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We analyze the simplest dynamical transverse patterns which appear in Na2 and CO& lasers. The ex-
perimental values of the control parameters correspond closely to those considered in the theoretical
study reported in the companion paper [Brambilla et al. , preceding paper, Phys. Rev. A 49, 1427 (1994)].
We perform a systematic comparsion between theoretical predictions and experimental observations.
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I. INTRODUCTION

In the previous paper [1], referred to herafter as I, we
examined several laser patterns which arise from the in-
teraction of the lowest-order frequency-degenerate fami-
lies of Gauss-Laguerre modes. More speci6cally, we dis-
cussed structures which arise from combination of the
three modes of the families q=0 and 1, and of the six
modes of the families q =0, 1, and 2 (here and in the fol-
lowing we use the same notations as in I). In the three-
mode case we considered the cases of perfect and imper-
fect cylindrical symmetries; only in the first case can the
modes which belong to the same family, characterized by
the integer q, have exactly the same frequency and losses.

In this paper we illustrate the results of two sets of ex-
periments, devised to observe these phenomena. In Secs.
II and III we describe the results obtained, respectively,
from a Naz and COz laser. The experimental data exhib-
it a general satisfactory qualitative, and in some cases
quantitative, agreement with theoretical predictions of I.
Some discrepancies in the case of COz are discussed in

Sec. III. Section IV contains a general discussion of the
results.

II. EXPERIMENTAL OBSERVATIONS
WITH Na, LASER

This section describes measurements of three different
time-varying patterns in the transverse cross section of a
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laser beam: (i) a combination of a TEMoo mode and a
TEMO& Gauss-Laguerre mode, the "traveling wave" or
"spinning singularity"; (ii) a combination of a TEMoo
mode and a TEM&o Gauss-Hermite mode (or equivalently
a TEMo& Gauss-Hermite mode), the "standing wave";
and (iii) a combination of TEM, o and TEMo, Hermite
modes which have a mutual frequency detuning, the "un-
locked doughnut. " In each of these patterns, the constit-
uent resonator modes are not all frequency degenerate,
and the laser beam intensity is time dependent due to
transverse mode beating.

A. Traveling wave

As shown in I, in this case the optical intensity pattern
rotates about the central axis at the frequency difference
between the two modes, and exhibits a singularity moving
on a circular orbit (Fig. 1). For experimental measure-
ments, the intensity distribution has two important
characteristics, the 6rst of which is its radial variation in
intensity. This can be observed with a single point detec-
tor. As the intensity is not constant in time, its radial
variation can be characterized either by the radial varia-
tion of its time average, or by the radial variation in the
amplitude of its time-varying component; the 6rst corre-
sponds to the time-independent part of Eq. (4.4) of I, the
second to the coeScient of the cos factor. The second
characteristic is that two points at the same distance
from the optical axis have the same time-varying intensi-

ty except for a position-dependent phase difference, equal
to the angular separation of the two points about the axis.
This second characteristic can be observed by using two
point detectors simultaneously.

The experimental setup is as described in Ref. [2], with
some differences in the cavity length and mirror transmis-
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sivity. It consists of an Na2 vapor ring laser emitting on
the 525-nm transition, pumped by 488-nm radiation from
a single-mode Ar+ laser. A prism in the resonator (i} al-
lows a single Naz transition to be selected, and (ii) elimi-

nates the need for more than two mirrors. The output
mirror was fiat with a 5% transmission, while the other
mirror was 99.9%%uo refiecting with a radius of curvature
equal to the resonator perimeter of 70 cm. The resonator
included an internal aperture which was used to suppress
the oscillation of unwanted transverse modes.

The calculations use Gauss-Laguerre modes TEM„„&of
transverse order 2p +

~
l

~

=q. Each value of q
( =0, 1,2, . . . ) corresponds to a family of modes with the
same frequency. The frequencies of the different families
are evenly spaced. The free spectral range of the resona-
tor was approximately 400 MHz, and the frequency of
the q=4 family of longitudinal order n coincided with
the frequency of the q =0 family of order n +1 (the reso-
nator, although a ring, can be approximated by a linear
cavity with one plane mirror and one curved mirror, the
radius of curvature of the latter being equal to the dis-
tance between the mirrors. In this configuration the
mode family q =s, n = 1 is frequency degenerate with the
mode family q =s+4, n =0}. Thus the expected frequen-

cy spacing between adjacent families without mode-
pulling effects was approximately 100 MHz. The mea-
sured frequency difFerence was 95 MHz (due to mode pul-
ling).

It is well known that for a laser resonator to support
Gauss-Laguerre modes it must posses a high degree of
circular symmetry. In the ring resonator used here, the
astigmatism induced by the curved mirror is alinost com-
pletely compensated for by the Brewster windows of Na2
cell and by the Brewster-angle prism. After the width of
the pump profile was increased so that the four families

q =0-3 mere all visibly emitted, the best circular symme-
try was achieved by adjusting (i) the resonator mirrors
and (ii) the position of the pump axis relative to the reso-
nator axis, until each of the different mode families emit-
ted a circularly symmetric intensity pattern. The resona-
tor contains Brewster windows which produce astigma-
tism. This was compensated for by orienting the prism in
the resonator slightly asymmetrically with respect to the
generated laser beam. An appropriate asymmetry was
found by maximizing the locking range of the TEMo,
mode as a function of the asymmetry. Although by this
method the TEMO& mode also could be stably locked
when coexisting with the TEMOO mode, a small residual

astigmatism of the resonator could not be ruled out [2].
The output signal from a detector which measures the

laser intensity was monitored with a spectrum analyzer to
ensure that no transverse mode beating signals were
present. In a circularly symmetric resonator, the Gauss-
Hermite modes TEM „and TEM „,where
m+n =m'+n', are frequency degenerate. The lack of
transverse mode beating indicates that the circular sym-
metry of the resonator is high enough that those Gauss-
Hermite modes which would be frequency degenerate in
a perfectly cylindrically symmetric resonator are close
enough in frequency to be frequency locked by the non-
linear behavior of the lasing medium. The Gauss-

Hermite modes are observed to lock together so as to
form Gauss-Laguerre inodes, which are the natural
modes for a cylindrically symmetric resonator.

