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ABSTRACT

A control volume method is presented for predicting the displacement and rotation of thin transversely

loaded flat plates. The new procedure uses discrete Kirchhoff triangle (DKT) elements but introduces a

dual mesh of interconnected control volumes (CVs) centred on the finite element (FE) vertices. Discrete

equations for the unknown degrees of freedom are subsequently derived by enforcing equilibrium on

these CVs; as such this implementation is a quadrature free routine. To allow a comparison, a quadrature

free implementation of the DKT element, using the standard finite element procedure, was developed

using symbolic mathematics. The CV based procedure is validated by patch tests for a state of pure

bending and twist. Convergence tests for various loading types show enhanced performance for coarse

meshes over the equivalent FE method.

1 INTRODUCTION

Plate bending elements remain an active research area, with work focusing upon the selection of defor-

mation theory, application of suitable boundary conditions and the avoidance of element shear locking.

Recent developments in finite volume (FV) methods have identified two different approaches, a cell

centred method that is a geometrically versatile formulation with multifaceted control volumes [1] and

vertex centred methods [2]. Both formulations are presented as locking free for both thick and thin

Mindlin plates. This paper presents a vertex centred FV thin plate formulation based upon the discrete

Kirchhoff triangle element [3]. The DKT element is based upon Mindlin plate theory but has Kirchhoff

constraints, that is transverse shear is zero, applied at each node giving rise to an element that converges

to the Kirchhoff thin plate solution. The solution convergence is compared against the existing finite el-

ement DKT. Both the FE-DKT and CV-DKT formulations where built upon the same moment curvature

matrix and both where solved without quadrature in order to have the best comparison of the numerical

procedures. The FV method differs from the FE by introducing a dual mesh of interconnecting control

volumes over a standard finite element mesh. The element stress resultants are then integrated around

the control volume faces and equilibrium is imposed on that CV. The resulting equilibrium equations



then relate the control volume centre unknown displacements to those at neighbouring centres, in a

manner equivalent to the relationships between nodal displacements characteristic of the FE method.

A quadrature free implementation is achieved using the symbolic maths toolbox of MATLAB which is

built upon the Maple kernel. Symbolic integration (SI) of the moment curvature matrix is carried out in

both the FE-DKT and CV-DKT codes to obtain the element stiffness matrix.

2 Element Stiffness Matrix

As already stated both the FE and CVFE methods are founded upon the same moment curvature re-

lationships, but the formulations differ with regards to the element stiffness matrix. In the FE-DKT

element the stiffness matrix is derived using the principle of minimum potential energy, equation (1).

The CV-DKT differs from this because the stiffness matrix is composed of a set of discrete equilibrium

equations. In the finite element method the stiffness matrix for the DKT element is:

KFEM = 2A
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B
T
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where B [3] is the moment curvature matrix, Db is the constitutive matrix in bending, A is the element

area and ξ, η are the area coordinates of the traingular element.

To determine the stiffness matrix for the CV-DKT a dual mesh of interconnecting control volumes is

set up, with each control volume centred upon a node of the finite element mesh. The control volume

faces are constructed by connecting a point mid way along the finite element mesh edge to the centre

of area of that corresponding finite element.

The stress resultants per unit length are integrated along each face of the control volume with respect

to the line coordinate r, anti-clockwise around the CV node. This integration gives rise to the stress

resultants acting on each face. For a face i these are T
i
z , Mi

x and M
i
y, representing the total transverse

force and total moments about the x and y axes respectively. Equations (2), (3) and (4) are thus functions

to determine the internal actions upon each face of the control volume.

Transverse Force:

T
i
z =

∫

Txcosθdr +

∫

Tysinθdr (2)

Total Moment about the x-axis:

M
i
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∫
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(yr − yi) (Txcosθdr + Tysinθdr) (3)

Total Moment about the y-axis:

M
i
y =

∫
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where (xr, yr) are the coordinates of the moment arm along the differential line, (xi, yi) are the coordi-

nates of the centre of the control volume, Mn are the bending moment resultants, Tn are the shear stress

resultants and θ denoted the inclination of the control volume face. Mn and Tn are determined from the

product of the moment curvature, B, and constitutive, Db, matices

Equilibrium is imposed on the control volume by summing all the internal actions on each face for the

control volume. The equilibrium equations can be expressed as:
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where T
E
z , M

E
x and M

E
y are any externally applied forces or moments on the control volume and n

is the number of faces for a given control volume. This is carried out for each element in the mesh

and assembled into the global stiffness matrix in a manner analogous to the standard finite element

procedure [4].
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Now the structural equations are in a form equivalent to the finite element procedure (7),

[K]{U} = {P} (7)

where {U} is the vector of nodal displacements, {P}is the vector of externally applied force and

moments and [K] is the stiffness matrix (6). The load vector can now be modified to include applied

loads and the appropriate boundary constraints applied to the stiffness matrix as in the finite element

method. The stiffness matrix can then be solved by either a direct or iterative solution strategy. In the

presented work the MATLAB matrix left division routine was used.

3 Implementation

In the formulation of the FE-DKT (1) and CV-DKT (6) stiffness matrices, symbolic integration, using

the Maple kernel of MATLAB, was employed. The advantage of using symbolics is that an explicit

solution to the stiffness matrix is achieved. The symbolic toolbox is capable of integrating the moment

curvature matrix in a relatively quick time, with the solution extractable to form conventional code. This

was validated by comparing the solution to the FE-DKT element stiffness matrix against the explicit

FORTRAN code of Jeychandrabose et. al. [5]. Both methods gave an identical solution. Results from

the quadrature free FE-DKT and CV-DKT elements were compared against the shell63 element of

ANSYS, a quadratic element composed of 4 DKT elements [6] where 3 point quadrature is employed

in evaluating the stiffness matrix.

4 Results

The CV-DKT has a proper rank to its stiffness matrix and passes the patch test for states of pure bending

and twist. Convergence tests of maximum displacement against increasing discretisation, for various

loading types and boundary conditions where used to asses the performance of the CV-DKT element

against the FE-DKT, quadrature free DKT, and the quadrature based ANSYS-DKT. Shown here are the

normalised central displacements for square plates of thickness h = 0.05 with clamped boundaries,

loaded with a uniform pressure load of 10N/m2 (Figure 1(a)) and a centrally applied point load of 1N
(Figure 1(b)). For the uniform pressure load case it can be seen that convergence to the exact solution

is more rapid than in the FE equivalents. For the point load case it is noted that the CV-DKT method

predicts the central displacement as accurately as the quadrature free FE formulation at a given mesh

refinement.
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Figure 1: Convergence of maximum transverse displacement to thin plate theory. (a) Clamped plate

with uniform pressure load, a/b = 1 and h = 0.05. (b) Clamped plate with centrally applied point load,

a/b = 1 and h = 0.05.

5 Conclusion

A control volume based finite element method is presented for the prediction of bending deformations

in thin plates. The method is a direct equivalent to the existing discrete Kirchhoff triangular element and

displays equivalent or better displacement convergence under various loads. The method is quadrature

free, utilising the symbolic integration tools of the Maple kernel of MATLAB. This work is presented

to show the promise of the CVFEM formulation in plate bending problems.
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