-State Characterisation

Solid-state characterisation was performed on 3D printed minitablets, unprocessed
excipients, and raw NFD powder. A physical mixture containing the same ratio of active
substance and excipients was prepared in an agate mortar and pestle for further analy-
sis. These studies were performed in the CAI technological research centre (Centro de
Asistencia a la Investigación, UCM, Madrid, Spain).

Fourier-Transform Infrared (FTIR) Spectroscopy

FTIR analysis of printed NFD minitablets was carried out with a Nicolet Nexus
670–870 (Thermofisher, Madrid, Spain). A wavelength range between 400–4000 cm−1 was
used. Each sample (1–3 mg) was mixed manually in an agate mortar and pestle with KBr
(200 mg). The powder mixture was then compressed into compacts using a PerkinElmer
hydraulic press set at a pressure of 10 tons for 10 min dwell time. Spectragryph software
(version 1.2.9, Oberstdorf, Germany) was used for the interpretation of the spectra.

X-ray Powder Diffraction (pXRD)

Powder X-ray analysis was carried out using a Philips® X’Pert-MPD X-ray diffrac-
tometer (Malvern Panalytical®; Almelo, The Netherlands) equipped with Ni-filtered Cu K
radiation (1.54) under 40 kV voltage and a 40 mA current. PXRD patterns were recorded
(n = 3) at a step scan rate of 0.05◦ per second from 5◦ to 40◦ on the 2-theta scale.

Differential Scanning Calorimetry (DSC)

DSC scans were performed using nitrogen as the purge gas on a QA-200 TA instrument
(TA instruments, Elstree, UK) calorimeter. NFD minitablets were grinded and weighed
(around 10 mg) before being sealed in an open aluminium pan. Temperatures were set to
range from 25 to 200 ◦C at a speed of 10◦ per minute. The instrument was calibrated using
indium as the standard. The glass transition temperatures reported are the transition’s
midpoint (n = 3).
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2.2.6. Dissolution Studies

The dissolution tests were performed in triplicate to evaluate the modified release
profile of minitablets using a United States Pharmacopoeia (USP) apparatus 2 (ERWEKA
DT 80, Heusenstamm, Germany). A stirring speed of 100 rpm was utilised to investigate
the drug release profile under stressed conditions [15]. The employed dissolution media
were USP simulated gastric fluid (SGF) without enzymes (pH 1.2) containing 2 g of sodium
chloride (NaCl), and 7 mL of hydrochloric acid (HCl, 37%) per litre of deionised water with
0.5% sodium lauryl sulfate for the first two hours, followed by USP simulated intestinal
fluid (SIF) without enzymes (pH 6.8) prepared using 6.8 g of monobasic potassium phos-
phate (KH2PO4) and 0.62 g of sodium hydroxide (NaOH) per litre of deionised water with
0.5% sodium lauryl sulfate, as described in the USP [16]. SGF (250 mL) was used during
the first 2 h. SIF (250 mL) was added and dissolution continued for 22 h at 37 ± 0.5 ◦C.
NaOH (10 M) was used to adjust the pH to 6.8 after the addition of the SIF. Samples (2 mL)
were withdrawn from the dissolution media and filtered through a hydrophilic 0.45 µm
filter (Millipore, Millex-LCR, Merck, Madrid, Spain) at 5, 10, 15, 30 and 45 min, 1, 1.5, 2, 3,
4, 6, 8, and 24 h. As a comparison, two commercially available tablets of NFD were also
tested, Adalat Oros® 30 mg and Adalat Retard® (20 mg).

