Picture of classic books on shelf

Literary linguistics: Open Access research in English language

Strathprints makes available Open Access scholarly outputs by English Studies at Strathclyde. Particular research specialisms include literary linguistics, the study of literary texts using techniques drawn from linguistics and cognitive science.

The team also demonstrates research expertise in Renaissance studies, researching Renaissance literature, the history of ideas and language and cultural history. English hosts the Centre for Literature, Culture & Place which explores literature and its relationships with geography, space, landscape, travel, architecture, and the environment.

Explore all Strathclyde Open Access research...

Solar sail orbits at the Earth-Moon libration points

Simo, Jules and McInnes, Colin R. (2009) Solar sail orbits at the Earth-Moon libration points. Communications in Nonlinear Science and Numerical Simulation, 14 (12). pp. 4191-4196. ISSN 1007-5704

[img]
Preview
Text (strathprints008068)
strathprints008068.pdf
Accepted Author Manuscript

Download (126kB) | Preview

Abstract

Solar sail technology offers new capabilities for the analysis and design of space missions. This new concept promises to be useful in overcoming the challenges of moving throughout the solar system. In this paper, novel families of highly non-Keplerian orbits for solar sail spacecraft at linear order are investigated in the Earth-Moon circular restricted three body problem, where the third body is a solar sail. In particular, periodic orbits near the collinear libration points in the Earth-Moon system will be explored along with their applications. The dynamics are completely different from the Earth-Sun system in that the Sun line direction constantly changes in the rotating frame but rotates once per synodic lunar month. Using an approximate, first order analytical solution to the nonlinear nonautonomous ordinary differential equations, periodic orbits can be constructed that are displaced above the plane of the restricted three-body system. This new family of orbits have the property of ensuring visibility of both the lunar far-side and the equatorial regions of the Earth, and can enable new ways of performing lunar telecommunications.