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We consider I cylindrically symmetrical laser with spherical mirrors and describe the dynamics in

terms of the competition among different Gauss-Laguerre modes of the cavity. in this paper we focus on
the case in which the mode competition leads the laser to a dynamical state that, according to the values

of the control parameters, can be periodic or quasiperiodic. The linear stability analysis of the single-

mode stationary solutions, in which the laser oscillates with the fundamental TEMOO or the TEMO& mode,
provides an initial guideline in our search for the various spatiotemporal patterns which emerge. We
consider cases in which the gain line activates one, two, or three frequency-degenerate families of modes.
The motion of optical vortices, from the simple rotation to creation and annihilation in pairs is analyzed,
together with the correlated movement of the peaks of the intensity distribution in the traverse plane.
We study also the patterns which appear when the cylindrical symmetry of the system is broken. The
parameters of our calculations correspond closely to those which characterize Na2 lasers, CO2 lasers,
and Nd-doped yttrium aluminum garnet lasers.

PACS number(s): 42.60.Mi, 42.65.—k, 42.50.Lc

I. INTRODUCI'ION

In this paper we provide a description of a research
area which is by now emerging as a new branch of non-
linear optics. It is well known that lasers show a tenden-
cy to develop nontrivial transverse configurations of the
radiated beam. This feature is usually viewed as undesir-
able, both because these effects do not initially seem easi-
ly controllable, and because, for the sake of many appli-
cations, simple Gaussian TEMOO structures are preferred.
For these reasons apertures and other means are used to
restrict the size of the beam. However, recent years have
brought an increasing consciousness that spatial and spa-
tiotemporal effects in the transverse structure of the radi-
ation field represent interesting phenomena per se, espe-
cially when the Fresnel number of the laser becomes large
and allows the formation of complex patterns. Then spa-
tial structures, defects, and turbulence arise spontaneous-
ly. These phenomena bear a striking resemblance to
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those found in other research fields such as hydrodynam-
ics, nonlinear chemical reactions, and biology. Optics
offers the additional possibility of controlling the number
of modes in play, so that a wide variety of behaviors,
from single modes to phenomena involving an extremely
large number of modes, can be observed. Their relevance
in optics is magnified by the perspective of future applica-
tions, which arise from the possibility of encoding infor-
mation in the transverse structure and processing it in a
completely optical and parallel way.

Investigations of transverse phenomena have addressed
both passive systems without population inversion [1-8]
and active systems such as lasers [9-29]. In the theoreti-
cal description of nonlinear optical systems, transverse
effects appear as soon as one abandons the usual plane-
wave approximation and allows for the transverse varia-
tion of the electric field governed by diffraction which, in
the paraxial approximation, is described by the.transverse
Laplacian. In these systems diffraction, the counterpart
of diffusion in chemistry and biology, plays a dominant
role. As a matter of fact, a formal analogy between the
laser equations and those of hydrodynamics has recently
been demonstrated [18,28].

In this paper we focus on the case of a cylindrically
symmetrical laser with spherical mirrors, and describe
the dynamics in terms of the competition among different
Gauss-Laguerre modes of the cavity. It must be kept in
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mind that the modal amplitudes are a set of complex or-
der parameters, and their phases play a role no less im-
portant than their moduli. A recent paper [30a] shows
that the Gauss-Laguerre modes represent an appropriate
basis for many laser states.

A prominent feature of the laser patterns is the pres-
ence of pointlike defects called optical vortices because of
their similarity to vortex structures which are common-
place, for example in hydrodynamics, superconductivity,
or superfluidity. In the case of optical systems, this kind
of defect was first described by Berry and collaborators in
the framework of linear wave equations [31]; more re-
cently, in analyzing the laser model of Ref. [10],Coullet,
Gil, and Rocca showed that these structures can be
formed spontaneously by the nonlinear dynamics of the
laser [26]. This fact was later confirmed by some of us in
a more realistic laser model [27,17,29,30b]. The term
"optical vortex" or "phase singularity" arises from the
behavior of the gradient of the field phase V&, which ex-
hibits vortex structures centered at points of the trans-
verse plane where V4 diverges; as a matter of fact, the
quantity V4 plays the same role as the velocity field in
hydrodynamics in the case of the laser [18]. Because the
Poynting vector of the radiation field is proportional to
V4, phase singularities represent vortex structures which
can drive the motion of detuned neutral atoms by induc-
ing field of mechanical forces [32].

Vortices sometimes display a particlelike behavior,
showing attraction and repulsion somewhat similar to
point electric charges. Some dynamical laser patterns
containing interacting vortices have been discussed in
Ref. [29], where a direct integration of a reduced model
of the laser equations [28] was performed, and in Ref.
[30b], which analyzed the full model of [13]. Vortex
motion and interaction is also analyzed in [21]. Space-
time chaos in the presence of a large number of vortices
has been experimentally observed [20].

In Ref. [17]we considered the case of a narrow atomic
gain line capable of selectively exciting the modes of a
frequency-degenerate family. Under these conditions, the
laser usually approaches stationary states where the vari-
ous modes of the family lock their phases in appropriate
ways. Such stationary states correspond to the local
minima of an appropriate generalized free energy [18].
Over extended regions of the parameter space one finds
that different stable patterns coexist. This phenomenon,
called spatial optical multistability, may become useful for
applications to optical information processing [17,18].
Stable patterns are characterized by crystalline arrays of
optical vortices; as a matter of fact, experimental obser-
vations of optical vortices in nonlinear optical systems
have been obtained in the form of these crystals [16,17]
(an early observation of defects in linear optical systems
was reported in [31b]). Comparison between theoretical
predictions and experimental findings concerning station-
ary laser structures can be found in Refs. [17,23].

When the gain line simultaneously excites two or more
frequency-degenerate families of modes, the laser usually
approaches a dynamical state which may be periodic,
quasiperiodic, or chaotic. We will show examples which
include cases of rotating patterns and structures display-

ing creation and annihilation of optical vortices. In fact,
under appropriate conditions the nonlinear mode-mode
interaction destabilizes the single-mode stationary states,
and spontaneously produces coexisting modes which os-
cillate with different frequencies. In a first approxima-
tion, the dynamical behavior appears to arise from the
frequency beating of these modes; it must be observed
here that, while in the plane-wave theory the mode beat-
ing is a simple phenomenon, in the case of transverse
modes it can give rise to rather spectacular effects. In ad-
dition, the nonlinearity may originate temporal modula-
tions of the mode intensities, and lead to the appearance
of further frequencies unrelated to intermode beat fre-
quencies.

In these two papers we report on a correlated
theoretical-experimental research work on transverse
dynamical phenomena in lasers. The first paper describes
the effects predicted by theory, and the second [33] illus-
trates the observations obtained in two experiments, one
using a Na2 laser and the other a CO2 laser, and com-
pares experimental data with theoretical predictions. It
must be kept in mind, however, that neither theoretical
nor experimental results can be considered systematic:
the variety of these phenomena seems so vast that what
we are attempting here is only an initial classification.

In this paper, Sec. II presents the model we use in our
theoretical calculations. Section III contains the linear
stability analysis of the single-mode stationary solutions
corresponding to the TEMOO and TEMp, modes. Section
IV gives an extended illustration of several dynamical
patterns which arise from the interaction of three or six
cavity modes. In particular, in Secs. IVE, IVF, and
IV G, we analyze the effects which arise when the cylin-
drical symmetry of the laser is broken.

II. DESCRIPTION OF THE MODEL

We consider a ring cavity with two spherical mirrors
having a radius of curvature Ro and transmissivity T,
and two perfectly reflecting plane mirrors (Fig. 1). The
total length of the cavity is X, while L is the distance be-
tween the two spherical mirrors, and L„ the length of the
active medium, which is assumed to be a homogeneously

LA

FIG. 1. Scheme of the ring laser. The ring resonator is
formed by four mirrors, of which 1 and 2 are spherical mirrors
with radius of curvature Ro, reflectivity R, and transmissivity
T=1—R, while 3 and 4 are perfectly reflecting plane mirrors.
X is the total round trip, L is the distance between the spheri-
cal mirrors, and L& is the length of the active medium.
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broadened collection of two-level atoms with transition
frequency ~, and linewidth y j; a is the unsaturated gain
per unit length experienced by the light passing through
the medium.