A typical recording of laser output power against reso-
nator length for the Naz laser is shown in Fig. 2(i}. The
pump profile is wide enough, and the pump power is
large enough, that each of the families q =0, 1, 2, and 3 is
clearly visible. The families can be individually selected
by the resonator length. However, the predicted rotating
singularity pattern requires the simultaneous emission of
the q=0 and 1 families (TEMOO and TEMO& modes}.
With the pump power unchanged, a decrease in the width
of the pump beam profile causes an increase in the emis-
sion width of each family, as shown in Fig. 2(ii}, where
adjacent families overlap. Decreasing the pump profile
favors the lower order families. A pump beam which has
a full width at half maximum (FWHM) less than the
FWHM of the TEM00 mode for a resonator, and which is
centered along the resonator, will significantly excite only
the TEM00 mode, provided that the pump power is low
enough that this mode can fully utilize all of the inversion
of the pump medium. When the pump beam width is
comparatively wide, higher-order modes can emit by util-
izing the inversion in regions where the lower-order
modes are not strongly emitting. Since the emission
profiles for the lower-order transverse modes are typically
concentrated nearer to the resonator axis than those for
higher-order transverse modes, decreasing the width of
the pump profile reduces the proportion of the gain re-
gion which is not effectively utilized by the lower-order
modes, and hence reduces the available gain for, and in-
hibits the emission of, higher-order transverse modes.
The internal aperture was then used to suppress unwant-
ed longitudinal mode orders and to further weaken the

q =2 and 3 families, so as to restrict mode interactions to
the two families used in the calculations. The decease in
aperture size penalizes the higher-order transverse modes
by decreasing their round-trip gain relative to that of the
lower-order transverse modes. Similar to the effect of the
decrease in the size of the pump profile, this penalty
favors the lower-order transverse modes, which have
their emission profiles more closely concentrated about
the resonator axis, and which hence pass through an
aperture with less attenuation. The result is shown in
Fig. 2(iii}. The aperture size was progressively reduced,
and its position adjusted in the plane transverse to the

FIG. 1. Motion of a phase-gradient singularity under the
influence of an added Seld (see I).
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Resonator Length (arb. units)

FIG. 2. Cavity mode families. The change in the round-trip
path length of the ring resonator corresponding to one free
spectral range (FSR) is indicated in each graph. This change in

path length is equal to 1=525 nm. The vertical scales for {ii)
and (iii) are identical, but reduced relative to (i). The measure-
ments are for the following conditions: (i) Pump beam width =
2.5 TEMOO beam width. (ii) Pump beam width = TEMOO beam
width. (iii) As (ii), with internal aperture stopped down.

propagation axis, to the smallest size at which the intensi-
ty patterns of the q =0 and 1 families (of the selected lon-
gitudinal order) remained unchanged. The spacing be-
tween the emission peaks for the q=O and 1 families is
slightly less in Figs. 2(ii) and 2(iii) than in Fig. 2(i). This
reduction in the separation between the peaks of two
Lorentzian profiles is what is normally observed when
two such profiles begin to overlap. The only observed
mode beating was at the frequencies corresponding to the
transverse mode spacing (95 MHz) and its harmonics.

The resonator length was stabilized in the region where
the q =0 and 1 families exist simultaneously. It is adjust-
able by a piezotranslator, and was 1ocked to the loca1
minimum in average laser power which lies between the
two families [see Fig. 2(iii}]. For the families
q=1,2, 3. . . , each consisting of more than one Gauss-
Laguerre mode, the laser output pattern typically
changes as the resonator length is changed within the
emission range of the family, corresponding to a change
in the relative amplitudes of the modes in the family.
The result can be frequency locking and unlocking of the
family modes within the emission width of the family. In
the q=1 case, the locking can be considered to be be-
tween the Gauss-Hermite modes TEMIO and TEMoI (Ref.
3). Unlocking these modes complicates the otherwise
simple structure of the spinning singularity pattern.
Therefore the resonator mirrors, the pump beam axis,
and the transverse position of the aperture were adjusted
so that a TEMOO mode and a locked TEMo, mode were
active simultaneously at the local minimum in the aver-
age laser power, and so that the resultant laser beam in-
tensity pattern (the time average of the instantaneous in-
tensity) appeared as circularly symmetric as possible.

The laser beam illuminates two identical photodiodes
to allow simultaneous measurement of the intensity at
any two points in the laser beam cross section. Each pho-
todiode has approximately l%%uo of the area of the laser
beam (more precisely, the area of a circle with a radius
equal to the I/e half-width of the TEMOO emission
profile). Mirrors adjust the position of each detector in
the plane transverse to the laser beam axis. One of the
detectors is mounted on an X-Y translation stage, so that
its position can be measured. The outputs from the
detectors are separately mixed with a common reference
frequency which was adjusted before each measurement
so as to be approximately 2 MHz lower than the beat be-
tween the q=0 and 1 emissions. Two 3-MHz low-pass
filters reduce the unwanted higher-frequency components
from the outputs of the mirrors. This means that essen-
tially only the fundamental Fourier component of the
measured intensity variation can be detected.