Quantification of NFD by High Performance Liquid Chromatography (HPLC)

Dissolution samples were diluted with HPLC mobile phase (1:1 v/v) consisting of
methanol: water: acetonitrile (36:55:9 v/v). HPLC analysis was undertaken using a Varian
Prostar 230 Solvent Delivery Module, a Varian Prostar autosampler 410, and a Varian
Prostar 310 UV-visible detector (Varian, Palo Alto, CA, USA). Integration of the peaks was
performed with a Galaxie Chromatography Data System (Varian, CA, USA). NFD was
eluted on a Thermo BDS Hypersil C18 reverse-phase column (200 × 4.6 mm, 5 µm). The
mobile phase was filtered by a hydrophilic 0.45 µm filter (Millipore, Millex-LCR, Merck,
Madrid, Spain), and pumped at a flow rate of 1 mL/min. The sample injection volume
was 50 µL. The column temperature was kept at 25 ◦C, and the detector was set at 240 nm.
The method used was previously validated with a detection limit of 0.12 µg/mL, while the
quantification limit was 0.4 µg/mL [17].

2.2.7. Data Processing and Statistical Analysis

Statistical analysis for the dissolution study data was performed via a one-way
ANOVA test using Minitab v.16 (Minitab Ltd., Coventry, UK) followed by Tukey’s test
(95% level of significance). The comparison and modelling of dissolution profiles were
performed using the software DDsolver (China Pharmaceutical University, Nanjing, China).
The dissolution results were plotted using Origin 2021 (OriginLab Corporation, Northamp-
ton, MA, USA).

3. Results
3.1. Design of Experiments (DoEs)
3.1.1. QbD-Based Model Development and Response Surface Analysis

A full two-level analysis was carried out by a multilinear regression analysis method
suggesting that the two-factor interaction models were the best fit for the parameters
assessed [18]. The coefficients of the model equations generated for each Critical Quality
Attribute (CQA) revealed the goodness of fit of the experimental data to the selected model
with high values of R2 = 0.9893 and R2 = 0.9921 and low p-values < 0.01 for both responses,
content uniformity, and drug release at 6 h, respectively.

The 2D-contour plot and 3D-response surface plot, depicted in Figure 1, revealed a
higher influence of the concentration of PEG 4000 and the type of modified-release polymer
(HPMCAS or KVA64) on content uniformity, whereas the influence of the amount of HPC
was found to be negligible. Higher content uniformity was obtained when greater amounts
of PEG 4000 and HPMCAS were used (93.2% of NFD loaded on the printed minitablet with
3.4% RSD). The impact on content uniformity for KVA64 was less pronounced (Figure 1c).
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Figure 1. Optimisation of NFD 3D printed minitablets by direct powder extrusion. 3D response
surface (a,d) and 2D contour plots (b,e) showing the influence of the amount of PEG 4000 and HPC on
the content uniformity (%) and drug release at 6 h. Interaction between the excipients (c,f) HPMCAS
and KVA 64 in content uniformity (%) and drug release at 6 h (%).

Regarding the drug release at 6 h, the most influential variables were the amount
of HPC and the type of modified-release polymer (Figure 1e,f). The use of HPMCAS
significantly decreased the rate of NFD dissolved at 6 h compared to KVA64. The amount
of HPC also played a key role in affecting the drug release, which was reduced when higher
amounts of HPC LF grade were used. The amount of PEG 4000 exhibited a negligible effect
on the drug release (p > 0.05).
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3.1.2. Optimal Formulation and Validation of QbD

The search for an optimum formulation was carried out by trading off various CQAs
to attain the desired objectives, giving priority to ensuring the uniformity and minimisation
of drug release at 6 h. Based on the aforesaid objectives, the optimised process and
formulation parameters were: 15% PEG 4000, 40% HPC, and the selection of HPMCAS
as the modified-release polymer, resulting in 93.2% content uniformity with a 95% CI
(91.1–95.3%) and 74.4% drug release at 6 h with a 95% CI (71.2–77.6%). Validation of the
QbD methodology revealed a proximity between the predicted values of the responses with
those experimentally obtained (93.7% for content uniformity and 72.5% for drug release at
6 h for prepared check point formulations).

3.2. Content Uniformity and Mass Uniformity

The minitablets were designed to contain 20 mg of NFD. The test revealed a high mass
uniformity with just a 3.4% RSD in weight (mean = 74.8 ± 2.5 mg). After the optimisation
of the formulation was prepared, the content uniformity of NFD inside the 3D printed
tablets was also found to be good, with less than 5% drug variability amongst tablets
(4.6% RSD, mean = 94.0 ± 4.3%).