Our study is based on a suitable expansion of the elec-
tric field in terms of the empty cavity modes. In the par-
axial approximation, they are solutions of the free field
equation

I((r2

2r 0 ( ) „2~ 2( ) (
2 -.2

w'(z)
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2r2
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Vj A(r, p, z)+ A(r, y, z)=0, (2.1)

where ko=coo/c is the wave vector associated with the
reference frequency coo, and Vf is the transverse Lapla-
cian
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where the second expression holds in cylindrical coordi-
nates that we use in the following, in accord with the
symmetry of the system.

The solutions of Eq. (2.1) in the part of the cavity be-
tween the two spherical mirrors are the Gauss-Laguerre
functions [34]

Z
w(z)=wo 1+

Zp
(2.4)

Z +Zp
R(z) = (2.5)

The parameter wo=w(0) is the minimum waist size,
while zo=kowo/2 is the Rayleigh length of the cavity.
Their values are fixed by the geometrical parameters X,
I., and Rp of the cavity, which also determine the eigen-
frequencies of the resonator according to the formula

where p=0, 1, . . . is the radial index, 1=0,+1,. . . is the
angular index, L ' are the Laguerre polynomials of the
indicated argument, and the functions w(z) and R(z) are
defined as

'2'1/2

w„r t
=—2nn+2(2p+ ~1 ~+1)cos 1—C I. 1i2 '
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(2.6)

where n =0, 1,2. . . is the longitudinal index. An impor-
tant consequence of Eq. (2.6) is that the frequency of the
Gauss-Laguerre modes depends on the transverse indices

p and I via the combination 2p+ ~l ~ only, a situation that
produces degeneracy. The modes gather in degenerate
families, labeled by the index q =2p+ ~1~ as shown in Fig.
2. In the following we will denote the transverse modes
of the cavity by the pair of indices (p, I). The degenerate
family of order q consists of q+1 modes, and the compo-
sition of the first four families is shown in Table I.

In the literature, mode (0,0) is usually designated as
TEMoo, and modes (0,+l) are called TEMDt hybrid
modes or doughnut modes because they have an annular
intensity profile.

The functions A l obey, independently of z, the ortho-
normality relation

2' 00

dp dr rA &(r, tpz)A&. &.(r, p, z)=5& 5& t. , (2.7)

F(r, tp, z, t)= g fz &(z, t)A &(r, p, z),
p, l

(2.8)

where the modal amplitudes f~ &
are generally complex

functions.
At this point we consider some limiting assumptions

that allow for a considerable simplification of the analyti-
cal description:

thus forming a complete set of modes in the transverse
plane. Therefore, it is possible to expand the slowly vary-
ing envelope of the electric field F(r, q&, z, t) in terms of
the Gauss-Laguerre functions

r I
q=0 q=1 q=? q=3 /f'

n=j-1

q=0 rr
V

n=j

q=0 q=1 q=2

V
n=j+1

FIG. 2. Spectrum of the eigenfrequencies of the resonator. Three groups of frequencies are shown, corresponding to three adja-
cent longitudinal indices; q labels the frequency-degenerate family of transverse modes, and co, is the atomic transition frequency.
The gain line is much smaller than the free spectral range of the cavity.
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TABLE I. Composition of the lowest-order families of trans-
verse modes.

Modes of the family

(0,0)
(0,'1) (0,-1)
(1,0) (0,2) (0,—2)
(1,1) (1,—1) (0,3) (o,—3)

1'~ &&c /X,

01 &~00&&C/

aL~ ((1,
T &(1,

LA ZO

(2.9a)

(2.9b)

(2.9c)

(2.9d}

(2.9e)

The physical meaning of Eqs. (2.9a) and (2.9b) is that
only the modes belonging to the longitudinal family
nearest to resonance have enough gain to overcome the
losses, while no other longitudinal modes play any role in
the dynamics (see Fig. 2). Equations (2.9c) and (2.9d)
represent the standard uniform field limit which, together
with conditions (2.9a) and (2.9b) ensures that the modal
amplitudes f t become independent of the longitudinal
coordinate z. This does not mean that the total field en-
velope F is uniform along z, because conditions
(2.9a) —(2.9d) do not affect the modal functions A

However in the limit (2.9e), the Gauss-Laguerre functions
can be considered independent of z inside the atomic
sample, where they take the simple form

' 1/2

A (p q&) (2P2)~1~~2L ~t~(2 2)e ~ e 't+
(2 1()

2

where p is the radial coordinate normalized to the beam
waist wo. Of course the orthonormality relation (2.7) is
still valid, provided r is substituted by p.

We note that, as a consequence of Eqs. (2.9), the field
envelope in the atomic sample is independent of z; we can
then replace the expansion (2.8) with

F(p, p, t)= Q f ((t)A ((p, y) .
p, l

(2.11)

p, l = —k (1+ia, )f I

—2C f dq& f dp p A~*i(p, tp)P(p, y, t )
0 0

(2.12a)

where C =aL „/2T is the pump parameter, and
k =cT/L is the cavity linewidth; a l denotes the

Upon inclusion of this expansion in the Maxwell equation
for the electric field interacting with the atomic medium
and projecting on the modal eigenfunctions, one finds
that the modal amplitudes obey the dynamical equations
[13]

difference between the frequency of the mode of indices

p, I and that of the fundamental TEMOO mode, normalized
to k. P is the normalized slowly varying envelope of the
atomic polarization. Equation (2.12a) is coupled to the
atomic Bloch equations, which read as

~
=7'i[F(p q»t)D(P q' t) (I+'6~c)P(P q' t)]

C}t

(2.12b)

BD = —
y~~[ Re(F*(p, q&, t )P(p, q&, t ) }+D(p,y, t )

—g(p)],

(2.12c)

where D is the normalized population inversion,
y~~

is its
relaxation rate, and 5AC is the detuning of the atomic
transition from the frequency of the TEMOO mode, nor-
malized to yj.

The function y(p) describes the transverse
configuration of the population inversion at equilibrium
due to the pumping. We have chosen a Gaussian profile
of width r,

y(p ) =exp( 2p /Q —), $=2r /wo, (2.13)

suitable, among other things, to describe optical pump-
ing, r being the width of the pump laser.

We point out that in expansion (2.11) one should con-
sider a priori all the modal amplitudes f~ I, with

p=0, 1, . . . , and I=O, +1,. . . . However, in the majority
of real devices, transverse modes with large values of the
indices p and I suffer from higher losses as a result of the
finite size of the mirrors, the limited diameter of the ac-
tive medium, and the presence of intracavity elements
such as pinholes, modulators, etc. Hence only the lowest
transverse modes are usually involved in the dynamics,
and we shall limit our considerations to a reasonably
small number of modal families. As a matter of fact, the
modal equations (2.12a) are useful only as long as a
reasonably limited number of modes is involved; other-
wise, it is more convenient to solve directly the partial
differential equation for the field envelope, which is
equivalent to the set of ordinary integrodifferential modal
equations (2.12a) [see Eq. (2.37) in Refs. [13]and [23]].

The larger losses of higher-order modes might be taken
into account by including in Eqs. (2.12a}a loss parameter
which depends on the modal indices p and l, as is done,
for example, in Ref. [23]. However, in this paper, we will

not follow this procedure, with the exception of Sec.
IV F; we will consider only cases in which the dynamics
of the system is governed by two (q =0, 1) or three
(q =0, 1,2} families of modes, with the aim of describing
the simplest step of pattern formation in lasers. In our
calculations, based on the modal equations (2.12), we
have checked that the inclusion of higher-order families
does not affect the result appreciably, because the ampli-
tudes of the modes of the higher-order families are negli-
gible. We end this section with two remarks.