Since the path of the singularity is circular, the trans-
verse variation in the amplitude of the tine-varying corn-
ponent of the intensity has a doughnut-shaped distribu-
tion, with a zero in the center and a surrounding circle of
maximum amplitude [see Eq. (4.4) of I]. The phase of the
time-varying component of the intensity is expected to
vary as the angular position. The positioning of the
detectors in the plane transverse to the laser beam axis
was as illustrated in Fig. 3. The circle marked A indi-
cates the path of the singularity, while the circle marked
B indicates the circle of maximum amplitude of the
time-varying component of the intensity. The ratio of the
radii of the two circles varies simply with the relative
strength of the two modes. One detector was positioned
at the point (ii} in Fig. 3, and its signal served as the
phase reference for signals from other points in the trans-
verse cross section. The other detector, mounted on an
X-Y stage, was moved in the transverse cross section. Us-
ing the second detector, the center of the pattern [the
point (i) in Fig. 3)] was located by searching for a point at
which the phase changed by 180' in both X and Y direc-
tions. The signal from this point is shown in Fig. 4(i) [the
reference trace is included in each of (i)—(vi)]. From this
center, the signal amplitude and phase variation in

FiG. 3. Detector positions used in experiment. Circle A is
the path of the singularity. Circle B is the circle of maximum
amplitude of the time-varying intensity. The positions of points
(i)—(vi) correspond to the respective measurements in Fig. 4.
For definiteness the radius of A is shown as greater than that of
8, but the reverse is equally possible.
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FIG. 4. Temporal variation of the laser intensity for the spin-
ning singularity pattern. Each of the panels (i)-(vi) includes
both the reference signal and the measured signal from the
respective points (i)-(vi) in Fig. 3. The reference signal is from
position (ii). The laser intensity in each graph is scaled relative
to the amplitude of the reference signal. Time scales are the
same for all graphs, but the frequencies differ slightly due to the
experimental conditions (see text).

different directions were measured. The results can be
seen in Fig. 4, where the measurements (i)—(vi) corre-
spond to the signals from the points (i)-(vi), respectively,
in Fig. 3. It is clear that the phase varies with the angu-
lar displacement, in agreement with the calculations. In
particular, (vi) demonstrates that phases other than mul-

tiples of 90' can be located, the phase being between 35'
and 40'. For the graphs in Fig. 4, the frequency of the
mixing signal was in the range 90-95+5 MHz, so that
the frequency of the beat signal was in the range
92-97+5 MHz. For the resonator used here, the ratio of
the resonator mode linewidth to the natural linewidth,

k/yll, was approximately 0.05, which from Eq. (3.7) in [1]
leads to an expected mode-pulled transverse mode spac-
ing of approximately 95 MHz (reduced from 100 MHz
for the empty resonator), consistent with the measured
results. The differences in the frequencies of graphs (i) to
(vi) in Fig. 4 are primarily due to differences in the fre-
quency of the mixing signal. The resonator length is ac-
tively stabilized by a resonator frequency-stabilization
technique, so that the beat frequency changes periodical-
ly with time, leading to a spread of frequencies (with a
width of 1 MHz) when the signal due to the laser intensi-
ty is viewed with a spectrum analyzer. The frequency of
the mixing signal was set in each case to be at a frequency
of 2 MHz below the center of the observed beat frequen-
cy range. For the results of Fig. 4, the oscilloscope was
triggered when the amplitude of the fixed detector signal
was a maximum. Thus the actual value of the frequency
in each of graphs (i) to (vi) depends on the difference be-
tween the mixing frequency and the beat frequency at the
resonator length where the beat signal from the fixed
detector is maximized. This is not critical since the phase
deference between the signals from the fixed and moving
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FIG. 5. X-axis cross sections of the amplitude of the time-

varying component of the intensity (TVI) for the spinning singu-
larity pattern. The lower curve shows the result with a gain 2.5
times over threshold. The TEMOO laser threshold at this pump
beam width is 120 mW.

detectors is independent of the value of the common mix-
ing frequency. Note also that in each of the graphs in
Fig. 4, the laser intensity is normalized to the amplitude
of the fixed detector signal, to compensate for variations
in the output power due to Quctuations in the intensity
and/or frequency of the pump beam.

Amplitude profiles for the time-varying part of the in-
tensity pattern [Eq. (4.4) of I], measured along one axis,
are shown in Fig. 5. The two profiles were measured at
different pump powers. The asymmetry in the curves is
due to cylindrical asymmetry in the field of the q =1 fam-
ily, which can arise from residual astigmatism of the reso-
nator (leading to a phase locking of the TEM, O and
TEMO& modes at an angle different from +90'). This
forms an asymmetrical TEM0] mode. Nonetheless, the
curves are in qualitative agreement with the theoretical
predictions.

The moving detector was next mounted on a rotating
platform, which allowed it to be moved in a circular path
about the axis of the beam. The time varying component
of the intensity was measured, using both detectors
simultaneously, with the moving detector at each of 125
points separated by a rotation of 2.88'. The data were
used to calculate two quantities: (i) the rms amplitude of
the time-varying component of the signal intensity from
the moving detector relative to the same quantity from
the fixed detector, and (ii) the phase difference between
the peaks of the cross correlation of the two detector sig-
nals, and the peaks of the autocorrelation of the signal
from the fixed detector. The time-varying component of
the intensity was close to sinusoidal in shape for the mea-
surements, so (i) corresponds to its amplitude, with the
scaling of one signal relative to the other removing any
variations which affect the entire cross-sectional intensity
pattern equally. The rms amplitude was used rather than
a simple peak-to-peak amplitude, as it is less sensitive to
noise. Quantity (ii) corresponds to the phase difference
between the two signals; the use of cross correlation and
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autoeorrelation functions reduces the eft'ects of harmon-
ics and noise. The axis of rotation of the detector was
aligned as closely as possible to the center of each intensi-
ty pattern. This involved first using a laser beam to
center the detector on the axis of its rotating mount, and
then adjusting a mirror so that the center of the intensity
pattern (a point where the intensity should be constant in
time) coincided with the detector position. For the actual
measurement the detector was then moved radia11y to the
radius of maximum amplitude of the time-varying com-
ponent of the intensity.