3.3. Imaging

The optimised NFD formulation by direct powder extrusion showed a rough trans-
parent yellowish surface as shown in Figure 2. The diameter of the 3D printed minitablet
was 7.5 ± 0.1 mm in diameter and 2.5 ± 0.1 mm in height. Several printing defects, such as
a porous surface, were observed with the digital microscope both at 50 and 100 magnifica-
tions, as well as in the SEM micrographs. The deposition of small crystals on the surface
of the tablet was also observed in the SEM micrographs. However, printing defects were
not visible to the naked eye and hence, this is unlikely to affect the patient’s adherence
to therapy.
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Figure 2. Morphology of NFD 3D printed minitablets. (A) Full NFD 3D printed minitablet; (B) Image
of the 3D printed minitablet side obtained by the digital microscope at 50 magnification. (C) Image
of the 3D printed minitablet central surface obtained by digital microscope at 100 magnification;
(D) Image of the 3D printed minitablet side obtained by digital microscope at 100 magnification;
(E,F) Micrographs obtained by Scanning Electronic Microscopy.

3.4. Solid-State Characterisation
3.4.1. PXRD

The pXRD analysis of the unprocessed materials showed that NFD and PEG 4000
were highly crystalline (Figure 3). The physical mixture of all the components showed
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Bragg peaks attributed to those of the single components of the mixture, especially NFD
and PEG 4000. However, the 3D printed minitablet showed a characteristic amorphous
halo (Figure 3a).
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and (g) Unprocessed NFD.

3.4.2. Differential Scanning Calorimetry (DSC)

Unprocessed NFD showed a sharp endothermic event with an onset at 172.2 ± 1.0 ◦C
corresponding to the melting of the drug with a heat of fusion of 110.8 ± 0.8 J/g, (Figure 4
and Table 1). Unprocessed PEG 4000 also exhibited a sharp melting event at 59.2 ± 1.0 ◦C
(Figure 4). The Tg for HPMCAS was 123 ◦C, which is similar to previously reported
values [19,20]. HPC did not exhibit any Tg in the thermograms at the conditions tested,
bearing in mind its low Tg temperature, below 0 ◦C [21].
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Table 1. Enthalpy of fusion, melting events, and glass transition for NFD 3D printed mini-tablets,
and unprocessed materials and physical mixture.

Sample Enthalpy of Fusion (J/g) Melting (Onset) (◦C) Glass Transition (◦C)

3D printed
mini-tablets

7.9 ± 0.2
3.5 ± 0.4

51.3 ± 0.9
137.4 ± 0.6 49.7 ± 0.3

Raw NFD 110.8 ± 0.8 172.2 ± 1.0 -

Physical
Mixture

28.41 ± 0.6
6.2 ± 0.8

53.2 ± 0.5
142.4 ± 0.9 -

PEG 4000 191.9 ± 0.7 59.2 ± 1.0 -

HPMCAS - - 122.6 ± 0.7

HPC - - -

Based on the XRD results, in which a characteristic amorphous halo was observed for
the 3D printed minitablet, it is apparent that NFD recrystallises during the DSC heating
ramp, which has been previously reported [13]. A single Tg was observed for the 3D printed
minitablet at 49.7 ± 0.3 ◦C. However, the Tg of unprocessed NFD after melt quenching has
been reported to be 46.2 ◦C [13]. This indicates that a homogeneous amorphous domain has
probably been formed between the HMPCAS (Tg = 123 ◦C) and HPC (Tg < 0 ◦C) [19–22]
with the active ingredient. Even though physical stability studies should be performed,
the low Tg of the composite indicates that it is likely not to be a highly stable amorphous
formulation, which can explain the crystallisation upon exposure to heating in the DSC,
with a depressed melting point at 137.4 ± 0.6 ◦C and enthalpy of fusion of 3.5 J/g [13].