(1) When frequency spacings among the relevant
modes are of the order of the cavity linewidth k, the
modes tend to lock because of the mechanism of
"cooperative frequency locking" [10,13,14]. In this case
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the laser approaches a stationary state, because the state
displays a single oscillation frequency. When, on the oth-
er hand, the frequency spacings are substantially larger
than k, the laser usually approaches a dynamical state
characterized by one or more additional frequencies.
Even in this case, however, modes with the same value of
the angular index I show a tendency to lock and oscillate
with the same frequency; we noted this phenomenon both
in the theoretical and experimental observations. This
phenomenon is similar to that described by Lin and
Abraham [35], and can be interpreted as the result of the
fact that a given spatial structure of the beam oscillating
at a single frequency cannot in general be described by a
single cavity mode. Thus an ensemble of modes with a
compatible angular distribution of the field becomes
necessary in order to take into account the inhuence in-
troduced by the medium on the final solution.

(2) The case described by Fig. 2 is that of a cavity near
to (or not too distant from) a configuration of plane mir-
rors. In this situation the quantities a~ &

in Eqs. (2.12a)
are positive. Another case, which can still be described
by Eqs. (2.12a), is that of a cavity close to a concentric
configuration; in this situation the parameters a I are
negative. All the results obtained for the quasiplanar
case hold also for the quasiconcentric configuration, be-
cause a simultaneous change of sign of a I and 5Ac does
not change the physical situation.

III. STABILITY ANALYSIS
OF SINGLE-MODE STATIONARY SOLUTIONS

By appropriately choosing the atomic linewidth and
the frequency spacing between adjacent familities of
transverse modes we can realize a situation where only
modes belonging to families q=0 and 1 can take part in
the lasing process. They are described by the following
functions:

and TEMoo in Sec. III B). As for dynamical regimes in-

volving higher-order families (q =2, 3, . . . ) results can be
obtained only by numerical integration of the equations
(see Secs. IV D and IV H).

A. Destabilization of the TEMoo single-mode steady state

and

Ac
k

k

1+k
(3.7)

The threshold for laser emission can be obtained by set-
ting x, =0 in Eq. (3.5):

'+1=(1+/2) + (3.8)

that in the limit of flat pump profile f~ oc reduces to the
usual expression of the plane-wave theory. The expres-
sions of P"(p) and D "(p) are

The TEMOO stationary solution is found by setting
f2=f3 =0 in Eqs. (2.12a)—(2.12c), and assuming

f, =f", exp( ik—b t ), P =P"(p,p)exp( ik—bt),
D =D "(p,q) ),

where kh accounts for the mode pulling. The single-
mode steady-state equation is then

—22
1=2CI dp4p 2 g(p),

1+6 +e ~ x1

where
' 1/2

(3 6)

' 1/2
2~ i(p) = ~o,o(p) =— 2

e

2
A2(p, q&)= A, (p, y)= —pe ~ e'&,

~Fr

= 2
3(p q)=~o, -i(p q)= pe 'e "—

7r

so that the electric field is

(3.1)

(3.2)

(3.3)

(1 i b, )y(p)F"—(p)
1+~2+(F"( )~2

'

(3.9)(1+6 )y(p)
1+g2+ ~Fst( )~2

where F"(p} is given by Eq. (3.4} with f2=f3=0, and

f, (t) replaced by f", . In order to study the stability of
the TEMoo single-mode stationary solution, we introduce
in Eqs. (2.12) the change of variables

3

F(p, q, t)= g f;(t)&;(p,p) . (3.4)

With this limitation one can guarantee the existence of
single-mode stationary solutions. There are obviously
three such solutions: one is the TEMOO solution, and the
other two are doughnuts with left and right helicities; the
last two prove to be perfectly equivalent from the points
of view of the steady state and the linear stability
analysis.

In the following subsections we will study the stability
of the two classes of single-mode solutions (TEMoo in Sec.
III A and doughnuts in Sec. III B) against fluctuations of
the modes of the other family (doughnuts in Sec. III A

f; ( t ) =f, (t ) exp( ik ht ).,
P(p, q&, t)=P(p, p, t) exp(ikht),

D(p, y, t) =D(p, q&, t),
we consider a small perturbation

5f, (t)=f, (t)—f", ,

5f,.(t ) =f, (t ) (i =2,3),
5P(p, qr, t ) =P(p, qr, t ) —P"(p),
5D(p, p, t ) =D(p, y, t) —D"(p),

(3.10)

(3.11)

and we linearize the dynamical equations around the
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steady state. Then we introduce the exponential ansatz where

5f,.(t )

5f (t)
5P(p, y, t )

5P'(p, g), t )

5D(p, tp, t)

=e

5f0

5fOe

5P (p, p)
5POe(

5D (p, q&)

(3.12)

n, p, 1 ~n, p, p
Yl= (3.14)

and the f operation corresponds to a complex conjuga-
tion which, however, leaves A, unchanged; the function 4
and '0 are defined by

@(IF"I',y, ~,~)= 1 dp 8p'e "T, (IF"I', y, ~,~)x(p),
and obtain two closed sets of linear equations for the vari-
ables 5f, and 5f, ', and for the variables 5f i, 5f2", 5f i,
and 5f&*. Only the latter set can produce an instability,
and it leads to the following secular equation in k:

[X+ir}+k(1 2C4—id )]—[X i'+—k(1 2C4—+id, )]
—4C k %%"x,=0, (3.13)

(3.15)

+(IF"I',y, &,&)= J dpgp'e "T2(IF"I',y, ~,~)x(p),
0

(3.16)

with

and

y=r lr

IFgil2 g g
2(1+5 )(y+X)(1+X ib, ) y—X(1+—ib, )IF"I

2(1+~'+ IF"I'}[(y+~)[(l+~)'+&']+y(1+&)IF"I'] '

(3.17)

(3.18)

7,(IFsil' —g g)= y ~+2)( +'~)
2(1+/2+ IF"li)[(y+g)[(1+X)~+pi]+y(1+/)IF" I2]

(3.19)

where

IF I =If I I g&(p)l (3.20)

mode, we have found approximate solutions of this equa-
tion in a perturbative way whenever large differences be-
tween the decay time scales of the variables occur. We
write X as a power series of a small parameter e:

The single-mode stationary solution corresponding to the
TEM00 mode becomes unstable when Eq. (3.13) admits a
solution with a positive real part. As usual, in the param-
eter space of the system there are two kinds of boundaries
for the stability domain. The first type is characterized
by the fact that a real eigenvalues changes from negative
to positive when the boundary is crossed; in this case one
has a steady-state bifurcation. The second type is charac-
terized by the fact that the real part of a pair of complex
conjugate eigenvalues changes sign when the boundary is
crossed; in this case one has a Hopf bifurcation. Because
the boundary of steady-state bifurcation occurs usually
for small values of g, such that the validity of the three-
mode picture fails because higher-order modes are
relevant for the dynamics, in the following we will discuss
exclusively the boundary of Hopf bifurcation.

We have been able to solve Eq. (3.13) numerically to
any desired level of precision by using coupled Romberg,
Newton, and downhill simplex methods [36]. The bound-
ary of the domain of stability in the parameter plane
(2C, 7}}for fixed values of g, 6, k, and y corresponding to
laser cases analyzed in Sec. IV are presented in Figs.
(3a}—(3c}. Above the solid line the single-mode solution
is stable, while below it any fluctuation of modes 2 and 3
grows from noise and destabilizes the TEM00
configuration.