The model of the spinning singularity predicts that on
a circular path about the center of the pattern the time-
varying part of the intensity is constant in amplitude [see
Eq. (4.4) of paper I, where the coefficient of the time-
varying part is independent of tp], while the phase
changes uniformly and linearly with the angle of the
detector, changing by 2m when the detector is moved
through an angle of 2' radians [again from Eq. (4.4) of
paper I, the argument of the cosine depends linearly on
y]. The experimental results are shown in Fig. 6. The
graph of the phase of the time-varying component of the
intensity as a function of the angular position of the

detector is close to linear, but it displays a sinusoida1
variation with two fu11 periods for each complete rotation
of the detector. This is matched by a similar sinusoidal
variation in the amplitude graph. This variation could be
due to (i) a locking angle slightly diff'erent to +90' be-

tween the TEM]p and TEMp] modes which comprise the

TEMO& mode, (ii) a slight difference in the amplitudes of
the TEM, O and TEMO, modes, or (iii) a combination of
both (i) and (ii). These effects again arise from the residu-
al astigmatism in the laser resonator.

B. Standing wave

This pattern di6'ers from the spinning singularity in
that the TEMpj Laguerre mode is replaced by a TEM, p

(or TEMO&) Hermite mode. It is not circularly sym-

metric, but displays two symmetric peaks which oscillate
180' out of phase. The model [see Eq. (4.11) of I] predicts
that the phase of the time-varying component of the in-

tensity [i.e., the coefficients of cos(5cot —yo)] does not
change continuously along a circular path about the cen-
tral axis, as for the spinning singularity, but makes two
sudden changes of rr radians [corresponding to the
changes in sign of the field of the TEM, z (TEMO, ) mode]
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FIG. 6. Amphtude (top) and phase (bottom) profiles for the
time-varying component of the intensity (TVI) for the spinning
singularity pattern, taken on a circular path in the transverse
beam cross section. The phase and angular position scales are
in radians.

FIG 7 Amplitude (top) and phase {bottom) profiles for the

time-varying component of the intensity (TVI} for the standing-

wave pattern, taken on a circular path in the transverse beam

cross section. The phase and angular position scales are in radi-

ans.
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during each full rotation of the detector. The points at
which the phase jumps occur are spaced half a rotation
apart. The rms amplitude should vary like the absolute
value of a sinusoidal function, with one period for each
full rotation of the detector [see Eq. (4.11)of I].

The same experimental setup was used for the
standing-wave pattern as for the spinning singularity pat-
tern, but the cylindral symmetry of the cavity was deli-
beratively reduced so that one of the two Hermite modes
in the q= 1 family (TEM&o or TEMot} was favored over
the other. The measurements were taken with one detec-
tor mounted on rotating platform, and are shown in Fig.
7. The amplitude of the time-varying component of the
intensity does not fall to zero. This may be in part due to
noise, and also because the measurements were taken at
discrete points, none of which may precisely coincide
with one of the true points of minimum amplitude. The

(a)

rotation angle between a point of minimum amplitude
and the nearest point at which a measurement was taken
is at worst 1.5'. The peaks of the amplitude graph also
differ in height, due to a slight misalignment between the
central axis and of the rotating detector. The edges of
the transitions in the phase graph are slightly rounded.
The fact that the amplitude does not reach zero, together
with the fact that the phase changes are not abrupt, may
indicate some mode interaction [i.e., might be linked to
the fact that the amplitudes

~j t ~
and 7fq I tn Eq (4 11}of

I display small oscillations]. The numerical simulation of
the experiment is shown in Fig. 8; the amplitude never
does vanish but, because of the smallness of the oscilla-
tions of the amplitudes

~7, ~
and

~j 2 ~, the minima are
very close to 0.

We have verified experimentally the theoretical predic-
tions that the intensities at the two maxima of the aver-
age intensity distribution oscillate in counterphase, with a
frequency equal to the mode-pulled frequency difference
between the two modes in play.
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C. The unlocked doughnut

The third pattern involves only the modes of the q = 1

family. For the resonator used with its uncompensated
astigmatism, the beat frequency between transverse
modes of the same family is a few percent of the frequen-
cy spacing between the transverse modes families. In the
case that the beating is between two patterns which have
the form of the resonator modes TEM&0 and TEMO&, re-
spectively, the time-varying component of the intensity is
zero along the axes on which the electric Geld of one or
the other of the two modes is zero. The two axes are at
right angles and intersect at the center of the pattern (see
Sec. IV G of paper I}. Equation (4.13) of paper I, in the
case a =b, and neglecting e, and e2, becomes

~F~ ~ p e ~ (1+sin2pcos5t) . (1)

0
(I)

A
C4

FIG. 8. Same as Fig. 7, but obtained by a numerical simula-
tion of Eqs. (4.12), (2.12b), and (2.12c) of I with the following
values of the parameters /=1. 63, 2C=9.66, b, =1.76, r)=4.3,
and 5k =0.3k.

Because the coefBcient of the time-varying component
(i.e., of cos5t) is a sinusoidal function with period m., on a
circular path about the center the phase of the time-
varying component of the intensity changes by ~ each
time the path passes from one quadrant to the next, so
that points which have an angular separation of ~ radians
have the same phase.

The same experimental setup was again used for the
q =1 pattern beating, but the resonator length was stabi-
lized in the region where the emission of the q =1 mode
family is maximum. As the frequency difference between
the patterns was around 2 MHz, no mixing was required
to reduce the frequency of the beat signal. The 3-MHz
low-pass filters were used to reduce the amplitude of the
harmonics of the beat frequency which are generated in
the laser itself, as the harmonics complicate the compar-
ison of the phase of the time-varying component of the
intensity from different points.

The results are shown in Fig 9; the form of the phase
and amplitude graphs shows that in our resonator the
beatings were between patterns which were close to pure
Hermite modes. The amplitude does not fall completely
to zero. This is due to the higher harmonies of the beat
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plitude and of the phase, shown in Fig. 11, are in good
qualitative agreement with the experimental data; in this
case the rms amplitudes remain always substantially
larger than zero as in the experiment.

III. EXPERIMENTAL OBSERVATIONS
%'ITH CQq LASER

A. Experimental setup

The experimental arrangement used to study trans-
verse effects in a CO2 laser is shown in Fig. 12. The
Pyrex-glass laser tube has a diameter of 24 mm, and it is
finished at both ends with rotatable Brewster windows in
ZnSe.