3.4.3. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR spectra showed hydrogen-bonding interactions between NFD and the excipients
(Table 2 and Figure 5). Shifts were observed in the C-H (3333 cm−1) and the carbonyl group
C=O (1690 cm−1) functional groups of NFD after 3D printing.

Table 2. FTIR spectra of the 3D printed minitablets, the raw NFD, and the physical mixture. Bands
that showed a characteristic shift are illustrated in the Table.

Sample C=O (cm−1) C-H (cm−1)

3D printed mini-tablets 1690 3333

Raw NFD 1682 3332

Physical Mixture 1680 3332

PEG 4000 N/A N/A

HPMCAS N/A N/A

HPC N/A N/A

These shifts were not observed in the physical mixture, indicating that the hot-melt
extrusion process triggers the interaction by H-bond formation between the NFD and the
excipients, leading to the formation of a single Tg amorphous composite. Also, the 3D
printed minitablet showed broader bands, probably due to its amorphous nature, compared
to the physical mixture and the unprocessed NFD.
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3.5. Dissolution Studies

As NFD is a crystalline-nature very poorly water-soluble compound, dissolution
studies were performed using sodium lauryl sulphate to ensure sink conditions [23,24].
Two marketed NFD tablets were used to compare the dissolution profile of the 3D printed
formulation, resulting in marked differences between them (Figure 6). Adalat Oros® is
an osmotic system consisting of a semi-impermeable barrier created mainly by cellulose
acetate and a dual reservoir with sodium chloride and NFD amongst other excipients [25].
The compartment with sodium chloride, upon wetting, increases the osmotic pressure of
the system, forcing the NFD contained in the other compartment to be slowly released
across the pore located at the surface of the tablet. This behaviour resulted in a zero-order
release (R2 = 0.9958), as observed in Figure 6.
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Figure 6. Dissolution profile for the 3D printed minitablets formulation (-�-) compared to the
commercially marketed NFD tablets: Adalat Oros® 30 mg (-•-) and Adalat Retard® 20 mg (-N-).
Key: + p < 0.05 Adalat Oros® vs. all the other formulations (including t = 15 min); # p < 0.05 3D
printed minitablets formulation vs. the marketed formulations (including t = 15 min) and * p < 0.05
Adalat Retard® vs. all the other formulations.

However, the NFD from the Adalat Retard® tablets showed a dissolution profile
characterised by a faster disintegration of the tablet into smaller fragments, resulting
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in a marked burst effect with drug release greater than 80% at 3 h. The 3D printed
minitablet containing HPMCAS showed a significantly different (p < 0.05) intermediate
release profile between Adalat Oros® and the Adalat retard® formulation, exhibiting a
sustained release over 4 h with less than 30% drug release, followed by a faster release
up to 24 h, reaching 99.9% drug released. The 3D printed minitablet did not show any
disintegration into smaller fragments, but just erosion from the surface becoming smaller in
size over time. These results indicate that the kinetics that govern the dissolution of Adalat
Retard® and 3D printed minitablets follow first order (R2 = 0.9387) and Hixson-Crowell
(R2 = 0.9293), respectively.

4. Discussion

In this work, we have demonstrated that direct powder extrusion can be successfully
utilised to manufacture high drug-loaded solid dosage forms (25% of active ingredient)
in a single step, which is useful for implementation in clinical settings by healthcare
professionals such as clinical pharmacists. The content uniformity of the optimised dosage
form was above 90%, with low variability (< 5%). The time for printing each tablet was
low (2 min), which allows the preparation of a personalised antihypertensive treatment
adapted to the patient’s need (30 tablets, i.e., monthly supply) in one hour.