In order to gain a better understanding about the terms
of Eq. (3.13) which lead to the instability of the Gaussian

10+EAi+e A2+ (3.21)

and take only the relevant terms in the expansion.
In the good-cavity limit k &&y~, y~~, for example, it is

natural to choose e=k =k lyi, (with y =e, i}=e ); one
then obtains

Ap= l'g

X, = 2CC&(x ie ~,y, 5~C, A, =A0) —1+i5Ac,

(3.22a)

(3.22b)

where

2Ck(1+ ib, )(X0+2)Ii

2X0[(1+20+id, ) +2Ck(1+6, )I, ]
(3.23b)

and the complex conjugate solution; the function 4 is

defined by expression (3.15).
Another reasonable choice of the smallness parameter

e is possible when
y~~ ((yi (with k =e, 7/ e), as occurs, —

for example, in CO2 and the Nd: YAG (yttrium aluminum

garnet) laser; in this case it is convenient to set
e=y =y&/y~, so that the first terms of the series expan-
sion for A. are given by

K0= —,
'

[
—[1+id,+i7}+k(1—ib, )]

++[1+id ii} k(l —ib, )—] +8C—k(1+6 )I, ],
(3.23a)
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2 22

f g 4 2Pe XP
0 l +g2+x 2&

—2p

and

2 —4
I =f dp4p, x,

0 i +g2+x 2&
—2p

(3.24)

and by the complex conjugate solutions. The short (long)
dashed lines in Figs. 3(a}-3(c}(when visible), represent
the results of the perturbative expansion (3.22) [(3.23)].
Excellent agreement with the full stability analysis (3.13)
is found whenever the smallness conditions are verified
[in Figs. 3(b) and 3(c), the exact solution is not distin-
guishable from approximation (3.23}].

0 5 10 15 20 25

B. Destabilization of the doughnut single-mode steady state

(3.25)

where

In this case the single-mode steady-state equation,
obtained by setting f, =f3=0 in Eqs. (2.12a)—(2.12c),
and assuming f2

=f '2' exp( ikb't ),— P =P"(p, rp)

Xexp( ikh't )—, and D =D "(p, rp), is

2p2e
—2p

1=2Cf dp4p, y(p),
0 +gr2+2~2e —2P & 2

I I I I I I I I I I I I I I I I

1/2
2 Ifstl (3.26)

and

gt g g Ac

1+k 1+k
(3.27}

0 I I

5 10 15
2C

20

The threshold for laser emission now is [x2=0 in Eq.
(3.25)]

1 ~ 2 I I I ( I I I I I I

«/I~+ ]
2C thr —

( 1 +gi2 } 2
(3.28)

1.0—

We now consider the field fluctuations to be

&f,(t)=f,(t) —f", ,

5f, (t)=f, (t) (i=1,3), (3.29)

it}+k(1—2C—@' i b, ') =0,—
where

(3.30)

+'(IF"I',y, &', &)=f "&p4pe "Tt(I+"I',y, ~', ~}x(p}
0

(3.31)

and

I+"I'=If~'I'l~~(p, q)I'=xp2p'e " . (3.32)

where f; (t ) is defined as in Eq. (3.10), with b, replaced by
5'+ ilkr. We then retrace all the steps followed in Sec.
III A, and we arrive at the expression for the characteris-
tic equation in A, which governs the stability of the
single-mode doughnut solution against the growth of the
TEM00 mode:

0.2—
0.0 '

10 15

FIG. 3. Stability boundaries for the TEMoo mode for the
different parameter regions considered in this paper. This mode
is unstable below these curves and stable above them. The solid
lines indicate the exact numerical solution of Eq. (3.13). The ap-
proximate solutions are indicated by dashed lines when not hid-
den by the solid line (short dashes for the good cavity limit

[Eqs. (3.22)], and longer dashes for the small-y limit [Eqs.
(3.23)]). (a) Na2 laser parameters (k =0.23, y= 1, 6=2.16, and
/=1. 63). (b) CO~ parameters (k=0.3, y=0.01, 6=0.7, and

g~ ~ ). (c) Nd: YAG parameters (k =0.05, y =0.0025,
5= —0.2, and @~ao ).
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4(a), and y « 1 for Figs. 4(b) and 4(c); the other parame-
ters are equal to those used in Figs. 3(a), 3(b), and 3(c), re-
spectively. In these figures the dotted line represents the
threshold of the TEMOO single-mode solution, while the
dashed line shows the threshold for the doughnut solu-
tions. In Fig. 4(a), upon decreasing the mode spacing g
one encounters in order (1) region 1, where only the
TEMOO solution exists and is stable; (2) region 2, where
the TEMOO solution is unstable, and the doughnut solu-
tions either do not exist (above the dashed line} or are un-
stable; (3) region 3, where only the doughnut solutions
are stable, (4) region 4, where both the TEMOO and the
doughnut solutions are stable; and, finally, (5) region 5,
where only the TEMOO solution is stable. In Fig. 4(b), re-
gions 1, 2, and 3 are characterized by the same stability
scenery as in Fig. 4(a), and region 4 presents the same sta-
bility picture as region 2. In Fig. 4(c) the scenery is the
same as in Fig. 4(b), but there is no equivalent of region 4.

The dynamics of the multimode patterns that arise
when both TEMOO and the doughnut solutions become
unstable will be the subject of Sec. IV. The search for
dynamical laser solutions has been guided by the dia-
grams of Figs. 3 and 4.

IV. NUMERICAL ANALYSIS
OF DYNAMICAL INSTABILITIES

In this section we present some results of extensive in-
vestigation of the dynamical regimes obtained by integra-
tion of Eqs. (2.12). Note that the sign of the atomic de-
tuning 6 is positive (i.e., the atomic frequency is larger
than the Gaussian mode frequency, which corresponds to
self-focusing in the laser case) for some simulations and
negative for others, without substantial differences in the
spatiotemporal behavior of the laser output (apart from
mode family selection with b & 0},in agreement with the
experimental results. This may appear to contrast recent
work [37], which shows pinned singularities for b, & 0 and
free vortices for 6 &0 in a laser model with plane mirrors
and an infinitely extended pump. The presence of spheri-
cal mirrors and a finite-size pump induces a mechanism
that binds vortices for all signs of detuning, as clearly ex-
plained in Ref. [29]. Moreover, for positive detunings,
pinned phase singularities in equations (2.12) have been
already described in Ref. [17] as the single degenerate
family effect. Here we focus on the dynamics of laser
vortices when more than one family of modes is active.
In these cases the bound motions of vortices for positive
and negative detunings appear indistinguishable.

investigations in the parameter domain proper for CO2
lasers, and our attempts to forecast relaxation oscillations
in the crystals of phase singularities [17], led us to re-
gimes where spontaneous oscillations of the modal inten-
sities belonging to the same frequency-degenerate family
set in, so that the system reaches a dynamical steady state
which we always found to be a limit cycle.

The parameter domain where this behavior can be
found is characterized by a small y [see Eq. (3.17)], usual-

ly around 10,while the cavity damping constant k can
vary from 10 ' to unity. The pump parameter ranges
from values very close to threshold to a few times above
threshold; beyond this limit the system switches back to a
stationary steady state. The pump profile has always
been kept fiat (1(t~ ae ).

An example of the oscillatory regime is reported in Fig.
5: here we have considered the family q =2 to be active,
and as an initial condition we chose a four-hole pattern,
similar to that described in Fig. 6(b) of Ref. [17]. For
P &0.05 this pattern is a stable stationary state for the
system, but we have numerically integrated the model
with y=0.01, and the onset of the oscillations is quite
clear. As one can see, the intensity of mode A

& 0 is larger
than those of modes Apy2 it oscillates with half the
period of the oscillations of those modes with a smaller
amplitude. Moreover, mode Ho+2 is in counterphase to
i4 0 2 and has the same amplitude of oscillation. This
behavior is very similar to the antiphase dynamics recent-
ly studied by many authors [38], and it is common to all
the dynamical regimes we found all over the parametric
region investigated. It is worth stressing that the same
regime is reached under fixed parametric conditions, in-
dependently of the initial conditions, i.e., there is no evi-
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3.5—
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2.5
~ ~

Q

~ W

1.5

1.0—

A. Dynamical patterns
in the case of a frequency-degenerate family

When the dynamics is governed only by the modes of a
frequency-degenerate family, usually the laser approaches
a stationary state. This is always true in the good-cavity
limit k &&y~, y~~, in which the atomic variables can be el-
iminated adiabatically, and the equations which describe
the behavior of the system can be cast in a "potential"
form [18]; it is, however, not true for general values of
the relaxation rates k, y~, and y~~. As a matter of fact our

0.5—

0.0 I

200
I

400
I

600
I

SOO 1000

FIG. 5. Spontaneous oscillations of the frequency-degenerate
family q =2 for P =0.01. g~ ~, 2C=2, and k =1. Time evo-
lution of the modal intensities. The upper solid line represents
the mode (1,0), and the two lower lines show antiphase oscilla-
tions of the doughnut modes (0,+2) (solid line) and (0,—2) (bro-
ken line).
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dence of multistability, in contrast to the good-cavity
case.