The optical cavity is a Fabry-Perot resonator. The
back mirror is plane and gold coated, and the output mir-
ror is Ge with a reflectively of 90% and a radius of curva-
ture of 4 m. Both mirrors have a diameter of 50 mm.
The total length of the cavity is L = 1.53+0.01) m, so the
frequency separation between consecutive longitudinal
modes (c/2L ) is 98.020. 1 MHz.

The gas mixture contains 70% He, 15% CO2, and 15%
Nz for a total pressure measured at the pumping port of
the tube of 16 Torr. Given a polarization decay rate of 6
MHz/Torr, the total value for y~/2n can be estimated as
96+5 MHz. Therefore the homogeneous to inhomogene-
ous broadening ratio (o ) is 2:1 (considering that the gas
is at room temperature). On the other hand, the width of
the gain curve is of the same order of magnitude as the
longitudinal mode separation (c/2L).

The dc excitation current can be adjusted from 3 to 15
mA, and it is actively stabilized to better than 0.1%.

The detection system is formed by three liquid-
nitrogen-cooled HgCdTe detectors of 1 mm area with a
100-MHz bandwidth. The position of one of them is
fixed, while a second one is mounted in an x-y translation
stage to scan it across the pattern. The signal outputs are
recorded in a LeCroy digital oscilloscope with fast
Fourier transform (FFT) option. This system allows
simultaneous observation of the intensity as a function of

time at two different points of the beam pattern, as well
as the power spectrum of the intensity oscillations. The
average diameter of the beam at the position of the detec-
tors is 2.5 cm in diameter, and always greater than 1.8
cm.

The laser beam is also sent to a third detector after it is
reflected by a rotating mirror. The output signal, ob-
served in the oscilloscope, is a cross section of the beam.
The frequency of the rotating mirror is 6xed by an exter-
nal driver, and typical values are 1-2 kHz. The detector
is also placed on a linear translation stage to obtain cross
sections of the intensity at difFerent latitudes of the opti-
cal beam.

Two ZnSe lenses of focal lengths 10.5+0.05 and
4.4+0.05 cm are placed inside the cavity. One of then is
mounted on a linear translation stage driven by a stepper
motor insuring a precision of 0.1 mm in the relative posi-
tion of the lenses. The distance between the lenses plays
the role of a bifurcation parameter of the system. In fact
the whole optical cavity constituted by the back reflector,
the output mirror, and the two lenses can be seen as
equivalent to a single Fabry-Perot cavity with variable ra-
dius of curvature of the mirrors. Thus, by changing the
distance between lenses, three laser parameters are
changed, namely the following.

(1) The detuning between the atomic resonance fre-
quency and the cavity frequency corresponding to the
TEMOO mode [5„cin Eq. (2.12b) of I].

(2) The separation in frequency between adjacent trans-
verse modes of the empty cavity [a tin Eq (2.12a) of I).

(3) The Fresnel number and Rayleigh length of the cav-
ity, because both depend on the beam waist which is a
function of the radius of curvature of the mirrors. The
Fresnel number acts on the parameter 1( [see Eq. (2.13) of
I]. The Rayleigh length is important to determining the
accuracy of the assumptions made in the construction of
the laser model described in I.

B. Comparison of the theoretical model
with the experimental setup

Dig.Oscill. Computer

Oscill.

Before making a comparison between numerical and
experimental results it is useful to make a comparison be-
tween the assumptions included in the model and the real
laser we are dealing with.

Step Motor

L
M

L L
Laser Tube

Image
Plate

FICx. 12. Experimental setup. I.: lens; BS: beam splitter; R:
rotating mirror; D: infrared detector; and M: mirrors.

1. Ring versus Fabry-Perot laser

The theory is developed for an unidirectional ring
laser, while the experiment is made in a Fabry-Perot cavi-
ty. In the plane-wave theory very often the results for os-
cillating instabilities are qualitatively, and sometimes
even quantitatively, similar for the two cases [4]. In the
case of transverse modes, we are not aware of any pub-
lished comparison; some preliminary calculations in the
case of a frequency-degenerate family indicate a similar
behavior, but we have no proof that this situation is gen-
eral, or that one can exclude qualitative de'erences be-
tween the two cases. In our theoretical and numerical
calculations we adopted a ring cavity model for the sake
of simplicity (the Fabry-Perot case requires integration
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over the longitudinal variable in addition to the two
transverse variables).

2. The "single" longitudinal mode approximation

As shown explicitly in Eq. (2.9a) of I the theoretical
model assumes a yj smaller than the free spectral range
c/(2L). In the experimental setup yt and c/(2L) are of
the same order of magnitude (95—100 MHz). However,
the theoretical assumptions may still hold because we are
dealing with a homogeneously broadened laser less than
20% above threshold, and the modes significantly de-
tuned from the molecular resonances will remain strongly
below threshold. It is necessary to explain that the com-
parison between theory and experiment will be performed
in the limit in which the frequency separation between
adjacent transverse modes is small (of the order of 50
times) compared to c/(2L) The .transverse modes of ad-
jacent longitudinal modal indices that will come close to
the atomic resonance have large p and l values and there-
fore high enough losses due to apertures to find
insufficient unsaturated gain at line center.

3. Single-pass gain and mirror transmissivity

Some other assumptions of the theory include small
gain aL « 1, and high mirror re6ectively T «1. Even if
it is difficult to define a priori how small those parameters
must be to say that the approximations are valid, we have
measured a single-pass gain smaller than 15% at a
current value of 8 mA, and the transmissivity of the mir-
ror is 10%. This gives us a value of aL /T= 1.5 and cav-
ity losses [ko=(c/2L)~ln~R~] of (1.03X107+0 07X107.)
rad/sec.