Direct powder extrusion can trigger intimate contact between drug and excipients,
leading to hydrogen bond formation and amorphous solid dispersions overcoming solu-
bility issues of poorly water-soluble drugs. Long-term stability studies are not required,
considering that medication is prepared for immediate use (<7 days), which reduces the
issue of physical instability of amorphous systems, especially if tablets are packed within
aluminium blisters. In addition, the small size and weight (~80 mg) of the 3D printed
minitablets allow them to be easily combined inside a 0-size capsule with other minitablets
containing other active ingredients, which would allow preparation of a multidrug solid
dosage form with minimal incidence of physicochemical interactions between drugs, as
each one is contained in an independent tablet. Incorporating the minitablets into capsules
minimises the potential difficulty or discomfort in swallowing occurring due to the lack of
smoothness of the minitablet surface, even if this is not visible to the naked eye, to ensure
that it does negatively impact on patient acceptability and adherence. This roughness
can be attributed to the molecular weight (95 KDa) and particle size of the HPC utilised,
and as described by other authors, the smoothness of the tablets can increase by reducing
the molecular weight of the HPC utilised for printing [12,26]. When high molecular HPC
as L grade (140 KDa) is used instead, some authors have described lower drug release
compared to other HPC with low molecular weight, and this is why this was not selected
in our studies [12].

Dissolution is key, and can be controlled by the combination of excipients employed.
Quality by design experiments informed the optimal excipient percentages needed to
fabricate sustained-release tablets. This is especially important for antihypertensive drugs
such as NFD, in which a marked burst effect can worsen orthostatic hypotension in the
morning, and fine control of blood pressure is desired over prolonged periods. The 3D
printed minitablets obtained by direct powder extrusion have shown a better release profile
to treat hypertension, with controlled release over 24 h, compared to other commercially
available formulations such as Adalat Retard® tablets. The core of the latter consists
of microcrystalline cellulose, corn starch, lactose, polysorbate 80, magnesium stearate,
hypromellose, and macrogol 4000 [14]. Even though modified-release excipients are used,
the tablet disintegrates faster into smaller fragments upon getting in contact with gastric
fluids (first-order release). However, the 3D printed minitablet, despite its small size,
maintains its geometry intact during the whole dissolution experiment, and erosion is only
visible over time. This release behaviour is explained by the Hixson-Crowell kinetic model,
which considers that dissolution occurs in planes parallel to the surface of the drug when
the tablet dimensions decrease proportionally without altering the tablet geometry [27].
The combination of PEG 4000 (15%), HPC (40%), and HPMCAS (19%) has led to the
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sustained release of NFD over 24 h. HPMCAS performed better than KVA64 in terms
of controlled drug release. Greater amounts of a hydrophilic matrix rate-controlling
polymer (HPC) resulted in slower drug release. The selected HPC was LF grade with
a molecular weight of 95 KDa [28,29]. Lower-molecular-weight HPC up to 370 KDa
undergoes significant erosion, while diffusion through the swelling gel layer becomes
more significant in polymers with a molecular weight above this threshold [30]. These
characteristics have been shown previously in tablets fabricated by conventional methods,
as HPC possesses good compactability properties. However, in this work, this effect has
been demonstrated in tablets manufactured by 3D printed direct powder extrusion [31]. In
addition, the thermoplastic behaviour of HPC conferred optimal properties to be moulded
and extruded in situ with the NFD and the other two excipients, resulting in adequate
melt flow, which resulted in the formation of a successful amorphous solid dispersion. The
combination of HPC and HPMCAS was key in allowing complete release in a 24 h period.
Slow and incomplete dissolution profiles have been previously reported for 3D printed
solid dosage forms, especially when high levels of hydroxypropyl methylcellulose were
used [7], which is not suitable, as the oral bioavailability of the active ingredient would
be reduced.

5. Conclusions

Direct powder extrusion has been shown to be a suitable technique for single-step
manufacturing of small tablets (<100 mg) with high drug loading (25%). The designs
of experiments are key for finding the optimal excipient combination, especially when a
sustained drug release is desirable. 3D printed NFD minitablets containing 20 mg were
manufactured combining 15% PEG 4000, 40% HPC, 19% HMPCAS, and 1% magnesium
stearate. The printed minitablets exhibited a clinically preferred release profile compared
to commercially available formulations, such as Adalat Retard®, which disintegrated too
fast, resulting in a marked burst effect. However, the structure of the 3D printed minitablet,
considering its small size, remained intact over prolonged periods, allowing for a controlled
drug release for 24 h based on erosion.
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