There are always four vortices in this dynamical pat-
tern, which move around the optical axis, and at the
same time oscillate along the radial direction: Figure 6 il-
lustrates this motion in the transverse plane during 200
times units; note that the orbits of the vortices are quasi-
periodic due to the relations among modal amplitude os-
cillations and their phases.

We compared the numerically calculated oscillation
frequencies to the relaxation oscillation frequency pre-
dicted by the plane-wave rate equation model for a class-
B laser.

0.45

0.40-

0.35-

0.30-

0.25-

0.20-

0.15"

0.10-

=+2ky(2C —1)—(Cy)2 .
3 J.

(4.1) 0.05-

(1—u) e

1+[(1—u) x, +u x2]e
(4.2a)

As one can see from Fig. 7, full agreement cannot be at-
tained, but the numerical values are satisfactorily cen-
tered around the theoretical curves; this agreement tends
to be lost for high values of C and k.

As the ratio y/k is further decreased to values of the
order of 10, the behavior of the system becomes
simpler because the anti~hase oscillations disappear. The
modal intensities

~fp, ~, ~fp 2 ~, and
~fp z ~

are con-
stant and (fp 2(

=
(fp 2), but the phases of the doughnut

amplitudes fp 2 and fp 2 rotate at the same frequency co

and in opposite directions, i.e., fp z
=

~fp z ~
e '"', and

fp 2 ~fp p
~e'"'. Consequently, the four phase singu-

larities will rotate about the optical axis at the frequency
co, but the radial motion disappears. In this limit it is
possible to derive more precise formulas for the modal in-
tensities x

&

=
~fp & ~

and x 2
=

~fp 2 ( and for the rotation
frequency co:

0.00
10

FIG. 7. Comparison between the numerically calculated fre-

quency for the oscillations of the regime corresponding to Fig. 5

(squares), with y/k =0.02, and the theoretical frequency for re-
laxation oscillations in class B lasers (solid line).

1=2C "du
1+[(1—u) x, +u xz]e

'2
co +x2=2C du
k k g p 1+[(1—u) x&+u x&]e

(4.2b)

(4.2c)

By substituting the values for the intensities x, and x2
obtained from the first two equations in the last equation,
one obtains the rotation frequency co as a function of the
pump parameter 2C. Figure 8 shows the perfect agree-
ment between the theoretical curve and the numerical
values derived by integration of the dynamical equations.
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B. Three-mode laser: Naz parameters, traveling wave

In this subsection and the following one, we consider
physical conditions in which the laser line excites only
the three modes where q =0 and 1. The estimated values
for the relaxation rates in the experiment with the Naz
laser described in paper II are k =0.23 and y=1. The
other parameters are not fixed. We have gradually de-
creased g [Eq. (3.14)] crossing the instability threshold.
Below the boundary curve given by the solid line in Fig.
3(a) [or by the line which separates regions 1 and 2 in Fig.
4(a)], we have observed the emergence of a rotating pat-
tern characterized by the presence of just one component
of the TEMpp mode, and one of the (0,+1) modes. The
intensities

~ f, ~
of the modal components are constant,

while the relative phase increases (or decreases) linearly
with time, and the rate of increase (decrease) is equal to
the mode-pulled frequency spacing between the two
modes:

FIG. 6. Motion of the four vortices in the (x,y) transverse
plane for the dynamical regime of Fig. 5.

5co =
1+@

(4.3)
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FIG. 8. Same as Fig. 7, except that P/k =10 3 and the nu-

merical values of the rotation frequency (squares) are compared
with the theoretical curve obtained from Eqs. (4.2).

(b)

6.40

Let us consider, for example, the case in which mode
(0, —1) is activated; using the saine modal amplitudes f,
(i =1,2, 3) as in Sec. III, the intensity profile of this pat-
tern has the form

IF(p, tp, t)i =—e ~ If +~2pf3e

=—e "'[If'I'+2p'lf'I'+2v 2plf'I

0.0

X if3 Icos(tp+5tot —(po)], (4.4)

where f, and f3 are the modal amplitudes at a reference
time which, for simplicity, is t =0, and (po is the relative
phase between f3 and f,. Hence the intensity pattern
performs a regular clockwise rotation around the laser
axis. When, by contrast, mode (0, +1) is activated, the
rotation is counterclockwise, as depicted by the sequence
in Fig. 9.

From Fig. 9 one can observe that there is a point in the
transverse plane where the electric-field intensity van-
ishes. This point is the center of an optical vortex [26,17]
located at a distance if, II~2If i I

from the laser axis.
Hence the vortex moves in a circular orbit around the op-
tical axis, with angular frequency 5co.

The moduli of amplitudes f, and f&
vary in a continu-

ous way as a function of the control parameters: with
reference to Fig. 4(a), for example, we have f&

=0
(fi =0), corresponding to the upper (lower) boundary of
region 2. Upon crossing the upper boundary in the
downward direction, one encounters a spontaneous
breaking of the cylindrical symmetry in the intensity pat-
tern, and simultaneously the breaking of the time-
translational symmetry because the pattern in region 2 is
rotating [22]. By decreasing the mode spacing rI in re-
gion 2, Ifz I

increases and If, I decreases, so that the vor-
tex circles closer and closer to the origin and, when the

(c)

6.38 .

0.0-

FIG. 9. Three-mode laser (Na2 parameters, g= 1.63,
2C =9.66, 5= 1.76, and q =4.3). Plot of the transverse intensi-

ty profile for the traveling-wave pattern [Eq. (4.4)] at three sub-

sequent times. The vortex rotation is evident.
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lower boundary is reached, it is located exactly at the ori-
gin, and the pattern becomes a pure, stationary,
doughnut mode.

The first experimental observation of a transverse ro-
tating pattern in a nonlinear optical system was obtained
by Giusfredi et al. [6] in a passive Na system with a sin-
gle mirror configuration; other experimental observa-
tions, directly related to our numerical results, will be
discussed in paper II.

Configuration (4.4) represents a traveling wave in the
angular variable. In the following we will label as "stand-
ing wave" the configuration in which both doughnuts
exp(+in') are activated simultaneously with equal (or
nearly equal) intensities [it must be kept in mind, howev-
er, that due to the frequency beating with modes different
from the two doughnuts exp(king), these patterns are
not stationary but dynamical].

C. Three-mode laser:
CO& parameters, traveling wave, and alternated rotation

A second set of parameters, fitting the estimated values
for the experiment using a COz laser (see paper II), has
been explored. Here the relaxation rates are k =0.3 and
y =0.01. In this case the results obtained in Sec. III for
the limit y ((I provide a good guideline [see Figs. 3(b)
and 4(b)]. As in the previous case, upon destabilization of
the TEMOO mode, one encounters a rotating pattern with
the spinning vortex.

A different but related kind of dynamical patterns has
been found for 5Ac=0.9 and 2C=3.5: here a11 the in-
tensities of the three modes have a significant dynamical
evolution, and two well-separated time scales are recog-
nizable (Fig. 10). On the short-time scale the behavior is
similar to that of the usual rotating pattern, because the
intensity of one doughnut mode is negligible; this time

scale is given by the inverse of the mode-pulled frequency
difference between the doughnut and fundamental modes.
On the longer time scale (several hundred times the rota-
tion period) there is a periodic exchange in the role of the
two doughnut modes, while the intensity of the funda-
mental mode undergoes modest variations. Therefore we
have an alternation between two rotating patterns, one
exhibiting a clockwise spinning vortex, the other a coun-
terclockwise one. This is very simple example of the
phenomenon of periodic alternance that was defined by
Arecchi et at. [20]. The periodic alternating eff'ect has
been observed experimentally in a laser with a saturable
absorber [39], and in a cavity containing a photorefrac-
tive medium [20].