4. Length of the medium and Rayleigh length

Equation (2.9e) of I imposes the condition of having an
active medium whose length is smaller than the Rayleigh
of the cavity, zp ~ As zp is proportional to the beam waist,
this condition may be satisfied for some particular posi-
tions of the lenses, while it is inappropriate for the other
range of distances. However, the Rayleigh length can
reach as much as 20 m in our laser when near to a confo-
cal configuration.

5. Fresnel number and frequency separation
between adjacent transverse modes

The theoretical model uses the fact that, for low values
of the Fresnel number, the electromagnetic field may be
expressed as a linear superposition of a reduced number
modal amplitudes. This modal expansion uses Gauss-
I.aguerre modes corresponding to the empty cavity (the
cavity without an active medium). Concurrently we re-
quire that co„o,—co„oo(the frequency distance between ad-
jacent modes) be much smaller than the free spectral
range [Eq. (2.9b) of I]. In other words, we have many
transverse modes near to the center of the gain curve, and
at the same time we need only a few active modes to have
a convergent series for the electromagnetic field. Both
conditions may be realized if we work in a parameter re-

gion near a plane-plane or concentric cavity, as we ex-
plain below.

To determine if assumptions (2.9b) and (2.9e) of I im-
posed by the model are valid in our experiment it is
necessary to know both the frequency separation and
Fresnel number of our cavity as a function of the distance
between lenses. The intracavity elements and their rela-
tive position in the cavity are shown in Fig. 13. To deter-
mine the beam waist at different longitudinal positions in-
side the cavity, and the frequency of the transverse
modes, it is possible to use the very we11-known algebra of
ABCD matrices [5,6] with the boundary conditions im-
posed by our cavity mirrors. The results will depend on
the focal lengths of the lenses, and in particular on the
distance Lz between the fixed lens and the back mirror.
In Fig. 14 we show two graphs of co„oi—co„ooand the
Fresnel number (P) for two difFerent values of L2. It is
worthwhile to mention that the Fresnel number is calcu-
lated as the ratio between the radius of the laser tube, a,
and the beam waist of the TEMpp mode at the end of the
tube nearest to the lenses, w, squared [P=(a/w) ]. The
choice of the position along the axis of propagation of the
beam depends on where that ratio is at a minimum; this
circumstance occurs at the end of the laser tube nearest
to the lenses due to the particular design of the cavity.
The beam waist as a function of z is shown in Fig. 15 for
three difFerent positions of the intracavity lenses dis-
tinguished by the frequency separation 5 between adja-
cent transverse modes.

By inspection of Fig. 14(a) it is evident that small fre-

quency separation between adjacent transverse modes is
reached when the distance between lenses, d, is varied
from 15 to 15.3 cm. On the other hand, we have an ex-
tremely good control of such smaller frequencies because
they change very slowly with the distance d. The con-
trollability is due to the 4-m radius of curvature of the
output mirror. If instead we use a plane mirror the re-
gion of fatness moves toward higher-frequency separa-
tion. Moreover, Fresnel numbers in this parameter re-
gion are small enough that only a few cavity modes will

have the possibility of becoming active.
From Fig. 15 we obtain the variation of the Gauss-

Laguerre modes as a function of z inside the active medi-
um. It can be seen that the variation of the beam profile
is small except when the frequency separate 5 is on the
order of 90 MHz (concentric resonator). Therefore the

f
2cI

FIG. 13. Design of the laser cavity. The position L& of the
lens (f, : focal length) is variable; d is the distance between

lenses; and L, the position of second lens {f2. focal length).
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uniform field approximation is in general valid, provided
the laser gain is not strong.

Therefore if we restrict the comparison with the
theoretical model to such a parameter region
(15(d (15.3 cm), we are satisfying Eq. (2.9b) of I and
are as close as possible to satisfying equation (2.9e) of I.

6. Two-level model, cavity losses, and decay rate
for the population inversion
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We should discuss experimental parameter values such
as the cavity loss rate k and the population inversion loss
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FIG. 15. Beam radius along the axis of propagation z for
three difFerent positions of the intracavity lens, defining three
different values of the frequency separation 5 between cavity
modes.

As mentioned above, the cavity losses due to the mir-
ror reflectivity only are 1.033X10 sec '. However,
there are other factors that increase the cavity losses such
as reflections at the surfaces of the intracavity lenses, ab-
sorption in the back mirror, refiections due to the orien-
tation of the Brewster windows, etc. We estimate the ra-
tio between k and yj to be of the order of 0.2-0.3. Nu-
merical results have been obtained for a/yj =0.3.

The knowledge of y~~, as well as the validity of using a
two-level model for a molecular laser like CO2 has al-

ready been widely discussed in previous papers [7]. In
our numerical simulations we used yl=10 sec ' (0.01
relative to y~). In this connection, see also Sec. V of I.

7. Atomic detuning

There is no active control of this parameter in the ex-
periment. Its value depends on the position of the lenses.
We can only say that by changing the atomic detuning
we were able to select the TEMoo and TEM&0 as the first
lasing mode. However, in all cases detailed in Sec. II C
we chose initial conditions such that the detuning was
zero (implying maximum intensity) for the TEMoo mode,
except in the case of Fig. 20.

LZ = 1200 mm

20— C. Experimental results compared to numerical ones

Z',
0) 10—

L2= 1150mm

I

150
I

155
I

160
Q (mm)

I

165

FIG. 14. (a) Frequency separation between adjacent trans-
verse modes as a function of the distance d between intracavity
lenses. (b) Fresnel number as a function of d.

As we sweep the distance between lenses or increase
the gain, we observe a series of transformations in the
spatiotemporal behavior of the laser beam. Beginning
from below the threshold, the laser switches on usually
with a Gaussian transverse profile, and the intensity is
constant at any point of the pattern.