D. Six-mode laser: CO& parameters

In this subsection we consider physical conditions in
which the laser line activates the six modes where q =0,
1, and 2 only. In this case, in addition to the modes de-
scribed by Eqs. (3.1), (3.2), and (3.3), we have the modes
of the family q =2, i.e.,

' 1/2
2A~= 3, o= — (1—2p )e
7T

(4 5)

1/2
1

A 5 0, 2 2p2~ P e +2l2
(4.6)

' 1/2
16= ~o -2= — 2V'e (4.7)

The increased number of dynamical variables leads to a
striking richness of dynamical patterns; the most interest-
ing of those will be reviewed briefly in the following.
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FIG. 10. Three-mode laser (COz parameters g~ oo,
2C=3.5, 6=0.69, and g=1.95). Periodic alternance. Line 1

describes the total intensity, lines 2 and 4 describe ~f, ~
and

~fz ~', respectively, and line 3 describes
~ f, ~'.

FIG. 11. Six-mode laser (COz parameters, /=2. 5, 2C=3,
b, = —0. 154, and g=0.09). Double traveling wave. Time evo-
lution of the modal interstitial for modes (0, +2) (line 1), TEM00
(line 2), and (0, + 1) (line 3 ).
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1. Double traveling wave

In this case there are three active modes: the TEMOO,
the (0, +1), and the (0, +2) modes [or the (0, —1) and
(0, —2) modes]; Fig. 11 shows the relative intensities of
the modal amplitudes, which do not exhibit oscillations.
This pattern presents two rotating vortices located on cir-
cular paths centered on the optical axis. The rotation fre-
quency of the vortices is about the mode-pulled frequency
spacing between families q=1 and 2. Figure 12 shows
the intensity evolution at two diametrically opposed fixed
points in the transverse plane. The intensities plotted
clearly show two frequencies: one is the mode-pulled fre-
quency we mentioned above, the other is twice the first.
Finally, Figs. 13(a}and 13(b) display the transverse inten-
sity profile for this pattern, as viewed from two opposite
sides, evidencing both vortices.

2. Traveling wave plus standing wave I: Vortex precession

This pattern is characterized by a dominant (1,0) mode
and by the presence of both (0,+2) modes together with
a (0, —1) [(0,+1)] mode of about the same magnitude,
while the other doughnut mode (0,+1) [(0,—1)] and the
TEMOO are negligible. As shown in Fig. 14, the modal in-
tensities display small oscillations, and the two (0,+2)
modes have almost equal intensities. This situation cor-
responds to the presence of a traveling wave involving the
family 2p+ ~1~ =1 and a standing wave of the family
2p+~l~=2. The phase of modes belonging to families
q=0 and 2 rotate with the same frequency, while the
phases of modes belonging to the family q =1 exhibit a
rotation frequency, relative to the former, equal to the
mode-pulled frequency spacing between adjacent families.

Because of the orthonormality of the modes [Eq. (2.7)],
the total intensity of the field is equal to the sum of the
intensities of each mode, and therefore it is not affected

by phenomena of interference between modes. The
power spectrum of the intensity (Fig. 15} at a point of
maximum average intensity (point A in Fig. 17) shows
the presence of two main frequencies: ct) ]=2.34X 10 pJ
and co2=0. 177&j. We note that co2 is close to the mode-

pulled frequency spacing between families 0 and 1, and to
the oscillation frequency of the modal intensities. There
is no evident interpretation for cu&.

Within this pattern there are always four vortices mov-

ing in the transverse plane. Their motion evolves over
two well distinguishable time scales due to the presence
of frequencies co& and co&. On the short-time scale (linked

to the frequency co&), the vortices describe small loops
symmetrically arranged around the origin', these loops are
not closed orbits, however, because on the longer time
scale (linked to the frequency co&) they undergo a preces-
sion around the origin. The two motions can be appreci-
ated in Figs. 16(a) and 16(b), respectively.

Figure 17 is an average of the time-dependent intensity
distribution on a time interval equal to the long-time
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4.0points B and D of Fig. 17. The experimental results
presented in paper II are in excellent qualitative agree-
ment with this picture. 3.5-

3. Traveling wave plus standing wave II:
Creation and annihilation of vortices rI)

2.5—
rrt

4 20-

The modal structure of this pattern is similar to the
previous case, but here the intensity of the (0, —1)
[(0,+1)] mode is much larger than that of the two
(0, +2) modes (Fig. 19). Again the larger fundamental

20) in a point of maximum average intensity corresponds
to the mode spacing between families 0 and 1, and there
is a smaller fundamental frequency coI= .=3.66X 10 not
clearly linked to the characteristic frequencies of the sys-
tem. The averaged intensity distribution is similar to t at
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FIG. 19. Six-mode laser (CO, parameters, P~ oo, 2C=2.0,
6=0.115, and g=0.21). Traveling plus standing wave II.
Time evolution of the modal intensities for modes (1,0) (line 1),
(0,+ 1) (line 2), and (0,+2) (line 3 ).
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of Fig. 17, and the oscillations of the intensity in the op-
posite secondary maxima are also similar to those shown
in Figs. 18(a) and 18(b).

The peculiarity of this pattern is the motion of the vor-
tices, as ig. s, as Fi . 21 shows: one of them covers a small oop
around the origin, while on a larger loop outside it, t ere
are two porn s an

'
t ( A and C ) where a pair of vortices is

created, and two others (B and D ) where a pair is annihi-
lated. The vortex in the inner orbit has topologica
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charge is created or annihilated on the outer orbit; on the
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at points B and D (see Fig. 17).
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2

pe ~ cosy,

2

pe ~ sing .

1/2

A q
=( Ao, + Ao, )/&2=2

1/2

A3=(AO i Ao i }/& 2=2

(4.9)

9.01 lFl2

(a)

(4.10)

ln our simulations we have assumed that modes 2 and 3
are shifted from the common family frequency by
amounts —0 and 0, respectively, equal to a few percent
of the mode spacing ao, between families 0 and 1. This
models small asymmetries of the optical components of
the experimental setup which create astigmatism and are
responsible for slightly different optical paths for the an-
gularly dependent modes. Actually, mechanisms such as
astigmatism or aberration, for example, break the cylin-
drical symmetry of the system. A precise modeling of
these elements would require introducing considerable
complications into our equations, and therefore we in-
clude such elements in a phenomenological way by intro-
ducing a breaking of the frequency degeneracy, as is done
here, or differentiated losses, as is done in Sec. IV F.

Simulations performed for both Naz- and CO2-like pa-
rameters lead to similar results. Overall we can say that
when Q=(0.03—0.04}nil, , one observes stable standing-
wave configurations. These patterns are characterized by
the presence of a pure cosine (or sine, according to which
one has been shifted closer to the atomic frequency) mode
superposed to a component of the TEMOO. The intensity
distribution is given by

lF(p, q&, t)l =—e i'
lf, +2pf2( cosy)e2 2 2 2 O

0.0

9.0l

(b)

= —e "[Ifil'+4p'If~I'cos'(g)

+4pl f i llf2l cosy cos(Rot —yu)),

(4.11)

where f, and f2 are the amplitudes of modes 2 i and 2 z

at a reference time which, for simplicity, is t =0, and qo
is the relative phase between f, and fz. The quantity 5co

is given by Eq. (4.3). The relative phase rotates with the
usual frequency (4.3): the role of the phase rotation is
clarified by Figs. 27(a) and 27(b), where two maxima of
the intensity grow and decay alternately during the rota-
tion period; the field intensities corresponding to the two
peaks exhibit sinusoidal oscillations in counterphase.
The time-averaged intensity pattern is shown in Fig. 28,
where two bright spots are clearly visible. More precise-
ly, the numerical calculations show that the modal inten-
sities exhibit small oscillations (Fig. 29), so that in Eq.
(4.11) lf, l and lf2l must be replaced by two time-
dependent functions which display these oscillations.
When 0 is reduced to 1% or 2% of ooi, the sine (cosine}
mode comes into play and the amplitude of the oscilla-
tions of the modal intensities increases. The temporal
behavior of the intensities of modes A, (i =1,2, 3) is
shown in Fig. 30, while Fig. 31 shows the same for the
doughnut modes (3.1)—(3.3). The fundamental oscillation

2.0

-2.0
I i I i I i I i I

-2.0 0.0
Z QJO

2.0

FIG. 28. Three-mode laser with frequency-degeneracy remo-

val, standing-wave configuration. Average intensity distribution
in the transverse plane.

FIG. 27. Three-mode laser with frequency-degeneracy remo-

val. Standing-wave configuration and Na, parameters (f= 1.63,
2C=9.66, 6=2.03, g=4. 3 and 0=0.04a0 &). Plot of the

transverse intensity profile for the standing-wave pattern [Eq.
(4.11)]at two subsequent times.
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Eqs. (4.9) and (4.10). This corresponds to simulating un-
compensated astigmatic losses in the laser Brewster win-
dows or in the lenses. The equations for the three modes
in play read

df, -

z~= —k f i
—2C f dy f dp pA &(p, q&)P(p, y, t )

(4.12a)

df,
dt

= —k (I+iao, )fz

where f, (i =1,2, 3) is the amplitude of the modal func-
tion A, (i = 1,2, 3 }as given in Sec. IV E. We have numer-
ically integrated these equations, using control parame-
ters values suitable for the Na2 laser.

Since we assume that mode 2 suffers smaller losses than
mode 3, we coherently observe in the temporal evolution
that mode 3 rapidly decays to zero, and the final state is
made up of a combination of modes 1 and 2. The pattern
one observes under these conditions is very similar to
that described in Sec. IV E, and its transverse dynamics
as well as the average intensity distribution are the same
as in Figs. 27 and 28, respectively.

G. Unlocked doughnut

df3
dt

2C—f, dV f, dp pA~(p V»P(p ~ t }

(4.12b)

5k= —k 1+ +ia f01 3

—2C f dp f dppA3(p, tp)P(p, tp, t)

(4.12c)

Another dynamical pattern which exhibits a regular al-
ternance among different transverse configurations has
been found using the same model as in Sec, IVE, and
moving the atomic line closer to family q =1, so that the
TEM00 mode is suppressed. The frequency shift 20 be-

tween modes 2 and 3 amounts to a few percent of the
mode spacing ap„ it prevents these modes from locking
together and from realizing a stable stationary doughnut
pattern [15]. Actually, the two modes exhibit a beat fre-
quency 5 (in general close to the frequency shift), and
their intensities oscillate with frequency 25. In general
the behavior of the field intensity is well described by an
expression of the form

2 —22
~F

~

~ p e ~ ~a +1+e, sin(25t ) cosy+ b +1+e~ sin(25t )( sing&)e' '~

2 —22=p e ~ {a [I +e&si n(2 5t ]}c os'&+b [I+ez sin(25t }]sin y+ab sin(2y)+1+e, sin( 2t5)QI +esi (n2 t5) cos5t]

(4.13)

where a and b are the mean values of
~f~ ~

and
~ J3 ~,

respectively, and e, and e2 are constants. We note that
a & b when the atomic line is closer to mode 2. If one
defines T=2m. /5, Eq. (4.13) reads

2 —22
C&p e t' cos (y —

&po), t=0
2 —22

C&p e t' [a cos q+b sin q], t=T/4
2 —22

C,p e t'cos (y+po), t=T/2
2 —22

Czp e ~ [a cos q+b sin y], t =3T/4,

(4. 14)

where g&a=tan '(b/a), and C, and Cz are constants.
From Eq. (4.14) it is clear that the first and third expres-
sions describe two-peaked structures rotated by 2yp with
respect to each other, while the second (and fourth) is a
pattern whose transverse intensity distribution depends
on the ratio b/a.

When the atomic line is centered halfway between
modes 2 and 3, one finds a =b, so that (a) go= ~/4, and
the two-peaked structures lie on the two straight lines

l

y = —x and x in the transverse plane, respectively; and
(b) the second and fourth structures become independent
of q and correspond to the pure doughnut patterns. In
addition, E'&=E'2 so that the time evolution of the two os-

cillating modal intensities are perfectly superimposed.
The simulation shown in Fig. 33 uses the parameters

for a Na2 laser, so that a comparison can be made with

the experimental data reported in paper II. We plot the
local intensity recorded at fixed points in the transverse
plane shown in Fig. 34; we begin by noting that the sig-
nals at points P» and P, &

are exactly equal: their
maxima correspond to the appearance of the two-peaked
structure oriented along y =x ( t = T /2 ), while they drop
to zero when the two-peaked structure appears along

y = —x(t =0). It turns out that the oscillation frequency
is equal to the mode-pulled frequency shift 2kB/(1+k ).
The intensity at points P» and P, , is in counter-
phase with respect to the previous couple. The four
points on the axes P~ p Pp &

P
& p and Pp, are not

affected by interference between modes 2 and 3, and thus
the oscillation amplitudes of the signals are much smaller
than in the previous cases, because they arise from the
modulation of the amplitudes lfz ~

and
~f3 l, shown in Eq.

(4.13). At t = T/4 and 3T/4, the same local intensity is
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(0, —1) stationary state is never recovered. Before the
vortex reaches the beam center, the next radially sym-
metric (1,0) mode grows from zero amplitude (at
2C=1.725. . . ). The resulting three-mode pattern medi-
ates the transition and is the focus of our analysis. Apart
from introducing a new anticlockwise rotating vortex at a
large distance from the beam center (see the end of this
subsection), the three-mode interaction progressively dis-
torts the initially circular trajectory of the existing vortex
so that is acquires a peculiar "bow-tie" shape [see Fig.
35(a)]. The vortex completes this trajectory at almost the
same frequency as for the circular path. However, on a
longer time scale (about 2000 times slower than the rota-
tion period), the "bow-tie" trajectory precesses in the
same sense as the vortex rotates —i.e., clockwise in our
case [see Fig. 35(b}]. The intensity distribution for this

I

pattern has the form

IF(p, q&, t)l =—e ~ If ~+pv'2fo3e

+(1 2p —)f4e (4.15)

where f, , f3, and f~ are the amplitudes of modes TEMOO,

(0, —1}, and (1,0), respectively, at time t=0, and 5' s

are the respective frequency differences from the Gauss-
ian mode. From the numerical computations, we observe
that the modes oscillate at almost their mode pulled fre-
quencies, i.e., 5co3= —,'5~4=5co, where the latter is given

by Eq. (4.3). Under this approximation, Eq. (4.15) repro-
duces the "bow-tie" vortex trajectory without the preces-
sion components, and the motion of the inner vortex is
described by the equations

4lf.'I—sin(5cot)k sin (5cot) — c o(s25cot)[lf I

—Ifol cos(25~t)]1 4

lf g llf 4I »n(45~t )

If, I'cos(5cot)

If, I sin(25cot )
Y, =X„tan(5a)t )+

2 f 3 cos(56)t )

1/2

(4.16a)

(4.16b)

where X„and Y, are the Cartesian coordinates of the
vortex in the transverse plane. A comparison between
Eqs. (4.16) and the numerical computation yields an
agreement within the line size of Fig. 35(a). However, in
order to describe the slow precessing motion, one has to
impose 5co34 —,'5co4. This means that on a short-time scale
the modes may be assumed to oscillate at their mode-
pulled frequencies, while on a longer time scale sma11er
frequency shifts become relevant to describe the preces-
sion of noncylindrically symmetric vortex trajectories.