As the control parameter is increased, the circular
symmetry of the pattern averaged in time is broken. It is
characterized by two maxima of the averaged intensity
placed at opposite sides of the pattern, as shown in Fig.
16. The local intensity oscillates periodically in time. A
typical cross section of the pattern is shown in Fig. 17. A
detailed study of the intensity at difFerent points of the
pattern shows that the amplitude of the oscillations van-
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FIG. 16. Averaged intensity distribution showing two maxi-
ma.

ishes on a line passing through the center of the beam,
and that the oscillations are opposite in phase on the two
sides of such a line (see Fig. 18). Therefore this structure
is a standing wave (SW} in the azimuthal direction. How-
ever, it was explicitly demonstrated (see I and [8]) that
this structure is unstable in a laser model (independently
of the parameters used) with a perfect cylindrical symme-
try. However, even a small perturbation to the perfect
symmetry stabilizes the standing-wave patterns [8].
Such a perturbation may be the removal of the frequency
degeneracy of the family of modes, or a change in the
gain-to-loss ratio for modes with the same "angular
momentum /. " In fact the experimental result is in per-
fect agreement with the numerical results obtained in
Secs. IV E and IV F of I. It is worthwhile to note that the
underlying symmetry of the system determines the gen-
eral spatiotemporal structure of the solutions, while the
stability of the different possible patterns is strongly
affected by the imperfections.

The SW structure can also be obtained as the first bi-
furcation from the nonlasing state by adjusting the cavity
detuning. In this case there were no temporal oscillations
of the intensity, as shown in the cross section of the beam
(Fig. 19). This result is in agreement with the stability
analysis performed in Sec. III of I and the graphs of Fig.
4 in I, if one takes into account that the imperfections of

FIG. 18. Intensity as a function of time and power spectrum
for two points in opposite sides of the pattern of Fig. 16. Note
that the oscillations are in counterphase.

the rotational symmetry replace the modes exp(+iy)
with the SW modes cosy and sing.

If the gain or Fresnel number is increased from the
value corresponding to Fig. 16, the pattern is character-
ized by the merging of a ring to the previous two peak
spatial distribution (Fig. 20). The local intensity oscilla-
tion still show just one frequency in the power spectrum
(Fig. 21), but their amplitude vanishes only at the center
of the beam. The cross section of the pattern (Fig. 22)
shows that the intensity begins to approach a zero value
periodically at a given radial distance from the center. It
is the superposition of a SW and a transverse wave (TW)
in the azimuthal direction with the same frequency. This
is different from the case of SW+TW discussed in I,
where the T% and the S% have different frequencies.
The fact that the intensity oscillations show just one fre-
quency even if the intensity at the center of the beam is
different from zero is proof that the bifurcation from a
S% to a SW+TW is not a Hopf bifurcation but a pitch-
fork bifurcation, as predicted by bifurcation theory ap-
plied to an imperfect O(2} symmetry [8]. The relative
amplitude of the TW with respect to the SW grows as the
pump parameter is increased, but it never fully

suppresses the S%. Thus, as the pump parameter is fur-
ther increased, the role of the imperfections decreases, as
we are further away from the laser threshold and the pat-
tern approaches the solution described in Sec. IV C of I.

Note that in this discussion the meaning of the terms
T% and S% is diffrent from that of I: here we are mainly
interested in the symmetries of the beam, and we ca11
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FIG. 17. Cross section of the pattern shown in Fig. 16. The
temporal intensity oscillations vanish at the center of the pat-
tern.

FIG. 19. Cross section of the pattern with two maxima
without intensity oscillations. The diameter of the pattern at the
location of the detector is on the order of 2 cm.
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FIG. 20. Time-averaged intensity distribution showing two
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FIG. 23. Power spectrum of the intensity measured at one

point of a pattern whose time-averaged intensity looks identical
to that of Fig. 20. The power spectrum shows the existence of
two incommensurate frequencies (at =0.34 and =1.5 MHz) in-

stead of a single frequency as in Fig. 21. The other peaks are
combination tones or harmonics, apart from the peak at =2.3
MHz, which is due to noise.
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FIG. 24. Intensity as a function of time at the two maxima of
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TW's cylindrical symmetric configurations and SW's pat-
terns characterized by the presence of a mode cosly or
sinly. These solutions can be dynamic or stationary de-
pending on the presence or absence of the fundamental
Gaussian mode, but this is irrelevant from the viewpoint
of symmetry. On the contrary, in I the terms TW and
SW always refer to dynamic regimes.

A secondary bifurcation of the SW, leading to oscilla-
tions of the intensity with two frequencies, can be found
adjusting the detuning of the cavity. This solution, which
was called a modulated wave [9], arises from a Hopf bi-
furcation of the SW, which produces an alternation be-
tween the sing and cosy modes. This dynamical pattern
was not found in our numerical simulations, presumably
because it can occur only in a model with imperfect cylin-
drical symmetry that we did not explore enough.

A further increase of the control parameter leads to a
pattern which still is a combination of a TW plus a SW,
but the intensity oscillations are characterized by two un-
locked frequencies, as shown in the power spectrum of
Fig. 23. The power spectrum seems more complicated
than that corresponding to a quasiperiodic oscillation.
We identified two main peaks: at f, =l.5 MHz and
f2=0.4 MHz. However, several peaks on the power
spectrum are just harmonics of the lower frequency f .2'
In increasing order in frequency the peaks correspond to
f2 f& f2 3f2 fi —4f2 fi +fz 6f2 2fi fz»fp-
2f, , and 2f, +fz. Measurements of the local intensity
on points at opposite sides of the center of the beam show
that while intensities are in phase on the long-time scale,
they are in counterphase on the short-time scale (Fig. 24),
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FIG. 21. Power spectrum of the intensity measured at one
point of the pattern of Fig. 20. Note the existence of a single
peak in the power spectrum (the first big peak is the not filtered
zero free, the last peak is due to noise).

FIG. 25. Intensity as a function of time at points in opposite
sides with respect to the center for the four-peak pattern de-

scribed in the text. Curves (a) and (a') are taken on the line

passing through the maxima, (b) and (b') on one of the other
two lines.
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as was found in the numerical results of Sec. IV 82 of I.
A different pattern with four maxima may be observed

for the same value of the control parameters. It consists
of a superposition of two standing waves with different
frequencies. The local intensity oscillations show quasi-
periodic behavior at almost every point in the pattern, ex-
cept for three lines crossing at the center of the beam;
two of these lines pass through opposite intensity mini-
ma, the third one passes through the first two. On those

lines the oscillations are periodic. If we observe such
periodic oscillations at opposite sides with respect to the
center, the oscillation will be in phase on the line passing
through the maxima (Fig. 25, curves a and a'), while in
phase opposition in the other two lines (Fig. 25, curves b
and b'). This pattern may be associated with the one de-
scribed in Sec. IV D4 of I.

If we continue to increase the control parameter, the
patterns become more complicated. A typical sequence is

X

w4

FIG 26 Sequences of time-
averaged patterns for increasing
Fresnel numbers.
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shown in Fig. 26. This figure has been obtained for 10-
mA current (threshold value at around 4 mA} by increas-
ing the distance between lenses. The ninth frame corre-
sponds to a near-confocal cavity (corresponding to the
maximum Fresnel number). The last six figures corre-
spond to distances between 16 and 16.5 cm. Our model
based on the nonlinear interaction of a few cavity modes
breaks down, and it cannot display such solutions. How-
ever, it is encouraging to note that simple solutions, un-

derstandable in terms of a small number of modes, can
give a fair representation of some experimental results
obtained in a system intrinsically much more complex
than the theoretical model. In addition, some of the
discrepancies between theory and experiment in CO2
lasers may arise from the quite different length of the
laser cavity, as discussed in Sec. V of I.

IV. DISCUSSION

In I, we carried out a theoretical investigation of the
simplest dynamical behavior of transverse laser patterns.
At the same time we completed experiments which ap-
proximated the conditions used in theoretical model, so
that a comparison between theory and experiments be-
came possible (paper II).

The spherical mirrors define the cavity modes. In the
presence of the active medium, the modes interact and
give rise to spatiotemporal patterns of a complexity
which, roughly speaking, increases with the number of
modes in play. This number depends basically on three
parameters: (a) the ratio g between the frequency spacing
of the transverse modes and the atomic linewidth [see Eq.
(3.14) of I]; (b) the pump parameter C; and (c) the section
of the laser tube, which determines the Fresnel number.
An increase in the number of modes in play is usually ac-
companied by an increase in the number of defects (opti-
cal vortices) in the pattern, whereas the spatial dimension
of the core of the defects decreases.

One expects to identify two distinct regimes of small
and large number of modes in play; however, these re-
girnes are connected in the sense that one can pass with
continuity from one to the to other by varying the con-
trol parameters g, C, and the Fresnel number.

When a reduced number of modes is relevant, the
boundary conditions play a relevant role in determining
the behavior of the system: as a matter of fact, the modal
composition of the pattern is easily recognizable, and the
modes are determined by the mirrors of the cavity. It
must be kept in mind, however, that the modal composi-
tion itself is entirely selected by the nonlinearity of the
medium; for example, the stationary states for the case of
a frequency-degenerate family correspond to the local
minima of a generalized free energy [10]. The spherical
mirrors and the gain profile confine the pattern, and the
vortices assume regular stationary arrangements (phase
singularity crystals, see [2]) or display ordered correlated
motions as shown in I.

On the other hand, in the case of a very large number
of active modes, the behavior of the system becomes
essentially boundary free, and resembles the phenomenol-

ogy found in the case of Qat mirrors with periodic bound-
ary conditions [11],in which there is a complete transla-
tional invariance. The modal composition of the pattern
is recognizable only by numerical analysis, and is basical-
ly irrelevant. The motion of the pattern, which is or-
dered and correlated in the case of a few modes, tends to
become disordered and to display space-time chaos, as
found first in the experiment described in [12]. The de-
fects become free and display an irregular uncorrelated
motion. This behavior, which can arise only in large-
cross-section systems, can be understood by considering
that diffraction in the paraxial approximation can corre-
late only regions with an area of order A,L, where A. is the
wavelength and L is the length of the system.

In these papers we purposely chose to analyze the case
of a reduced number of modes, which can be treated by
simple numerical means by solving ordinary differential
equations for the mode amplitudes (the case of a large
number of transverse modes is best analyzed in the
framework of partial differential equations}. We showed
that even in this case one finds a spectacular richness of
dynamical behaviors, with vortices which display several
different kinds of motion.

The comparison with experimental observations
demonstrates the reliability of the picture provided by the
theoretical model. The data obtained in the experiment
with the Na2 laser show a good qualitative agreement
with the theoretical results for a three-mode interaction.
The observations in the experiment with the CO2 laser
encompass a wide domain of the parameter space, and it
was not possible to reproduce all of them by our theory.
However, several patterns observed in CO2 lasers display
features which are very well correlated with the theoreti-
cal predictions obtained in the cases of three- and six-
mode interactions.

The theory of I assumes conditions (the uniform field
limit aL„«1,T «1}which ensure that the structure of
the cavity modes is not affected by the presence of the in-
tracavity medium. We believe that, from a qualitative
standpoint, the patterns we found can also be observed
when these conditions do not hold, even if in general they
cannot be described as a superposition of a few modes of
the empty cavity but rather, roughly speaking, as a super-
position of few modes of the filled cavity. Presumably an
approach such as that developed in [13], in which one
treats the beam waist as a dynamical parameter, can be
used to describe these situations.

A very important feature that emerges from our
analysis is the relevance of the cylindrical symmetry, and
the sensitivity of laser patterns to deviations from this
symmetry. Structures that are not stable in the case of
perfect cylindrical symmetry become stable in the case of
even a small symmetry breaking. The paradigmatic ex-
ample is given by the standing-wave pattern described in
both papers I and II. The results of our numerical inves-
tigations agree with the analysis reported in Ref. [9].

Note added. After completion of this manuscript, we
received a copy of unpublished work by Hennequin et al.
[14] which reports experimental observations in CO2
lasers. Some of these are similar to those described in
Sec. III C.
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