The three-mode interaction is still more complicated.
Similarly to the vortex precession presented in Sec. IV B,
this interaction induces oscillations of the modal intensi-
ties. These oscillations are quisiperiodic containing 5~3
and 5cu4 and their difference, i.e., the precession frequen-

cy.
We have studied the details of the transition from two-

to three-mode patterns around 2C=1.725. Figure 36(a)
shows evidence of the Hopf character of the bifurcation
as the amplitude of the oscillation grows with the square
root of the control parameter 2C normalized to the
threshold value [42]. The bifurcation is reminiscent of
the interaction between purely radial modes as described
in Ref. [43]. Similarly, at 2C=2. 138 an inverse Hopf bi-
furcation occurs corresponding to the vanishing of the
Gaussian mode intensity [see Fig. 36(b)]. The final state
of the analyzed transition is formed by the (0, —1) and

(1,0}modes, where the field intensity distribution has the
form

IF(p, q, t)l'= e "I &p2'fe—"~--'"
+(1 —2p'}f', I'=2

[2p If3I +(1 2p ) I foal +2&2p(1 —2p )If, llf4I cos(y —5cot —yo}], (4.17)

where yo is the fixed relative phase between fo3 and f~~.

The positions of the two vortices can be written simply as
follows:

—If'I+V If'I'+4lf I'

(4.18b}

If'I+ V'If'I'+4lf'I'
2~'2 fO4

(4.18a}

q'„2]=q, +5co~+m .

These two vortices are diametrically opposite to each
other, and rotate counterclockwise on circular orbits
around the beam center with angular frequency Lo. The
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6x 1.0
C3

tion between the direction of rotation of the vortices and
their topological charge.

In conclusion, we can summarize the analyzed transi-
tion as follows: by a three-mode interaction leading to
Hopf oscillations and nontrivial vortex trajectories, the
Gaussian mode is replaced by the cylindrically symmetric
(1,0) mode in a dynamical pattern involving a doughnut
mode.

V. CONCLUDING CONSIDERATIONS

0'
1.70 1.75 1.80

2C
1.85 1.90

10x10 I I I I I I I I I

8(

0
2. 10 2. 12

2C

FIG. 36. Demonstration of the Hopf character of the three-
mode interaction; the amplitude of oscillation of the total inten-

sity squared grows linearly with the pump. The circular points
are measurements taken from numerical simulations and a
best-fit straight line was drawn to verify the linear character of
the relationship. (a) The Hopf bifurcation associated with the
introduction of the (1,0) mode. (b) The inverted Hopf bifurca-
tion associated with the disappearance of the TEMoo mode.

FIG. 37. The trajectory of the inner vortex for successive
values of the pump (from left to right 2C= 1.75, 1.79, 1.87, and
2.40). Here the inversion of the sense of rotation intrinsic to
this transition is clearly illustrated.

three-mode interaction induces a change of the rotation
of the vortex close to the beam center. The mechanism at
the base of this reversal is inherent in Eqs. (4.15) and
(4.17), and is pictured in Fig. 37. The progressive defor-
mation of the "bow-tie" orbit leads to a reversal of- the
direction of rotation of the vortex without inverting its
topological charge. This unexpected behavior proves
that for laser patterns which are complex enough (i.e, in-
volving two or more interacting modes), there is no rela-

The analysis of this paper aims to continue our previ-
ous reports on stationary transverse patterns
[10,12—14,17,18]. In Refs. [10,13,14] we considered the
case of a frequency spacing among transverse modes of
the order of the cavity linewidth, a condition which
favors the locking of the modes to a single frequency,
which produces a stationary configuration. On the other
hand, Refs. [12,17,18] focused on the case of excitation
of a single frequency-degenerate family of modes; in this
configuration there is no frequency competition and, in
the case of class-A lasers, the system again approaches a
stationary state (this is, however, no longer true for
class-B lasers, as is shown in Sec. IVA of this paper).
The analyses of Refs. [13,14] and Refs. [12,17,18], respec-
tively, were complementary in the sense that in the first

group of papers we assumed that the cylindrical symme-

try of the pattern is not broken, and therefore we includ-
ed in our treatment only the modes with l =0, whereas in
the second group we analyzed specifically the phenomena
of spontaneous breaking of the cylindrical symmetry,
which arises from the presence of the modes with 1%0.

In this paper, we include, in principle, modes with
whatever values of p and 1 (without including the restric-
tion 1=0 of Refs. [13,14] or the restriction 2p+~l~
=const of Refs. [12,17,18]), but we focus our analysis on
cases in which only a limited number of modes is relevant
to the dynamics of the system. The emphasis now is no
longer on stationary but on dynamical patterns, which
become commonplace when the frequency spacing be-
tween adjacent transverse modes becomes substantially
larger than the cavity linewidth.

Despite the restriction to a dynamics governed by a
limited number of modes, the search in the parameter
space of the system is quite complex. Our model, which
we tried to keep as simple as possible, includes six in-
dependent parameters ( C, f, 6, ri, k /y~, and k /y

~~

). For
this reason we did not include the possibility of in-
gredients such as, for example, (i) inhomogeneous
broadening, (ii) Fabry-Perot cavity instead of ring cavity,
and (iii) apertures. Concerning point (iii), we observe that
in our calculations we have always chosen parametric
conditions such that the relevant modes are selected by
resonance with the atomic line, so that the inclusion of an
aperture is unnecessary (some results obtained using a
model which includes an aperture are discussed in Ref.
[23]); for the same reason, in most of our calculations we
assumed a Oat or nearly Oat pump profile.

Several of the papers indicated as "early work" in Ref.
[9] analyze transverse patterns, observed experimentally,
in terms of linear superpositions of a few transverse
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modes which beat against one another; the same is also
done in Refs. [6,21]. In our approach, instead, we derive
the behavior of the system from the nonlinear dynamics
of a number of coupled modes, governed by the equations
of our model. Even in the very few cases in which the
behavior reduces to a superposition of mode amplitudes
with constant intensity (see Secs. IVB and IV A), the
weights of the superpositions are not assumed ad hoc, but
derived from the equations. Almost always, in addition,
the modal intensities exhibit oscillations as a manifesta-
tion of the nonlinear character of the mode-mode interac-
tion; in these cases the dynamics does not reduce to pure
mode beating.

Our search was guided by the indications of bifurcation
theory [22], which predicts the possible patterns but does
not provide informations about their stability. In the
case of three-mode dynamics, we performed a fairly com-
plete and mostly analytical linear stability analysis, pro-
vided a full characterization of the patterns realized by
the laser, and indicated their domains of stability in pa-
rameter space. A main point which emerged with evi-
dence is the role of the imperfections in the cylindrical
symmetry of the system, which led to the stabilization of
patterns that would be unstable in conditions of perfect
symmetry. In the case of six-mode dynamics, we
identified several (not necessarily all) kinds of patterns.
The determination of their domains of existence in pa-
rameter space is quite a time-consuming task, which is
left for future work.

Our numerical simulations are addressed to three kinds
of lasers: Na2, CO2, and Nd:YAG (in the last case we an-
alyzed the effects of a negative atomic detuning b, &0).
Paper II will illustrate some experimental results ob-
tained in Na2 and CO& lasers, and will compare them

with theoretical and numerical predictions. However, we
observe that the parameter values of simulations for CO&

lasers do not fit the conditions in the experiment. As a
matter of fact, in the experiment the atomic linewidth is
very close to the free spectral range, whereas our model
assumes that it is smaller. In our simulations, we pre-
ferred to consider parameter conditions which ensure
strictly the validity of our model, and therefore we con-
sidered a laser cavity shorter than that of the experiment
by a factor -5. This step has the further benefit that
with the shorter cavity the transverse mode spacing can
be taken to be of the order of the atomic linewidth, so
that relevant modes are selected by resonance with the
atomic line, whereas in the experiment they are selected
by an aperture. Preliminary investigations for a cavity
length closer to that of the experiment show results simi-
lar to those illustrated in this paper; however, we do not
yet have a complete picture for this case.

The problem of reducing the four-level model for CO2
lasers to a two-level model was discussed in Ref. [44]. In
our numerical simulations we considered a value of

y~~

larger than the real one, in order to make the integration
time shorter; in Ref. [44] it is shown that this step does
not introduce qualitative di6'erences in the results.
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